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Abstract: Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia
affecting up to 1% of the general population. Its prevalence exponentially increases with age and
could reach up to 8% in the elderly population. The management of AF is a complex issue that
is addressed by extensive ongoing basic and clinical research. AF centers around different types
of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural
remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci
associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription
factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory
mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone
modification, has allowed to decipher how a normal heart develops and which modifications are
involved in reshaping the processes leading to arrhythmias. This review aims to provide a current
state of the field regarding the identification and functional characterization of AF-related epigenetic
regulatory networks
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1. Introduction

Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting
up to 1% of the general population [1,2]. Its prevalence exponentially increases with age and could
reach up to 8% of the elderly population (age > 80 years), representing thus one of the most significant
global health burdens [3]. The presence of AF substantially contributes to morbidity and mortality
by significantly affecting patient’s quality of life and increasing the risk of embolic stroke and heart
failure. Beyond age, there are many types of cardiac and medical conditions that confer increased
AF risk. These include arterial hypertension, cardiomyopathies, obstructive sleep apnea, or valvular
dysfunction [4,5]. For years, AF has not been considered a genetic condition. However, the discovery
of the first lone AF in a family with an autosomal dominant pattern of inheritance gave evidence
of a genetic contribution in the development of AF [6]. Subsequently, several studies have further
demonstrated that AF and in particular, lone AF, have a substantial genetic basis [7–10]. Familial studies
along with population-based genome-wide association studies (GWAS) have shed light on genetic
mutations and polymorphisms, which associate with AF and explain in part its heritability [11].
A recent meta-analysis of GWAS for AF identified over 100 AF risk loci [12]. However, identification of
risk loci is only the start of a long process to discover the mechanisms by which these variants increase
AF risk.

Genetic variants can contribute to the AF pathophysiology by altering structure and therefore,
the expression and function of proteins responsible for various cellular activities [13]. It is recognized
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that heterogeneity in gene expression among cells and individuals is in part due to an interaction
of a plethora of environmental factors and individual lifestyles but the link between these external
risk factors and the internal genetic machineries has been unclear. The discovery of epigenetics has
helped the scientific community to explain the link between genes and the environment. The term
“epigenetics” is defined as changes in gene expression that cannot be explained by changes in DNA
sequence [14] but rather result from alterations related to the packaging and/or translation of genetic
information [15]. Multiple diverse epigenetic processes, including the expression of non-coding RNA
molecules, DNA methylation and histone modification influence the expression of genes which in turn
lead to drastic changes in the cellular structure and function, influencing thus the organism response
to diseases [16]. Epigenetic mechanisms can be acquired or inherited and constitute a mean by which
the cardiovascular transcriptome is controlled in a well-coordinated manner during development and
disease. Although, the role of epigenetic mechanisms in cardiovascular diseases (CVDs) has been
under intense scrutiny during the last few years [17], its role in AF onset and development is still
poorly elucidated. AF is starting to be viewed as much more complex and dynamic disorder as more
epigenetic mechanisms are discovered. Thus, important insights are expected to emerge in the near
future, including novel AF biomarkers and new therapeutic targets. In the course of this review, we
will discuss the cellular and molecular basis of AF as well as the contribution of epigenetics in the
disease onset and development.

2. Clinical and Pathophysiologic Basis of Atrial Fibrillation

2.1. Classification

Atrial fibrillation (AF) is the subject of several overlapping schemes of classification in which the
subgroups are often poorly defined. As any disease, AF could be symptomatic or silent depending on
the manifestation of its related complications [18]. However, the most used classification is according
to its temporal pattern. AF is generally considered as paroxysmal AF when the fibrillatory episodes
self-terminate within seven days. Paroxysmal AF may progress to persistent and finally chronic or
permanent states that fail to self-terminate [19]. The disease aetiology is often used as a classification
criterion as well. AF is described as lone AF when it occurs without evidence of other cardiac or
systemic disease known to promote AF. Thus, it is no longer considered as lone when it concurs with
hypertensive, valvular, or other structural heart diseases [20].

2.2. Pathophysiology of AF

In health, differences in action potential duration and refractory period between the ventricular
and atrial myocardium make this later more prone to the development of very rapid rates with complex
patterns of conduction than the ventricular myocardium [21]. In the atrial fibrillation condition, these
physiological differences favorize the rapid and disorganized atrial activation which leads to impaired
atrial function [22]. Although decades of investigation on the triggers and the sustainer factors of the
disease, AF mechanisms remain incompletely understood and thus the disease poorly treated [23].
However, a commonly accepted mechanism of AF assumes that the lost synchronization of atrial
contraction, results from randomly propagating waves with intermittent blockades, annihilation, and
re-generation of discrete waves. This rapid and uncoordinated atrial activity can be diagnosed on an
EKG by lack of a P-wave and irregular QRS complexes [24].

Current research on AF support the fact that initiation and maintenance of AF require
pathophysiological remodeling of the atria, either specifically as in lone AF or secondary to other heart
disease as in heart failure-associated AF [25].

2.3. Electrical and Structural Remodeling in AF

Atrial remodeling refers to any persistent change in atrial structure or function [26].
This remodeling could be caused by the AF itself leading to electrophysiological, contractile, and
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structural changes [27–29]. Atrial remodeling most likely starts with electrical remodeling characterised
by changes in atrial refractoriness and slowed conduction time. These changes occur due to alterations
in action potential currents, especially Ca2+ influx and its subsequent homeostasis [30]. The rapid
atrial pace rises the Ca2+ inward currents, increasing thus the internal cellular Ca2+ load with each
action potential. This triggers the autoprotective cellular mechanisms that reduce Ca2+ entry. Reduced
L-type Ca2+ (ICaL) current, Ca2+ overload, changes in K+ current (IKACh, IK1), Na+ current (INa), and
transient outward current (Ito) have each been reported in AF [31]. All these changes stabilize atrial
re-entry rotors, increasing AF vulnerability and sustainability [32,33]. In addition, alterations in Ca2+

handling promote ectopic activity and diastolic Ca2+ leakage from the sarcoplasmic reticulum (SR)
into the cytoplasm via ryanodine receptors (RyRs) [34]. In AF, RyRs are also subject to remodelling,
via RyRs phosphorylation, in a manner that increases calcium release [35,36]. Electric remodeling thus
favours the development of functional re-entry substrates, which are reversible on AF termination
(reverse remodeling) and contribute to persistent AF. As atrial disease progresses to irreversible
structural changes, AF becomes permanent [27].

Atrial structural remodeling includes inflammation, cell hypertrophy, atrial dilation, and
fibrosis, which cumulatively contribute to abnormal electrical signal formation and conduction
as an arrhythmogenic substrate [37,38]. In fact, the increased atrial wall stress (stretch) and decreased
cardiac output resulting from the lack of synchronization between the rapid atrial activity and the
irregular ventricular response are suggested to be beyond the elevated hemodynamic load during
AF [39]. Altered atrial hemodynamic load enhances the release of angiotensin II, by activating the
renin–angiotensin–aldosterone system, and is associated with endothelial damage and the recruitment
of cytokine-secreting inflammatory cells [40]. Furthermore, the elevated hemodynamic load on the
atria promotes cellular hypertrophy, cardiomyocyte dysfunction, myocyte death (through apoptosis
and necrosis), and fibrosis [41]. Among all, atrial fibrosis is the major characteristic of AF-related
remodeling [42]. Atrial fibrosis is characterized by an excessive fibroblast proliferation and accumulation
of collagenous material in the extracellular space resulting from an imbalance between extracellular
matrix (ECM) deposition and degradation within the heart [43]. Atrial fibrosis is also proposed to alter
both total gap junction proteins expression and distribution along cell membrane creating a disruption,
most likely decrease, in cellular communication between cardiomyocytes [9].

3. Genetics of Atrial Fibrillation

A number of recent studies have demonstrated that AF and in particular, lone AF, has a substantial
genetic basis [7,8]. Although factors such as sex, ageing, and comorbidities contribute to AF risk,
different studies have shown that a family history of AF confers an increased risk to the disease [8,44,45].
In fact, it has been reported that having a parent with AF approximately doubled the four-year risk of
developing AF, even after adjustment for AF risk factors previously cited [45]. Chen and colleagues
identified the first AF mutation responsible for an autosomal dominant form of familial AF [46].
The identified mutation, namely the S140G, is localized in KCNQ1 gene that encodes for the pore
forming α-subunit of the Kv7.1 voltage-gated potassium channel responsible for the slow component
of the delayed rectifier potassium current (IKs). Upon demonstrating the heritable component of AF,
several studies have emerged to identify the genetic basis of the disease. Most of the early studies
employed the common research strategy which consists of selecting the genes of interest using previous
knowledge of gene function, typically referred as “candidate gene study”.

Subsequently, several studies identifying numerous other AF candidate genes and risk loci, such
as ion channels, genes involved in fibrosis and the extracellular matrix (ECM) remodelling, genes
involved in cardiogenesis, genes implicated in the cell-cell coupling or nuclear structure, and genes
and/or loci identified by GWAS, have emerged (Figure 1).
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Figure 1. Atrial Fibrillation (AF) genes network. A network summarizing the interactions between 
genes described in association with atrial fibrillation. Being an arrhythmogenic disorder in a first 
place, most of genes associated with AF are encoding for cardiac ion channels (green cluster). Other 
AF genes are implicated in fibrosis and extracellular matrix (ECM) structure (yellow cluster), 
cardiogenesis (blue cluster), cell-cell coupling (brown cluster) and nuclear structure (pink cluster). 
Other AF genes identified by genome-wide association studies (GWAS) are represented as well (dusty 
pink cluster). All those clusters are in line with the electrical and structural remodelling that represent 
the AF substrate. 

3.1. Ion Channel Genes in AF 

The cardiac action potential (AP) reflects the electrical activity of the cardiomyocytes during the 
contraction and relaxation of the heart and it is initiated and maintained by specific ion currents 
contributing to each phase of it. An AP is initiated by an upstroke phase occurring due to rapid 
transient influx of Na+ (INa) that is ensured by Nav1.5 sodium channels. Later, Na+ channels are 
inactivated, combined with a transient efflux of K+ (Ito 1,2). The second phase of AP, also known as the 
plateau phase, is ensured by a counterbalance of K+ efflux (IKs) and Ca2+ influx (Ica-L). The sustained 
repolarization (phase 3) at the end of the plateau is governed by the predominance of K+ efflux, via 
the slow (IKs) and the rapid (IKr) delayed rectifier as well as the inward (IK1) rectifier potassium 
currents. Finally, as part of phase 4, resting potential in myocytes is maintained by series of cardiac 
potassium channels. 

Given the initial identification of the S140G mutation in KCNQ1, [46] many investigators then 
explored ion channel genes involved in the cardiac action potential, and a cascade of mutations have 
subsequently been identified (Table 1). 

Figure 1. Atrial Fibrillation (AF) genes network. A network summarizing the interactions between
genes described in association with atrial fibrillation. Being an arrhythmogenic disorder in a first place,
most of genes associated with AF are encoding for cardiac ion channels (green cluster). Other AF
genes are implicated in fibrosis and extracellular matrix (ECM) structure (yellow cluster), cardiogenesis
(blue cluster), cell-cell coupling (brown cluster) and nuclear structure (pink cluster). Other AF genes
identified by genome-wide association studies (GWAS) are represented as well (dusty pink cluster).
All those clusters are in line with the electrical and structural remodelling that represent the AF substrate.

3.1. Ion Channel Genes in AF

The cardiac action potential (AP) reflects the electrical activity of the cardiomyocytes during
the contraction and relaxation of the heart and it is initiated and maintained by specific ion currents
contributing to each phase of it. An AP is initiated by an upstroke phase occurring due to rapid
transient influx of Na+ (INa) that is ensured by Nav1.5 sodium channels. Later, Na+ channels are
inactivated, combined with a transient efflux of K+ (Ito 1,2). The second phase of AP, also known as the
plateau phase, is ensured by a counterbalance of K+ efflux (IKs) and Ca2+ influx (Ica-L). The sustained
repolarization (phase 3) at the end of the plateau is governed by the predominance of K+ efflux,
via the slow (IKs) and the rapid (IKr) delayed rectifier as well as the inward (IK1) rectifier potassium
currents. Finally, as part of phase 4, resting potential in myocytes is maintained by series of cardiac
potassium channels.

Given the initial identification of the S140G mutation in KCNQ1, [46] many investigators then
explored ion channel genes involved in the cardiac action potential, and a cascade of mutations have
subsequently been identified (Table 1).
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Table 1. Summary of the genes associated with atrial fibrillation (AF).

Genes Function Type of Mutations Functional Effect in the AF Context

Potassium channels

ABCC9 ATP-binding cassette, subfamily
C, member 9 LoF Uncertain

KCNA5 α-Subunit of voltage-gated
potassium channel Kv1.5 GoF; LoF Promote AF initiation

KCND3 α-Subunit of voltage-gated
potassium channel Kv4.3 GoF Enhance AF susceptibility

KCNE1 β-Subunit of voltage-gated
potassium channel Kv7.1 GoF Increase IKs and exert potential effect on

Ito and IKr

KCNE2 β-Subunit of voltage-gated
potassium channel Kv7.2 GoF Increase IKs and exert potential effect on

Ito and IKr

KCNE3 β-Subunit of voltage-gated
potassium channel Kv7.3 GoF Increase IKs and exert potential effect on

Ito and IKr

KCNE4 β-Subunit of voltage-gated
potassium channel Kv7.4 Uncertain Increase IKs and exert potential effect on

Ito and IKr

KCNE5 β-Subunit of voltage-gated
potassium channel Kv7.5 GoF Increase IKs and exert potential effect on

Ito and IKr

KCNH2 α-Subunit of voltage-gated
potassium channel Kv11.1 GoF; LoF Induce frequent paroxysms of AF

KCNJ2 α-Subunit of inwardly rectifying
potassium channel Kir2.1 GoF Promote AF initiation

KCNJ5 α-Subunit of inwardly rectifying
potassium channel Kir3.4 GoF Promote AF initiation

KCNJ8 α-Subunit of inwardly rectifying
potassium channel Kir6.1 NA Promote AF initiation

KCNN3
Intermediate/small conductance

calcium-activated potassium
channel, KCa2.3

GoF Uncertain

KCNQ1 α-subunit of voltage-gated
potassium channel Kv7.1 GoF; LoF

Induce altered IKs activity and kinetics,
increase the arrhythmogenicity to AF,

most likely by shortening atrial but not
ventricular action potential

Sodium/potassium channels

HCN4
Hyperpolarization activated

cyclic nucleotide-gated
potassium channel 4

LoF

May lead to diminished action potential
frequency (heart rate slowing) and

delayed after depolarizations that might
trigger AF

Sodium channels

SCN1B β-Subunit of Nav1.5, type I LoF
Attenuate sodium currents and shift the
voltage-dependence of sodium channel

gating and is associated to AF

SCN2B β-Subunit of Nav1.5, type II LoF
Attenuate sodium currents and shift the
voltage-dependence of sodium channel

gating and is associated to AF

SCN3B β-Subunit of Nav1.5, type III LoF
Attenuate sodium currents and shift the
voltage-dependence of sodium channel

gating and is associated to AF

SCN4B β-Subunit of Nav1.5, type IV LoF
Attenuate sodium currents and shift the
voltage-dependence of sodium channel

gating and is associated to AF
SCN5A α-Subunit of Nav1.5 GoF; LoF Constitute a substrate of early-onset AF

SCN10A α-Subunit of Nav1.8 GoF; LoF Promote early onset of AF
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Table 1. Cont.

Genes Function Type of Mutations Functional Effect in the AF Context

Genes involved in calcium homeostasis

RyR2 Ryanodine receptor 2 GoF Modulate AF susceptibility by altering
the calcium homeostasis

CACNB2 β2-subunit of the L-type calcium
channel Uncertain Modulate AF susceptibility by altering

the calcium homeostasis

CACNA2D4
l-type calcium-channel auxiliary

subunit of the alpha-2/delta
subunit family

Uncertain Modulate AF susceptibility by altering
the calcium homeostasis

Genes involved in fibrosis and extracellular matrix (ECM) remodeling

NPPA Natriuretic peptide precursor A GoF May promote to AF by activating
inflammation and fibrosis

MMP3 Member of the matrix
metalloprotease family Uncertain May promote atrial fibrosis and trigger

structural remodeling in the atria

COMP Cartilage oligomeric matrix
protein Uncertain May promote atrial fibrosis and trigger

structural remodeling in the atria

COL12A1 Collagen alpha-1(XII) chain Uncertain May promote atrial fibrosis and trigger
structural remodeling in the atria

COL23A1 Collagen α-1 (XXIII) chain Uncertain May promote atrial fibrosis and trigger
structural remodeling in the atria

COL21A1 Collagen alpha-1(XXI) chain Uncertain May promote atrial fibrosis and trigger
structural remodeling in the atria

ANGPTL2 Angiopoietin-like protein 2 Uncertain May promote atrial fibrosis and trigger
structural remodeling in the atria

COLQ Acetylcholinesterase-associated
collagen Uncertain May promote atrial fibrosis and trigger

structural remodeling in the atria

Genes involved in cardiogenesis

GATA4 GATA Binding Protein 4 LoF Decreased transcriptional activity
GATA5 GATA Binding Protein 5 LoF Decreased transcriptional activity
GATA6 GATA Binding Protein 6 LoF Decreased transcriptional activity
GREM2 Gremlin-2 GoF Involvement in the early onset of AF

NKX2-5 Homeobox protein Nkx-2.5,
transcription factor Uncertain Causally implicated in AF

NKX2-6 Homeobox protein Nkx-2.6,
transcription factor Uncertain Causally implicated in AF

Genes implicated in the cell-cell coupling

GJA1 Connexin 43 GoF; LoF Impaired trafficking or channel
formation

GJA5 Connexin 40 GoF; LoF Impaired trafficking or channel
formation

Genes implicated in nuclear structure

LMNA Lamin A/C Uncertain Impaired interaction between lamin
A/C and NUP155

NUP155 Nucleoporin LoF Impaired interaction between lamin
A/C and NUP156

GoF: Gain-of-function; LoF: Loss-of-function.

3.1.1. Potassium Channels Mutations

Unlike the KCNQ1 (S140G) mutation which resulted in a gain of function of IKs channels, Otway
and colleagues identified a missense mutation (R14C) in the same gene that had no significant effect
on IKs current amplitudes in cultured cells at baseline [47]. However, among the R14C mutation
carriers, only those with left atrial dilatation had AF. Similarly, gain-of-function mutations identified
in KCNQ1 channel were shown to induce altered IKs activity and kinetics, thereby increasing the
arrhythmogenicity to AF, most likely by shortening atrial but not ventricular action potential [48–53].
However, loss-of-function mutations in the IKs channel have previously been described as well in
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familial AF suggesting thus that both gain-of-function and loss-of-function of cardiac potassium
currents enhance the susceptibility to AF [54].

Several studies linked the heterogeneity of KCNQ1 mutation type (either gain-of-function or
loss-of-function) in AF to the structural relationship between KCNQ1 and its β-subunits in the I(Ks)
channel [55,56]. Lundby et al. [55] demonstrated that the Q147R mutation in KCNQ1 represents a
‘loss-of-function’ KCNQ1 mutation (molecular substrate for AF) when co-expressed with KCNE1,
but a ‘gain-of-function’ mutation when co-expressed with KCNE2, alone or with KCNE1 (molecular
substrate for QT prolongation). Thus, it is no surprise that mutations in KCNE1, KCNE2, KCNE3,
KCNE4 and KCNE5, encoding regulatory β-subunits of Kv7.1, have been identified in AF and been
demonstrated to exert gain-of-function effects on IKs and to have potential effect on Ito and IKr [55,57–63].
Although KCNE1-5 and KCNJ2 mutation have been demonstrated by Ellinor et al. [64] to rarely cause
typical atrial fibrillation in a referral clinic population, impairment of the KCNJ2, KCNJ5, and KCNJ8
channels, responsible for the resting membrane potential, has been demonstrated to promote AF
initiation [65–68]. Further evidence supporting the role of potassium channels in AF comes from the
identification of loss-of-function mutations in the KCNA5 gene, encoding for the Kv1.5 voltage-gated
potassium channel responsible for the ultra-rapid component of the delayed rectifier potassium current,
in families with hereditary lone AF [69,70]. Furthermore, it has been demonstrated that around
30% of short QT syndrome patients who carry KCNQ1 or KCNH2 gain-of-function mutations, have
frequent paroxysms of AF [49,71]. Gain-of-function mutations in KCND3 have previously been
described in early-onset lone AF. This association of KV4.3 gain-of-function and early-onset lone AF
further supports the hypothesis that increased potassium current enhances AF susceptibility [72].
However, downregulation of other sodium channels such as SK2 (encoded by KCNN2 gene) and SK3
(encoded by KCNN3 gene) was observed in human chronic AF as well [73] and ablation of SK2 channels
resulted in a delay in cardiac repolarization and atrial arrhythmias [74]. Loss-of-function missense
mutation was also identified in the ABCC9, a gene encoding the SUR2A KATP channel subunit involved
in maintaining electrical stability under stress, in a female case with early-onset AF [74].

Mutations in potassium/sodium channels have been also identified in AF. Thus, HCN4 mutations
have also been reported in association with AF [74]. HCN4 is expressed in the sinoatrial (SA) node and
underlies the If current normally responsible for the pacemaker current in nodal myocytes. Mutations
of this channel may lead to a diminished action potential frequency (heart rate slowing) and delays
after depolarizations that might trigger AF [75].

3.1.2. Sodium Channels Mutations

Mutations in SCN5A, the gene encoding for the α-subunit of the cardiac sodium channel
responsible for the INa current, were long associated to ventricular fibrillation syndromes such as Long
QT syndrome type 3 (LQT3) and Brugada Syndrome (BrS). However, Olson and colleagues identified
the first SCN5A missense mutation that was associated with several cardiac phenotypes including
AF [76]. Subsequently, multiple mutations in SCN5A gene have been identified in patients with AF,
alone [77–81] or with combined cardiac conditions [76,82–86]. Several variants of SCNA5 have been
reported in patients with common polygenic AF as well [87]. Recently, Olesen et al. [88] identified eight
mutations in SCN5A in a cohort of lone AF patients. These mutations presented overlapping functional
effects: compromised transient peak current and increased sustained current indicating that both gain-
or loss-of-function alterations in cardiac sodium current constitute a substrate of early-onset AF.

Mutations in the four β-subunits SCN1-4B have been reported to attenuate sodium currents
and shift the voltage-dependence of sodium channel gating and to be associated to AF [89–93].
Furthermore, a genetic variant in SCN10A, which encodes Nav1.8, a voltage gated sodium channel
that participates in the late sodium current, was recently described to be associated with early onset
AF [94]. Taken together, these findings suggest that impaired INa current might promote AF, yet
electrophysiological evidence is only available for a small subset of these point mutations.
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3.1.3. Impaired Calcium Homeostasis and AF

As explained previously, alterations in Ca2+ handling promote ectopic activity and diastolic Ca2+

leak from the sarcoplasmic reticulum (SR) into the cytoplasm via ryanodine receptors (RyRs) creating
thus an electrophysiological substrate for the AF onset and development [34]. Recently, mutations
in RYR2 have been associated to AF [95]. Zhang and colleagues [96] recently described an
RyR2-P2328S mutant mice model presenting impaired calcium homeostasis associated to an acute
atrial arrhythmogenicity while Weeke et al. [97] performed a whole exome study (WES) in families
with early onset lone and they identified two disease segregating rare variants in CACNB2 (encoding
the β2-subunit of the L-type calcium channel) and CACNA2D4 (encodes an l-type calcium-channel
auxiliary subunit of the alpha-2/delta subunit family) with overlapping effects on the Cav1.2 current
suggesting that these variants could identify an important pathway modulating AF susceptibility.
Collectively, these finding bring supplementary evidences on the role of calcium homeostasis imbalances
in AF pathophysiology.

3.2. AF Genes Involved in Fibrosis and Extracellular Matrix (ECM) Remodeling

Mutations in genes involved in atrial structural remodelling were identified in AF patients as early
as ion channel mutations (Table 1). The first non-ion channel AF mutation was an NPPA frameshift
variant reported by Hodgson-Zingman et al. [98]. Subsequently, several other variants in NPPA
were later also linked to AF [99,100]. Cheng et al. [101] suggested that NPPA variants promote AF
by activating inflammation and fibrosis. However, the exact molecular mechanism by which NPPA
variants cause AF is poorly understood.

Thomas and colleagues [102] have recently identified a cascade of genes differentially expressed in
atrial samples from AF patients. Interestingly, samples from the right atrium showed an upregulation
of genes engaged in the extracellular matrix (ECM) organization and collagen formation and
collagen degradation pathways and the clathrin-coated endocytic vesicle membrane gene ontology
term. Among the identified genes, MMP3 (member of the matrix metalloprotease family), COMP
(cartilage oligomeric matrix protein) and COL12A1/COL23A1 (collagen-encoding genes) presented
an impaired expression in right atria. Other genes such as COL21A1, ANGPTL2, and COLQ were
enriched in both left and right atria, giving further evidence of their role in early onset of AF by
promoting atrial fibrosis and triggering structural remodeling in the atria.

3.3. AF Genes Involved in Cardiogenesis

Several mutations in developmental genes have been identified in AF, including genes
encoding transcription factors (TFs) and growth factors involved in cardiogenesis [103]
(Table 1). Particularly, loss-of-function mutations in GATA4 were identified in heterogenous AF
contexts ranging from familial lone AF, to sporadic lone AF [104–106]. Furthermore, genetic variants
in GATA5 and GATA6 genes were identified in probands with familial AF, alone or combined with
congenital cardiac defects, resulting in decreased transcriptional activity [107–110].

It is currently well established that GATA4 and GATA6 genes work synergistically with NKX2-5,
a homeobox-containing transcription factor involved in cardiac development and septation, in the
regulation of target gene expression, especially those involved in cardiogenesis [111]. Thus, it is no
surprise that multiple NKX2-5 mutations have been causally implicated in AF [112–114] Wang et al.,
reported the first NKX2-6 mutation in a patient with lone AF [115]. Suggesting that mutant NKX2-6
may presumably contribute to the development of AF through a similar transcriptional mechanism
than NKX2-5.

Recently, gain-of-function genetic variants in GREM2, that encode the bone morphogenetic protein
(BMP) antagonist gremlin-2, have been reported in probands with lone AF [116]. Giving the important
role of GREM2 in cardiac laterality establishment and atrial differentiation, mutations in this gene may
bring further evidences on its involvement in the early onset of AF.
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3.4. AF Genes Implicated in the Cell-Cell Coupling

Genes involved in cell-to-cell impulse propagation have been long targeted by AF-related studies
due to their crucial role maintaining cell communication and electrical coupling between atrial myocytes
(Table 1). Investigators identified somatic and germline mutations in in both GJA5 (encoding Cx40)
and GJA1 (encoding Cx43) in lone AF patients [117,118]. The electrophysiological characterization of
connexin mutations showed either gain or loss-of-function of gap junction (GJs) channels due to an
impaired trafficking or channel formation. Thus, such functional alterations may lead to AF [119,120].

3.5. AF Genes Implicated in Nuclear Structure

Mutations in structural genes such as NUP155 (encodes a nucleoporin) and LMNA (encodes lamin
A/C) have been reported in familial AF [121,122] (Table 1). Recently, Han and colleagues reported
Lamin A/C mutation that weakens the interaction between lamin A/C and NUP155, leading to the
development of AF and providing a novel molecular mechanism for the pathogenesis of AF [123].

3.6. Other AF Genes and/or Loci Identified by GWAS

Genome-wide association studies (GWAS) are unbiased correlation studies designed to identify
associations between allele frequencies and trait variation. With the advances of GWAS, the search for
the genetic components of AF has relentlessly accelerated.

The first GWAS in the AF context was performed by Gudbjartsson et al. in 2007 [124]. The study
identified two SNPs, namely rs2200733 and rs10033464 localized on chromosome 4q25, conferring a
high risk to AF in European and Chinese populations. Although the mechanism of action of these
variants is still unclear, their genetic localization in an intergenic region, with the nearest gene, PITX2
(encodes the paired-like homeodomain transcription factor 2), 150 kilobases (kb) away, suggests
a plausible role of both SNPs in the pathogenesis of AF [125,126] In fact, experimental studies in
mice, including ours, demonstrated that Pitx2 is crucial for embryonic development, atria and sinus
node formation/function, and left-right heart asymmetry [127–129]. Impaired Pitx2 function was
demonstrated to increase risk of atrial arrhythmias [130]. Thus, one can speculate that these variants
may alter the function of PITX2 either in early development or in adulthood and thus predispose to AF.

Since the description of the 4q25 risk loci, subsequent GWA studies emerged either to validate
Gudbjartsson et al. findings in different populations [131] or reveal more AF risk loci. By the end of
2016, more than 18 SNPs (including 4q24 variants) were mapped close to 15 protein coding genes:
PITX2 (4q25), ZFHX3 (16q22), KCNN3 (1q21), CAV1 (7q31), PRRX1 (1q21), C9ORF3 (9q22), HCN4
(15q24), SYNPO2L/MYOZ1 (10q22), CAND2 (3q25), GJA1 (6q22), NEURL (10q24), CUX2 (12q24),
TBX5 (12q24), SYNE2 (14q23), and WNT8A (5q31) [132] (Table 2). To date, more than 100 AF risk loci
are identified by GWAS [12]. Interestingly, several studies complementarily demonstrate that most
of these GWAS identified genes are either directly or indirectly interconnected with PITX2 and that
all of them are engaged in a big network favorizing AF’s substrate and contributing to the disease
onset and progress [128,130,133,134]. Although the extensive employment of GWAS technology has
generated multiple novel hypotheses of AF pathophysiology, the mechanistic role of most risk loci for
AF identified using GWAS remains unknown.

Most of the AF-associated SNPs are found in intergenic/intronic regions rather than protein-coding
regions. Thus, it is thought that the different AF risk variants may act in an additive way to epigenetic
factors to cause the disease.
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Table 2. Main genetic loci identified by GWAS in association with AF.

SNP ID Locus Nearest Gene Position Relative to the Gene

rs6666258 1q21 KCNN3 Intronic
rs13376333 1q21 KCNN3 Intronic
rs3903239 1q24 PRRX1 Intergenic
rs4642101 3q25 CAND2 Intronic
rs6817105 4q25 PITX2 Intergenic
rs2200733 4q25 PITX2 Intergenic
rs2040862 5q31 WNT8A Intronic

rs13216675 6q22 GJA1 Intergenic
rs3807989 7q31 CAV1/2 Intronic

rs10821415 9q22 C9ORF3 Intronic
rs10824026 10q22 SYNPO2L/MYOZ1 Intergenic
rs12415501 10q24 NEURL Intronic
rs6584555 10q24 NEURL Intronic

rs10507248 12q24 TBX5 Intronic
rs6490029 12q24 CUX2 Intronic
rs1152591 14q23 SYNE2 Intronic
rs7164883 15q24 HCN4 Intronic
rs2106261 16q22 ZFHX3 Intronic

4. Epigenetics of Atrial Fibrillation

4.1. microRNAs and Atrial Fibrillation

MicroRNAs (miRNAs) are small (~19–25 nt) non-coding RNAs that are encoded by nuclear
DNA and transcribed by RNA polymerase II. miRNAs main function is regulating gene expression
post-transcriptionally through binding to complementary target sites within mRNAs, normally within
the 3′UTR. This generally results in the inhibition of translation and/or degradation of the target
transcript [135,136]. At present, multiple microRNAs have been involved in electrical and structural
remodeling directly linked to the course of atrial fibrillation (Figure 2) as detailed below.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 30 

 

rs10507248  12q24 TBX5 Intronic 
rs6490029 12q24 CUX2 Intronic 
rs1152591  14q23 SYNE2 Intronic 
rs7164883  15q24 HCN4 Intronic 
rs2106261  16q22 ZFHX3 Intronic 

4. Epigenetics of Atrial Fibrillation 

4.1. microRNAs and Atrial Fibrillation 

MicroRNAs (miRNAs) are small (~19–25nt) non-coding RNAs that are encoded by nuclear DNA 
and transcribed by RNA polymerase II. miRNAs main function is regulating gene expression post-
transcriptionally through binding to complementary target sites within mRNAs, normally within the 
3′UTR. This generally results in the inhibition of translation and/or degradation of the target 
transcript [135,136]. At present, multiple microRNAs have been involved in electrical and structural 
remodeling directly linked to the course of atrial fibrillation (Figure 2) as detailed below. 

 
Figure 2. Schematic representation of the activated molecular program in atrial fibrillation. miRNAs 
and lncRNAs networks controlling structural and electrical remodelling in AF. (Red and green labels 
correspond with induced or repressed molecules in AF, respectively). 

4.1.1. microRNAs and Electrical Disturbances in AF 

IK1 disturbances are the most relevant ionic current changes underlying AF-induced electrical 
remodeling. As mentioned before, an increase in IK1, is a prominent feature of AF electrical remodeling 
and related to this process several miRNAs are involved. MiR-1 is a muscle-specific miRNA and the 
most abundantly expressed miRNA in both ventricles and atria [137]. It has been shown that down-
regulation of miR-1 has proarrhythmic effect modulating IK1 through an up-regulation of potassium 
inwardly rectifying channel subfamily J member 2 (KCNJ2) expression [138]. Concomitantly, miR-26 
is significantly reduced in AF patients compared to controls, leading to an IK1 increase, by direct 
targeting of KCNJ2. Nuclear factor of activated T cells (NFAT), a known actor in AF-associated 
remodeling, was found to negatively regulate miR-26 transcription [139]. Moreover, other groups 
have demonstrated that an up-regulation of miR-1 accelerates the shortening of the atrial effective 
refractory period (AERP) by targeting potassium voltage-gated channel subfamily E regulatory 
subunit 1 (KCNE1) and potassium voltage-gated channel subfamily B member 2 (KCNB2)[140]. Also, 
miR30d is significantly upregulated in cardiomyocytes from AF patients, whereas the mRNA and 
protein levels of KCNJ3/Kir3.1, postulated target of miR-30d, are markedly reduced, concomitant 
with a reduction of the acetylcholine-sensitive inward-rectifier K+ current (IK.ACh) [141]. Furthermore, 

Figure 2. Schematic representation of the activated molecular program in atrial fibrillation. miRNAs and
lncRNAs networks controlling structural and electrical remodelling in AF. (Red and green labels
correspond with induced or repressed molecules in AF, respectively).



Int. J. Mol. Sci. 2020, 21, 5717 11 of 30

4.1.1. microRNAs and Electrical Disturbances in AF

IK1 disturbances are the most relevant ionic current changes underlying AF-induced electrical
remodeling. As mentioned before, an increase in IK1, is a prominent feature of AF electrical remodeling
and related to this process several miRNAs are involved. MiR-1 is a muscle-specific miRNA and the most
abundantly expressed miRNA in both ventricles and atria [137]. It has been shown that down-regulation
of miR-1 has proarrhythmic effect modulating IK1 through an up-regulation of potassium inwardly
rectifying channel subfamily J member 2 (KCNJ2) expression [138]. Concomitantly, miR-26 is
significantly reduced in AF patients compared to controls, leading to an IK1 increase, by direct
targeting of KCNJ2. Nuclear factor of activated T cells (NFAT), a known actor in AF-associated
remodeling, was found to negatively regulate miR-26 transcription [139]. Moreover, other groups
have demonstrated that an up-regulation of miR-1 accelerates the shortening of the atrial effective
refractory period (AERP) by targeting potassium voltage-gated channel subfamily E regulatory subunit
1 (KCNE1) and potassium voltage-gated channel subfamily B member 2 (KCNB2) [140]. Also, miR30d is
significantly upregulated in cardiomyocytes from AF patients, whereas the mRNA and protein levels of
KCNJ3/Kir3.1, postulated target of miR-30d, are markedly reduced, concomitant with a reduction of the
acetylcholine-sensitive inward-rectifier K+ current (IK.ACh) [141]. Furthermore, miR-499 is up-regulated
in permanent AF patients, this miRNA targets and down-regulates potassium calcium-activated
channel subfamily N member 3 (KCNN3) and facilitates its recruitment into miRISCs, resulting in
transcriptional repression of the small conductance calcium-activated potassium channel protein 3
(SK3) expression [142] (Table 3).

Table 3. AF associated microRNAs and their functional consequences in AF electrophysiology.

Gene Targets Regulatory Role AF Related Functional
Consequences Reference

miR-1 KCNJ2 increased IK1 current
increased membrane resting

potential; increased AF
vulnerability

[138]

KCNE1 increased Iks current decreased AERP; increased AF
vulnerability [140]

KCNB2 increased Iks current decreased AERP; increased AF
vulnerability [140]

HCN2 increased expression
plausible increase in premature

beats; increased AF
vulnerability

[150]

HCN4 increased expression
plausible increase in premature

beats; increased AF
vulnerability

[150]

miR-26 KCNJ2 increased IK1 current
increased membrane resting

potential; increased AF
vulnerability

[139]

miR-30d KCNJ3 reduced IK.Ach current impaired calcium handling;
increased AF vulnerability [141]

miR-499 KCNN3 reduced SK3 expression no direct evidences to AF
pathophysiology [142]

miR-192 SCN5A reduced Nav1.5 expression no direct evidences to AF
pathophysiology [143]

miR-21 CACNA1C reduced Ica current shortening APD; increased AF
vulneratibility [144]

CACNB2 reduced Ica current shortening APD; increased AF
vulneratibility [144]

miR-29 CACNA1C reduced Ica current no direct evidences to AF
pathophysiology [145]
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Table 3. Cont.

Gene Targets Regulatory Role AF Related Functional
Consequences Reference

miR-208ab CACNA1C reduced expression potential impact in APD and
thus on AF vulneratibility [148]

CACNB2 reduced expression potential impact in APD and
thus on AF vulneratibility [148]

GJA5 indirect reduced expression no direct evidences to AF
pathophysiology [152]

ATP2A2 reduced expression no direct evidences to AF
pathophysiology [146]

miR-328 CACNA1C reduced Ica current shortening APD; increased AF
vulneratibility [147]

CACNB2 reduced Ica current shortening APD; increased AF
vulneratibility [147]

miR-106b-25 RYR2 increased Ca++ release increased pacing-induced AF
vulnerability [149]

miR-206 GJA1 reduced Cx43 expression abnormal heart rate and PR
interval; plausible link to AF [151]

Aside from IK1 remodeling, sodium channel (INa) density may be reduced in AF. In this
context, it has been stablished that an upregulation of miR-192-5p in AF patients is corresponded to
downregulation of SCN5A and Nav1.5 protein [143] (Table 3).

In addition, AF is characterized by a prominent downregulation of ICaL current and calcium
handling remodeling. In this context, miR-21, whose expression levels are increased in myocytes
isolated from chronic atrial fibrillation patients, decreases ICaL by downregulating calcium
voltage-gated channel subunit alpha1 C (CACNA1C) and calcium voltage-gated channel auxiliary
subunit beta 2 (CACNB2) [144]. Something similar happens with miR-29 and miR-30d, targeting
CACNA1C [141,145]. Microarray screen in AF patients identified miR-208a and miR-208b, in particular,
as the most significantly increased miRNAs in AF, miR-208b over-expression analysis showed that
aberrant miR-208b levels reduce the expression and function of CACNA1C and CACNB2 [146].
Additionally, miR-328 has strong arrhythmogenic potential through a profound reduction of
CACNA1C and CACNB1 and shortening of atrial action potential duration (APD) which augments
the AF vulnerability [147]. As it has been previously mentioned, miR-499 is increased in AF
patients and apart from regulating SK3 expression, it is also able to directly target CACNB2 [148]
(Table 3). Meanwhile, miR-106b-25 cluster deficiency leads to atrial arrhythmogenesis via enhanced
RyR2-mediated SR Ca2+-release [149] and miR-208b also reduces the expression and function of the
sarcoplasmic reticulum-Ca2+ pump SERCA2 [146] (Table 3).

At the same time, it has been elucidated that the mRNA and protein expression levels of HCN2 and
HCN4 channels increased with age, whereas miR-1 and miR-133 declined with age, implicating elevated
HCN activity and reduced miR-1/133-mediated regulation of HCN expression in the pathogenesis of
AF [150] (Table 3).

Besides ion channel function, to asses a proper electrical propagation between cardiomyocytes,
it is necessary a correct regulation of connexin expression. In this context, miR-206 and miR-208
regulate gap junction protein alpha 1 (GJA1) and GJA5 respectively (Table 3). These miRNAs are
increased in AF patients inducing cardiac arrhythmias [151,152], supporting the functional roles of
these microRNAs in AF.

Several labs, including ours, demonstrated that Pitx2 deficiency disrupt microRNA expression
that are linked to atrial arrhythmogenesis, a signaling path- way that also involves regulation of Wnt
and Wnt- driven microRNAs expression, which is highly susceptible to alteration of cardiovascular
risk factors such as hyperthyroidism, hypertension and redox homeostasis imbalance [130,153–155].
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In sum, all these data support the notion that microRNAs play a fundamental role regulating key
components that, if impaired, lead to AF electrical remodeling.

4.1.2. microRNAs and Structural Remodeling in AF

Structural remodeling is a long-lasting process that progressively affects myocytes and the
myocardial interstitium, and takes place as early as the first days of atrial tachyarrhythmia onset [156].
miRNAs are involved in this process through gene regulation of proteins related to extracellular matrix
deposition, apoptosis, and contractility.

Several miRNAs have been identified as potential participants in the regulation of the fibrotic
remodeling occurring during AF. miR-21 represses sprouty RTK signaling antagonist 1 (SPRY1),
a negative regulator of the extracellular signal-regulated kinase (ERK) pathway. In AF, ERK pathway
is activated and promotes fibrosis indirectly through miR-21-induced SPRY1 downregulation [157].
Additionality, miR-21 also promotes cardiac fibrosis through the transcription factor signal transducer
and activator of transcription 3 (STAT3) signaling pathway, by decreasing the expression of cell
adhesion molecule 1 (CADM1) [158]. Finally, at the same time that miR-21 is up-regulated, WW domain
containing E3 ubiquitin protein ligase 1 (WWP1) expression levels are down-regulated, promoting
the activation of TGF-β1/Smad2 signaling pathway which endorses cardiac fibroblasts proliferation
in AF patients [159]. By other hand, miR-23b and miR-27b overexpression enhance up-regulation
of fibrosis-associated genes by targeting transforming growth factor beta receptor 3 (TGFBR3) [160]
and posterior activation of SMAD3 signaling. Furthermore, miR-26 modulates Ca2+-permeable
transient receptor potential canonical-3 (TRPC3) protein. miR-26 is down-regulated in AF, thus
increasing TRPC3 expression which in turn stimulates fibroblast proliferation, differentiation, and
activation [161]. miR-29 targets multiple extracellular matrix genes, including collagens, fibrillins and
elastin, this miRNA is downregulated and its expression is inversely correlated with extracellular
matrix protein levels and the development of AF [162]. In this context, miR-30a up-regulation reduces
AF-induced myocardial fibrosis by targeting snail family transcriptional repressor 1 (SNAIL1) [163],
whereas, miR-30c overexpression attenuates atrial fibrosis induced by TGF-β1, by targeting transforming
growth factor beta receptor 2 (TGFβRII) [164], being both of them down-regulated in AF patients
with an increase of fibrotic tissue. In addition, it has been demonstrated that miR-30, miR-133 and
miR-132 regulate connective tissue growth factor (CTGF), which is a key molecule in the process
of fibrosis, and collagen production, these miRNAs are down-regulated in AF patients promoting
thus atrial fibrosis [165,166]. Also, it has been detected, that nicotine promotes AF by inducing atrial
structural remodeling, through miR-133 and miR-590 downregulation and de-repression of TGF-β1
and TGFβRII [167]. Moreover, miR-146b-5p, matrix metallopeptidase 9 (MMP-9), involved in the
degradation of extracellular matrix and formation of fibrosis, and collagen content were upregulated
whereas tissue inhibitor of metalloproteinase 4 (TIMP-4) was downregulated in patients with AF [168].
Finally, AF patients showed a drastically increase of myosin heavy chain 7 (MYH7) protein levels,
a hallmark of cardiac hypertrophy. It is suggested that the increased expression of miR-208a/b in AF
contributes to high MYH7 protein levels via inhibiting the expression of SRY-box transcription factor 5
(SOX5) and SOX6, however the mechanistic implications of MYH7 in AF remain unclear [146].

Another layer of regulation of anatomical/structural components by miRNAs is apoptotic
cell death, it has been demonstrated that miR-122 is up-regulated in AF patients, inhibiting ERK
activation that leads apoptosis. In contrast, miR-133 has a cardioprotective role dependent on AKT
serine/threonine kinase (AKT) signaling in control situation, inducing apoptosis in AF patients due to
its down-regulation [169,170].

Apart from electrical and structural remodeling associated to AF, other miRNAs are involved
in AF targeting related pathways, i.e., miR-21 modulates Phosphatase and Tensin Homolog
(PTEN)/Phosphoinositide 3-kinase (PI3K) signaling pathway, signal transducer of transcription 3
(STAT3) and Smad7 promoting atrial fibrosis; miR-31 begets arrhythmia by depleting dystrophin and
neuronal nitric oxide synthase (nNOS); miR-34a is upregulated in AF patients having an important role



Int. J. Mol. Sci. 2020, 21, 5717 14 of 30

in the early electrophysiological changes and development of AF via regulation of the expression of
Ankyrin-B (ANK 2); and finally, miR-199a down-regulation induces Sirtuin 1 (SIRT-1), a cardio-protective
protein, as a compensatory mechanism to inhibit the process of oxidative stress which contributes to
the pathogenesis of AF [171–176].

All these data support the role of miRNAs in AF pathophysiology. Functional studies targeting
miRNAs are necessary to study the therapeutic potential of these molecules in treating cardiovascular
disease, although there are multiple concerns as to the safety of miRNA therapeutics, as miRNAs’
ability to target multiple pathways within the target tissue or in different organs, with further research
being needed to confirm the safety of miRNAs.

4.2. lncRNAs and Atrial Fibrillation

Long non-coding RNAs (lncRNAs) are currently defined as noncoding RNAs large that
200 nucleotides. LncRNAs constitute a widely diverse group of non-coding RNAs with structural
similarities to protein-coding RNAs but with no or limited capacity to code for proteins.
LncRNAs display a variety of transcriptional and post-transcriptional functions, such as scaffold
platform, modulation of epigenetic factors and protein translation among others. Our current
understanding of the expression and functional role of long noncoding RNAs (lncRNAs) in human
AF is still incipient. Several transcriptomics analyses have been performed, identifying a large
array of differentially expressed lncRNAs [177–182] in AF. Some of these studies were performed
in lone AF patients [179–181], whereas in others valvular heart disease [177] or rheumatic valve
disease [178,180,182] was also concurring. In most cases, either right or left atrial appendages were
analysed [175–180], but in some cases right and left atrial samples were pooled together [179–181],
while in other blood samples [180,183] or epicardial adipose tissue [184,185] were analysed. Given the
wide variability of biological conditions studied, it is then not surprising that comparative analyses of
these lncRNA transcriptomic analyses revealed no common AF signature [186]. Importantly, concurrent
analyses of differentially expressed mRNAs and/or microRNAs and more recently circular RNAs
(circRNAs) have provided additional insights into the plausible gene regulatory networks involved in
AF [177,178,184,187]. Unfortunately, to date, only the lncRNA fingerprints have been provided and
functional assays are scarcely reported.

At present, assays of the functional role of lncRNAs have only been reported in experimental animal
models or in in vitro assays. Several of these studied reported a functional role of lncRNAs modulating
fibrosis [188–191], ion channel function [192–197], and energy metabolism [198] as detailed below.

4.2.1. lcnRNAs in AF Structural Remodelling

Four distinct studies have reported the functional role of lncRNA in AF fibrosis. Cao et al. [189]
reported increased PVT1 lncRNA expression in human AF atrial biopsies and furthermore they
demonstrate a role for PVT1 enhancing atrial fibroblast proliferation and collagen deposition by
sponging miR-128-3p that in turn promoted Tgfb/Smads signaling. Additionally, indirect reports of the
functional role of lncRNA in atrial fibrosis have been reported by Lu et al. [190] and Chen et al. [191].
Lu et al. [190] reported significantly reduced GAS5 expression in the right atrial appendage (RAA) of AF
patients while GAS5 manipulation in AC16 cells, controlled cell growth by modulating ALK5 expression.
Chen et al. [191] demonstrated increased PCAT-1 expression in right atrial appendage of AF patients.
Knockdown of PCAT-1 inhibited proliferation in AC16 cell by modulating transforming growth
factor-β1 (TGF-β1). Finally, Sun et al. [193] demonstrated that NRON overexpression suppressed,
while silencing facilitated, angiotensin II (Ang II)-induced inflammatory response in primary cultured
atrial myocytes. Chromatin immunoprecipitation (ChIP) assays showed that nuclear factor of activated
T cell 3 (NFATc3) was recruited to the promoter region of interleukin 12 activating its expression in
atrial myocytes. Collectively, the authors demonstrated that lncRNA NRON alleviates atrial fibrosis
through suppression of M1 macrophages activated by atrial myocytes.
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4.2.2. lcnRNAs in AF Electrical Remodelling

Several reports provided evidence on the functional role of lncRNAs modulating the cardiac
electrophysiological properties in AF, particularly those related to calcium regulation and handling.
Shen et al. [194] reported that KCNQ1OT1 is up-regulated in AngII-treated mice as well as in an
experimental AF mouse model. The authors demonstrate that KCNQ1OT1 regulates CACNA1C by
sponging miR-384. KCNQ1OT1 manipulation modulate distinct electrophysiological parameters such
as the effective refractory period and the interatrial conduction and KCNQ1OT1 silencing diminishes
the incidence of AF and AF episodes in AngII-treated mice (Table 4).

Table 4. AF associated lncRNAs and their functional consequences in AF electrophysiology.

Gene Targets Regulatory Role AF Related Functional
Consequences Reference

KCNQ1OT1 CACNA1C miR-384 sponge impaired AERP and the interatrial
conduction; increased AF vunerability [194]

TCONS_00075467 CACNA1C miR-328 sponge reduced ICa and shortened APD and
AERP; increased AF vunerability [192]

LINC00472 unknown miR24/JP2/RyR2 no direct evidences to AF
pathophysiology [195]

TCONS_00202959 unknown unknown shortened AERP and increased AF
vunerability [196]

TCONS_00032546 unknown unknown shortened AERP and increased AF
vunerability [197]

TCONS_00026102 unknown unknown increased AERP and prevented AF
inducibility [197]

MIAT unknown miR-133 sponge increased AERP and prevented AF
inducibility [198]

Li et al. [192] reported the lncRNA expression profiles of right atria in AF and non-AF rabbit
models and identified 1220 differentially expressed transcripts. TCONS_00075467 was selected for
further exploration. In vivo silencing of TCONS_00075467 leading to shortening of the atrial effective
refractory period and the L-type calcium current and action potential duration were decreased in vitro.
Additionally, the authors demonstrated that TCONS_00075467 sponge miRNA-328 both in vitro and
in vivo thus regulating CACNA1C. (Table 4).

More recently, it has been reported that AF patients displayed increased miR-24 and
reduced LINC00472 expression, while LINC00472 DNA promoter methylation was also increased.
Functional evidence demonstrated that miR-24 can negatively regulate LINC00472 and JP2
expression, and thus LINC00472 could regulate the progression of AF via modulating the
LINC00472/miR-24/JP2/RyR2 signaling pathway [195] (Table 4).

The modulative effects of lncRNAs on autonomic neural function and myocardial functions
in atrial fibrillation rat model have been also recently investigated [196]. These authors show that
over-expression of TCONS_00202959 in an experimental rat AF model enhances the atrial effective
refractory period and diminishes the AF induction rate. However, the precise molecular mechanisms
by which AERP is decreased remains unclear (Table 4). Similarly, Wang et al. [197] reported the fat
pads lncRNA profile in an AF experimental canine model. These authors reported 166 down-regulated
and 410 up-regulated (576 differentially expressed lncRNA) lncRNAs and they further underwent
to dissect the functional role of two of these differentially expressed lncRNAs, TCONS_00032546
and TCONS_00026102, by in vivo silencing, leading to a significant shortening or prolongation the
atrial effective refractory period, and thereby these lncRNAs increased or prevented AF inducibility,
respectively (Table 4).

More recently it has been reported complementary expression patterns for MIAT and miR-133a-3p
in an experimental AF rat model as well as in peripheral blood leukocyte samples of AF patients [198].
These authors further demonstrated that miR-133a-3p directly regulates by MIAT. MIAT knockdown
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significantly reverted AF, increasing atrial effective refractory period and thus reducing the duration of
AF. Importantly, cardiomyocyte apoptosis and atrial fibrosis were also reduced (Table 4).

A functional role for lncRNAs in cardiomyocyte metabolism was reported by Chen et al. [199].
These authors performed a microarray analysis using pulmonary vein myocardium and the surrounding
myocardium and compared to LA appendage leading to the identification of 94 differentially
expressed lncRNAs, among which AK055347 was one of lncRNAs most significantly altered.
Experimental manipulation of this lncRNA further demonstrate a role in mitochondrial energy
production. In sum, these data support an emerging functional role for lncRNAs in AF.

4.3. DNA Methylation and Atrial Fibrillation

DNA methylation is a pre-transcriptional modification, which is able to change transcriptional
process, by the addition of methyl groups to specific nucleotides of the DNA. This procedure causes
inactive gene expression due to the fact that the methyl binding protein prevents the transcriptional
factor from binding to DNA and thus it proceed to the next step [200–202]. It is commonly believed
that hypomethylation in diseases is more frequent than hypermethylation [203].

However, in AF context, global DNA methylation levels are significantly increased in AF
patients, having a positive correlation with age [202]. Furthermore, it has been demonstrated
that DNA methylation plays an important role in the maintenance of cardiac fibrosis, where DNA
methyltransferases 3A (DNMT3A) likely plays an essential role in Ras association domain family
member 1A (RASSF1A) mediated up-regulation of ERK1/2 [204,205]. Moreover, heart failure induces
Pitx2c promoter hypermethylation and Angiotensin II may contribute to the hypermethylation in
heart failure [206]. In addition, tumor necrosis factor- α (TNF-α) decreases SERCA2 expression via
DNMT1 which induces promoter methylation in cardiomyocytes [207]. Emelia’s lab has identified
two CpG sites significantly associated with prevalent AF, and five CpGs associated with incident
AF, and fourteen previously reported genome-wide significant AF-related SNP were each associated
with at least one CpG site; being the most significant association rs6490029 at the CUX2 locus and
cg10833066 [208]. Recently studies have shown that KIF15 methylation may play important role in
the pathogenesis of AF through the regulation of the expression of proteasome 26S subunit ATPase 3
(PSMC3), tubulointerstitial nephritis antigen (TINAG), and nudix hydrolase 6 (NUDT6) [209].

These results suggest that DNA methylation might represent an important molecular process that
is able to link genetic variations with AF susceptibility. To date, only a few studies have investigated
differential DNA methylation as a predictor biomarker at specific candidate loci that were previously
associated with AF.

4.4. Histone Modifications and HDACs in AF

Histone modification represent an important mechanism of epigenetic regulation. The N-terminal
of histones can undergo distinct post-transcriptional modifications and the most common modifications
include phosphorylation, acetylation, methylation, and ubiquitination, but others occur as well [210].
Such post-transcriptional modifications thus play important biological roles in a wide array of cellular
processes including cell cycle and metabolism control, DNA repair and particularly important on
gene transcription. To date, only post-transcriptional modification by acetylation has been reported in
association to AF.

Histone acetylation, modulated by histone acetyltransferases (HATs) is normally associated to open
chromatin configurations and thus to active gene transcription while histone deacetylation, catalysed
by distinct classes of histone deacetylases (HDACs) is linked to gene silencing [201]. Currently, our
understanding of the functional impact of HDAC in histone modification in the setting of AF remains
largely unexplored. However, HDAC, besides post-transcriptionally regulating histones and the
nuclear chromatin, can also be translocated into the cytoplasm modulating acetylation and deacetylation
of other proteins [211–213]. In this context, emerging evidence is demonstrating a pivotal role of
HDACs influencing post-transcriptional regulation of distinct proteins in cardiomyocytes in the context
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of AF [214,215], particularly on cytoskeletal [213] and conductive proteins [216], while their role in
contractile and ion channels remains unclear [217]. Additionally, HDAC inhibition can significantly
block or halt AF progression [216,218–221], further supporting the important role of HDAC in AF, yet
the molecular mechanisms remain to be further explored.

5. Therapeutic Consequences of Ion-Channel Remodelling

Ion-channel remodelling represents a potential antiarrhythmic drug target. There are some channel
blockers which are more effective than others, particularly those that modulate T-type Ca2+-channels,
having a superior efficacy, over those that act on ICa,L, K+-channel and Na+-channel which are
mostly ineffective. For example, Mibefradil and Amiodarone are T-type Ca2+-channel blockers that
suppress APD shortening [222] while Bepridil, a L- and T-type Ca2+-channel blocker, suppresses
ion-channel remodelling, promotes long ERP, low AF inducibility and AF duration is shorter [223].
There are some other drugs that work at atrial but not at ventricular levels [224] such as for example,
AVE0118 that acts over Ikur in atrial appendages, reducing the APD in chronic AF [225], and Tertiapin
an IK,ACh-blocker, that prolongs APD in ATR-remodelled canine preparations and thus suppresses
tachyarrhythmias [226]. Concomitant administration of Flecainide and AVE0118 have the ability to
inhibit constitutive IK,ACh in chronic AF patients, an effect that might contribute to their effectiveness
in terminating AF [227].Therefore, therapeutics targeting ion channels could be useful in an early
cardioversion strategy.

6. Perspectives

Atrial fibrillation is the most common cardiac arrhythmia in the general population and thus
great efforts are continuously done to understanding the molecular substrates underlying AF. We have
witnessed over the last decades a great advance on the discovery of the genetic bases of AF. First genetic
analyses were mostly conducted as candidate approaches taking as substrates those ion channels
configuring the cardiac action potential and following the reasoning of guilty by association. A large
number of mutations were revealed in this way. However, functional assays were compulsory
to distinguish the needle on the haystack and the results were in several cases hard to reconcile.
In addition, the pathophysiology of AF was progressively deciphered demonstrating that, besides
electrophysiological disturbances, extracellular matrix deposition, inflammation, and metabolic
disorders also contributed to the onset and progression of AF, thus broadening the spectrum of
candidate approaches. The advent of novel genetic approaches, such as genome wide association
analyses (GWAS), circumvented in part those limitations. GWAS analyses have revealed over 100
risk variants associated with AF [12]. In most cases, those AF associated variants are located in
intergenic regions, limiting our understanding of the molecular mechanisms behind those associations.
The exception to the rule is represented by 4q25 variants, to which several studies, including ours, have
demonstrated a pivotal role regulating Pitx2 expression [228–230] as well as demonstrating a functional
role for PITX2 in AF pathophysiology [130,133,134,154]. Thus, one of the future challenges in the
genetics of AF is to discover the molecular mechanism behind GWAS data and AF pathophysiology [231],
reemphasizing the responsibility of epigenetics.

Epigenetic regulation of AF is being progressively deciphered. DNA methylation and histone
modifications implication in AF is still in its infancy whereas the functional role of microRNAs
and lncRNAs have been already dissected in distinct AF pathophysiological settings, including
their role on ion channel regulation, extracellular matrix deposition and fibrosis, inflammation,
and metabolism. In coming years, we will therefore witness an explosion of studies unravelling
the contribution of epigenetic mechanisms to AF associated substrates such as gene regulatory
networks linking DNA methylation and/or histone modifications to transcriptional regulation of
key AF-associated transcription factors such as PITX2, TBX5, and ZFHX3 among others, or complex
lncRNA–microRNA–mRNAs gene regulatory networks impacting on the electrophysiological and
structural remodelling substrates underlying AF.
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