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Abstract: Watermelon (Citrullus lanatus L.) is a widely popular vegetable fruit crop for human
consumption. Soil salinity is among the most critical problems for agricultural production,
food security, and sustainability. The transcriptomic and the primary molecular mechanisms
that underlie the salt-induced responses in watermelon plants remain uncertain. In this study,
the photosynthetic efficiency of photosystem II, free amino acids, and transcriptome profiles of
watermelon seedlings exposed to short-term salt stress (300 mM NaCl) were analyzed to identify
the genes and pathways associated with response to salt stress. We observed that the maximal
photochemical efficiency of photosystem II decreased in salt-stressed plants. Most free amino
acids in the leaves of salt-stressed plants increased many folds, while the percent distribution of
glutamate and glutamine relative to the amino acid pool decreased. Transcriptome analysis revealed
7622 differentially expressed genes (DEGs) under salt stress, of which 4055 were up-regulated.
The GO analysis showed that the molecular function term “transcription factor (TF) activity” was
enriched. The assembled transcriptome demonstrated up-regulation of 240 and down-regulation of
194 differentially expressed TFs, of which the members of ERF, WRKY, NAC bHLH, and MYB-related
families were over-represented. The functional significance of DEGs associated with endocytosis,
amino acid metabolism, nitrogen metabolism, photosynthesis, and hormonal pathways in response
to salt stress are discussed. The findings from this study provide novel insights into the salt tolerance
mechanism in watermelon.
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1. Introduction

Soil salinization is recognized as a major problem for agricultural production and sustainability
at a global level. The area of degraded saline soils has rapidly increased due to climate change and
limited rainfall, posing a great challenge to global food security [1]. It is estimated that around 20%
to 50% of irrigated land is salt-affected in arid and semi-arid regions [2–4]. Salt adversely impacts
plant growth and development as it holds water and nutrients in the soil at high tension making these
components unavailable for plants at the root zone.

Watermelon (Citrullus lanatus L.) is a widely popular vegetable fruit crop for human consumption
worldwide. Although China tops the watermelon production, it is grown widely across arid and
semi-arid environments in the world. Watermelons can tolerate some degree of soil acidity [5] but
grow best in non-saline sandy loam or silt loam soils. The research efforts to improve salt tolerance
using conventional or transgenic breeding have had limited success due to the genetically and
physiologically complex nature of salt-induced responses [3,6]. In watermelon, approaches such as

Int. J. Mol. Sci. 2020, 21, 6036; doi:10.3390/ijms21176036 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-6803-4379
http://dx.doi.org/10.3390/ijms21176036
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/17/6036?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 6036 2 of 22

salt-tolerant rootstocks [5,7,8] and agronomical practices [9,10] have been explored. Understanding the
molecular mechanisms underscoring the salt stress response in model xerophyte plant species would
contribute to finding conserved response cues in plants and identifying salt-tolerant traits [11–13].
Watermelon, being relatively tolerant of drought and salt stress, makes an excellent model crop
to study salt stress-induced responses. There has been little research on transcriptome analysis to
understand molecular regulation of salt stress-induced responses in watermelon. In the present study,
we examined gene expression changes in watermelon seedlings due to short-term salt stress using
RNA sequencing (RNA-seq) and discuss putative candidate genes and pathways associated with salt
stress induced responses. The results from this study will provide a foundation to understand salt
tolerance mechanisms and its exploitation to allow development of salt-tolerant watermelon cultivars.

2. Results

2.1. Validation of Salt Stress Treatment

We studied how short-term exposure of watermelon seedlings to salt stress changed chlorophyll
fluorescence parameters (as determined on dark-adapted and illuminated leaves) and amino acid
metabolism. Six-week-old seedlings of the cultivar Crimson Sweet subjected to salt stress treatment
were monitored for photosystem II (PSII) performance to measure the maximal quantum yield of
PSII photochemistry (Fv/Fm) and the efficiency of excitation capture of the open PSII center (Fv’/Fm’)
(Figure 1). Measurements of photosystem II efficiency showed a consistent reduction in the PSII
efficiency (Qy) in both dark-adapted and illuminated leaf samples. The decrease in Qy in treated
plants was much more rapid than the control ones over time. Early decrease in Qy in our experiment
is consistent with reports showing inhibition of PSII activity due to salt stress [8,14,15]. In the
light-adapted leaves, Qy of salt-stressed tissues was dramatically lower than that of control plants,
confirming a negative effect on the quantum yield of PSII electron transport by salinity stress after
seven hours of exposure.
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Figure 1. Photosynthetic efficiency of photosystem II. The maximal quantum yield of photosystem II 
(PSII) photochemistry (Fv/Fm) (A) and the efficiency of excitation capture of the open PSII center 
(Fv’/Fm’) (B) in cv. Crimson Sweet leaves under salt stress were measured using FluorPen (PAR-
FluorPen FP 110/D). Asterisks ** and * represent significant difference at p < 0.05 and p < 0.1, 
respectively. Qy, equal to Fv/Fm in the dark (A) or light-adapted (B) samples, photosystem II 
efficiency. The error bars represent the standard deviation. 

During salt stress, plants accumulate high concentrations of compatible osmolytes, such as 
nitrogen-containing compounds, mainly amino acids. In this study, most free amino acids showed 
several-fold increases in response to salt stress implying that the accumulation of free amino acids is 
crucial to salt stress in watermelon (Figure 2). The changes in the percent of amino acids relative to 
the pool size are shown in Figure S1 (Supplementary Materials) and the absolute amounts of each 

Figure 1. Photosynthetic efficiency of photosystem II. The maximal quantum yield of photosystem
II (PSII) photochemistry (Fv/Fm) (A) and the efficiency of excitation capture of the open PSII center
(Fv’/Fm’) (B) in cv. Crimson Sweet leaves under salt stress were measured using FluorPen (PAR-FluorPen
FP 110/D). Asterisks ** and * represent significant difference at p < 0.05 and p < 0.1, respectively. Qy,
equal to Fv/Fm in the dark (A) or light-adapted (B) samples, photosystem II efficiency. The error bars
represent the standard deviation.

During salt stress, plants accumulate high concentrations of compatible osmolytes, such as
nitrogen-containing compounds, mainly amino acids. In this study, most free amino acids showed
several-fold increases in response to salt stress implying that the accumulation of free amino acids is
crucial to salt stress in watermelon (Figure 2). The changes in the percent of amino acids relative to the
pool size are shown in Figure S1 (Supplementary Materials) and the absolute amounts of each amino
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acid in Table S1 (Supplementary Materials). The branched-chain amino acids (valine, Val; isoleucine,
Ile; leucine, Leu), serine (Ser), and Asparagine (Asn) showed much higher fold change increases than
glutamate (Glu) and glutamine (Gln). The relative proportion of most amino acids also increased in
the leaves after salt stress, except Glu, Gln, tryptophan (Trp), and glycine (Gly). No significant changes
were observed in the content of most amino acids in roots due to short-term salt stress (Table S1),
implying their limited localized synthesis or transport. It has been suggested that high abundant amino
acids (proline, Pro; Arginine, Arg; asparagine, Asn, Glu) are synthesized during abiotic stress, while the
low abundant amino acids (BCAAs) accumulate due to increased protein turnover or degradation
under conditions such as salt stress [16,17]. However, such an increase in amino acid accumulation
through proteolysis happens to a lesser extent in salt stress than drought stress [18]. Consistent with the
meta-analysis [1], we also observed a significant decrease in the proportion of Glu and Gln, which serve
as precursors for the synthesis of Pro, citrulline (Cit), and Arg, as well as polyamines. There was a
limited increase in terms of fold change or change in percent accumulation in Pro or Cit, which are a
major drought stress-induced amino acids in watermelon leaves [19]. Our results are consistent with
studies that showed non-overlapping patterns of amino acid accumulation in salt stress and drought
stress as well as a smaller increase in Cit due to salt stress [20] than drought stress.
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2.2. Transcriptome Profiling of Salt-Stressed Seedlings  

To understand the transcriptomic changes due to salt stress, we performed RNA-seq analysis of 
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platform comprising three replicates each of the control and salt-treated plants. On average, 42.20 to 
47.67 million paired-end raw reads were generated from leaf tissues in both treatments, of which 
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The RNA-seq dataset is accessible through GEO Series accession number GSE146087 
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2.3. Identification of Differentially Expressed Genes (DEGs) 

The relative expression levels of genes were evaluated as the fragment per kilobase of transcript 
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adjusted p-value (padj) < 0.05 and |log2fold change [L2fc]| > 1 were used. Out of the total DEGs, 4055 

Figure 2. Fold-change increases in amino acids in watermelon leaves due to salt stress: The fold-change
in plants treated with NaCl relative to the control group for amino acids showing significant changes
(t-test, p < 0.05). The absolute amino acid quantities were normalized using internal standards and
expressed as fold-change relative to control.

2.2. Transcriptome Profiling of Salt-Stressed Seedlings

To understand the transcriptomic changes due to salt stress, we performed RNA-seq analysis
of seedlings exposed to salt stress. A total of six libraries were sequenced using the Illumina
HiSeq platform comprising three replicates each of the control and salt-treated plants. On average,
42.20 to 47.67 million paired-end raw reads were generated from leaf tissues in both treatments,
of which more than 96% mapped to the reference watermelon genome (Supplementary Materials,
Table S2). The RNA-seq dataset is accessible through GEO Series accession number GSE146087
(https://www.ncbi.nlm.nih.gov/geo/).

2.3. Identification of Differentially Expressed Genes (DEGs)

The relative expression levels of genes were evaluated as the fragment per kilobase of transcript
sequence per millions base pairs sequenced (FPKM) values, calculated based on the uniquely mapped
reads for under control or salt stress condition. The RNA-seq data identified a total of 7622 differentially
expressed genes in response to salt stress using comparative analysis when a cutoff of adjusted p-value
(padj) < 0.05 and |log2fold change [L2fc]| > 1 were used. Out of the total DEGs, 4055 (53.2%) of those
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DEGs were up-regulated, while 3,567 (46.8%) of them were down-regulated. A volcano scatter plot
showing the number of DEGs (Figure 3) and a list of DEGs is presented in the Supplementary Materials
(Table S3). A wider dispersion indicates the presence of a higher level of difference regarding gene
expression in response to salt stress. A higher number of up-regulated than down-regulated DEGs is
consistent with a meta-analysis that included 25 independent salt stress transcriptomic studies [12],
suggesting activation of a set of conserved genes regulating intrinsic salt-stress induced responses.
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Figure 3. Summary of differentially expressed genes (DEGs) in the watermelon leaves during salt stress.
Each point represents a gene; blue dots indicate no significant difference; red dots indicate up-regulated
DEGs; green dots indicate down-regulated DEGs. The horizontal axis shows the fold change of genes
between different samples (padj < 0.05), and the vertical coordinate indicates the statistically significant
degree of changes in gene expression levels at −log10 (padj p-value).

2.4. GO, and KEGG Enrichment Results of DEGs

To uncover the molecular mechanisms underlying the salt tolerance in watermelon leaves,
the DEGs were characterized using the Gene Ontology (GO) knowledgebase (http://geneontology.org/).
GO enrichment scatterplots show the top 20 enriched functions for up- or down-regulated DEGs
due to salt stress (Figure 4). Among the biological process (BP) terms the function “protein folding”
(GO:0006457) and among the molecular function (MF) the function “transcription factor activity”,
sequence-specific DNA binding (GO:0003700) were enriched in the up-regulated unigenes with the
cutoff of adjusted q-value < 0.05. On the contrary, in the cellular component (CC) category, “thylakoid”
(GO:0009579), “photosystem” (GO:0009521), “photosynthetic membrane” (GO:0034357), “chromosomal
part” (GO:0044427), “photosystem I” (GO:0009522), “chromosome” (GO:0005694), and “photosystem
II” (GO:0009523) were the most enriched GO terms among the down-regulated DEGs.

http://geneontology.org/
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differentially expressed genes that can be found in the GO database). The vertical axis is the description
of GO terms. The significance showing padj q-values are shown as a color scale, where the color and
size of the dots represent the range of q-value, and the number of DEGs mapped to the indicated
functions, respectively.

Pathway analysis of DEGs was performed using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database with KOBAS [21]. The up-regulated and down-regulated DEGs were
assigned to 106 and 114 pathways, respectively. The KEGG enrichment analysis showing the top
20 enriched functions is shown in Figure 5. The KEGG pathway annotations like “Ribosome
biogenesis in eukaryotes”, “Endocytosis”, “Protein processing in endoplasmic reticulum” and
“Spliceosome” were enriched in the up-regulated unigenes due to salinity stress. However, among
the down-regulated unigenes, several KEGG pathways were significantly enriched such as “glycan
degradation”, “beta-Alanine metabolism”, “Terpenoid backbone biosynthesis”, “Photosynthesis”,
“Photosynthesis-antenna proteins”, “Histidine metabolism”, “Glycosaminoglycan degradation”,
“Valine, leucine, and isoleucine degradation”, “Folate biosynthesis” and “Homologous recombination”.
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to salinity stress. The distribution of transcription factor families identified among DEGs in 
watermelon leaves in response to salt stress is shown in Figure 6. Of the up-regulated TFs, the largest 
number was found in ERF (36 unigenes), followed by WRKY (23 unigenes) and NAC (19 unigenes) 
families. In contrast, the largest number of down-regulated TFs were found in bHLH (24 unigenes), 
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Figure 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment scatter plot. The KEGG
enrichment analysis showing the top 20 enriched pathways for up-regulated (A) and down-regulated
(B) DEGs. The horizontal axis is GeneRatio (the ratio between the number of differentially expressed
genes in each pathway, and all differentially expressed genes that can be found in the KEGG database).
The vertical axis is the description of the KEGG term. The significance showing padj q-values are
shown as a color scale, where the color and size of the dots represent the range of q-value and the
number of DEGs mapped to the individual pathways, respectively.

2.5. Differentially Expressed Transcription Factors (TF) in Response to Salinity Stress

TFs play a critical role in salt stress-induced responses via transcriptional regulation of several
genes in plants [22]. The assembled transcriptome demonstrated a total of 240 differentially expressed
TFs were up-regulated in NaCl-treated leaf samples, while 194 TFs showed decreased expression
due to salinity stress. The distribution of transcription factor families identified among DEGs in
watermelon leaves in response to salt stress is shown in Figure 6. Of the up-regulated TFs, the largest
number was found in ERF (36 unigenes), followed by WRKY (23 unigenes) and NAC (19 unigenes)
families. In contrast, the largest number of down-regulated TFs were found in bHLH (24 unigenes),
MYB-related (16 unigenes), and C2H2 (15 unigenes) families. The up-regulation of members of
ERF TFs in this study indicates the significant involvement of the ethylene signaling pathway in
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response to salt stress in watermelon. Ethylene signaling modulates salt response via membrane
receptors, components in the cytoplasm, and transcription factors [23]. The salinity stress promotes
ethylene biosynthesis activating the downstream network and expression of ERFs [24]. The role of
several tomato ERF.E2, ERF.F5, ERF.E3, ERF.B3, and ERF84 genes in enhancing salt tolerance has been
demonstrated [25–29]. The ectopic expression of the barley [30], wheat [31,32], and rice [33] ERF genes
also enhanced tolerance to salt stress. Consistent with our results, recent transcriptomic studies in
cotton [34] and potato [35] plants revealed the induction of a high proportion of ERFs in response to
salt stress, suggesting the essential role of ERFs in salt response mechanisms in plants. Despite its
significance, with few exceptions [36,37], there is not much information available about the role of ERF
TFs in cucurbits. The WRKY TF family is one of the largest families in higher plants and plays a crucial
role in plant development and stress responses, including salt stress. Our results are consistent with
a study showing the up-regulation of most WRKY genes using NaCl treatment in watermelon [38]
and Cucurbita pepo [39]. Transcriptomic studies in other plants have demonstrated the differential
expression of several members of the WRKY family in response to salt stress [40,41]. The functional
role of WRKY TFs in enhancing salt tolerance has been validated using transgenic approaches by
overexpressing WRKY genes from maize [42], cotton [43], soybean [44] and grapevine [45]. Similarly,
NAC TFs have been implicated in a wide range of stresses, including salinity. Our data is in agreement
with studies validating the induction of several NAC TFs during salt stress in watermelon [46] and
melon [47].
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down-regulated and up-regulated TFs in the respective family, respectively.

Reliability of Transcriptome Sequencing Data

To validate the reliability of transcriptome sequencing data, relative gene expression analysis
of selected genes associated with Cit metabolism (AAT, N-acetylornithine; AOD2, N-acetylornithine
deacetylase; ArgD, arginine decarboxylase; ASL1, arginosuccinate lyase; ASS1, arginosuccinate
synthase; CPS1 and CPS2, carbamoyl phosphate synthase; OTC, ornithine carbamoyltransferase) was
performed using real-time quantitative PCR (qRT-PCR). Cit is a major non-protein amino acid in
watermelon and accounts for almost 50% of the leaf amino acid pool in response to abiotic stress [19]. Cit,
being an intermediate of the master metabolic pathway that synthesizes several salt stress-associated
metabolites (spermine and spermidine, Pro, GABA, Arg), selected genes associated with its metabolism
were expected to perturb in response to salt stress. The qRT-PCR data (Figure 7) were very consistent
with the transcriptome sequencing data. Additionally, the linear regression equation y = 0.9229x
− 0.395 with a high correlation (R2 = 0.97) showed a positive correlation and significant similarity
between the two analysis techniques (Figure S2). The expression of AOD2 and ASS1 was significantly
induced in salt-stressed samples, while the expression of CPS2 was down-regulated. The induction in
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the expression of AOD2 in salt-treated samples explains the enhanced accumulation of Cit, while the
upregulation of ASS1 supports the enhanced Arg accumulation.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 22 
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The reliability of RNA-seq data was further validated by comparing the correlations among
biological replicates using the Pearson correlation coefficient (Figure S3). Unlike the high correlation
among the libraries for the same treatment (i.e., biological replicates), the weak correlation across
treatments (control vs. salt treatments) suggests a larger effect of salt stress on the gene expression
profiles of watermelon leaf tissues. Additionally, to demonstrate the source of variance in the RNA-seq
data, principal component analysis (PCA) with three principal components (PC1, 2, and 3) was
performed (Figure S4). The PC score plots showed that the contribution of PC1 alone was 74.94%,
followed by PC2, (9.44%), and PC3 (6.60%). The three biological replicates were collected after salt-stress
and control samples were clustered together, validating the minimal variance in the analysis and
suitability of data for the subsequent analysis.

3. Discussion

3.1. DEGs Associated with Endocytosis

High concentrations of salt lower the water potential and lead to ionic disequilibria across the
plasma membrane, which subsequently inhibits cellular activities by entering the cytoplasm [48].
Endocytosis involves the internalization of plasma membrane proteins into the cell via a series of
vesicle compartments and plays an essential role in cellular responses to environmental stimuli [49].
KEGG enrichment analysis revealed that the “Endocytosis” pathway was significantly activated
in response to salt stress (Figure S5, Supplementary Materials, Table S4). Besides its role in plant
growth and development, endocytosis is involved in inducing abiotic stress responses by regulating
vacuolar transport [50]. Endocytosis controls cell polarity and signaling by regulating plasma
membrane-associated receptors and transporters proteins [51] and the production of ROS needed
for salinity tolerance [52]. The role of vesicle trafficking in adaptation against salinity stress has
been validated [53–58]. Our data confirmed the induction of several Rab genes (ClCG02G019840,
ClCG10G007150, ClCG10G012520, ClCG09G002000) in response to salt stress. The expression of
native Rab7 from Pennisetum glaucum and its overexpression in tobacco [57] and rice [58] were greatly
induced by salt stress. Exposure of plants to the salinity stress also activates phospholipase D (PLD),
a phosphatidyl choline-hydrolyzing enzyme that triggers the activation of the downstream adaptive
responses to relieve the damage caused by stress, including salinity [59]. Consistent with studies
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reporting activation of PLDs due to salt stress [60–63], expression of watermelon PLDs (ClCG00G000210,
ClCG08G014000, ClCG06G004910) were also induced due to salt stress. Further, vacuolar protein
sorting (VPS) components play an important role in maintaining osmo-homeostasis of vacuoles by
sequestering toxic ions, like sodium and chloride, or other compounds involved in osmoregulation.
Several VPS genes were up-regulated due to salt stress in this study. Additionally, expression of genes
involved in the formation of clathrin-coated vesicles such as clathrin proteins (ClCG11G006070), ADP
ribosylation factors (ClCG05G025400, ClCG07G011900, ClCG10G001580, ClCG10G021000), ARF-guanine
nucleotide exchange factors (ClCG01G025140, ClCG11G018450, ClCG01G014890), adaptor protein
(ClCG02G021820), and products in phosphatidylinositol signaling (ClCG03G009330) were up-regulated
due to salt stress. The molecular chaperones HSP70 mediate uncoating of vesicles before merging
with early endosomes. In our study, four DEGs encoding HSP70 (ClCG04G008300, ClCG09G019940,
ClCG09G020000, ClCG11G011300) assigned to the endocytosis pathway were strongly up-regulated.
Studies have confirmed the induction and up-regulation of HSP70 in saline stress situations rice [64],
wheat [65], and potato [66].

Additionally, we found several genes in the SNARE interaction in the vascular proteins
pathway were up-regulated due to salt stress (Figure S6, Supplementary Materials, Table S5).
The members of the superfamily of N-ethylmaleimide-sensitive factor adaptor protein receptor
(SNARE)-domain-containing proteins are involved in transport processes between individual
compartments, including endocytosis [67]. Although a high number of SNARE proteins are present in
the plant kingdom, their role in plant biotic and abiotic stress has only been recently understood [68].
We identified several Syntaxin family proteins (ClCG02G015160, ClCG07G004070, ClCG08G012870,
ClCG09G005420, ClCG10G004910, ClCG10G018250) and Golgi SNAP receptor complex member 1, target
SNARE coiled-coil domain, vesicle-trafficking SEC22b, and vesicle transport v-SNARE 11-like genes that were
up-regulated. Several studies [69–72] have reported the functional role of SNARE interactions in salt
stress, justifying the significance of SNARE proteins in salt stress-induced responses in watermelon.

3.2. DEGs Related to Amino Acid Metabolism

To counter the detrimental effects of salt-induced stress, plants produce compatible solutes like free
amino acids to minimize high salinity-caused osmotic stress. Positive correlations between increased
salt tolerance and accumulations of total free amino acids have been reported in several crops [73–76].

3.2.1. Branched-Chain Amino Acids (BCAAs)

Proline accumulation is known as an important mechanism in osmotic regulation in plants
under a wide range of abiotic stresses [77]. However, it has been recognized that the levels of other
amino acids, like BCAAs, are often greater or comparable to proline [19,78,79]. A partial deficiency
of BCAAs resulted in increasing the sensitivity to salt stress [80]. Induction in the expression of
threonine dehydratase (ClCG04G009590) along with the repression of both Thr catabolic threonine aldolases
(ClCG02G017030 and ClCG06G009580) are in agreement with increased accumulation of BCAAs.
The up-regulation of branched-chain amino acid aminotransferase (BCAT, ClCG08G016800), involved
in both the synthesis and degradation of BCAAs, suggests its role in maintaining the non-toxic
levels of free BCAAs and alleviating the injury caused by salt stress. The down-regulation of several
genes involved in the degradation of BCAAs such as 2-oxoisovalerate dehydrogenase (ClCG03G014630),
3-hydroxyisobutyrate dehydrogenase (ClCG03G006140, ClCG05G009680), 3-hydroxyisobutyryl-CoA hydrolase
(ClCG05G002680, ClCG05G016290, ClCG11G016500, ClCG03G012360), 3-ketoacyl-CoA thiolase
(ClCG01G011180, ClCG02G002930), methylcrotonoyl-CoA carboxylase (ClCG02G006000), and several
aldehyde dehydrogenases substantiates the role of BCAA accumulation during salt stress. A partial
deficiency of BCAAs resulted in increasing the sensitivity to salt stress in Arabidopsis [80]. Although
several studies have reported stress-induced accumulation [75], the metanalysis of transcriptome and
metabolome datasets revealed that the low abundant BCAAs could also accumulate due to increased
protein degradation [16]. Nevertheless, it has been suggested that BCAAs can serve either as substrates
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for stress-induced protein biosynthesis or as signaling molecules for regulating stress-responsive gene
expression [80]. Intriguingly, acetolactate synthase (ALS) small subunit (ClCG03G010140), involved
in BCAAs synthesis, was also down-regulated. However, though the feedback inhibition of ALS
by BCAAs lacks recent experimental evidence, the non-overlapping sub-cellular localization of ALS
subunits and their functional roles in Na+ homeostasis suggest the need for additional studies to
understand the significance of ALS in salt stress-induced responses [80].

3.2.2. Arginine-Polyamine-β-Alanine Pathway

Increased Arg accumulation, which is a precursor for polyamine synthesis, is supported
by up-regulation in the expression of argininosuccinate synthase (ClCG06G017780), along with
down-regulation of arginine decarboxylase (ClCG06G014050) and arginine biosynthesis bifunctional protein
(ArgJ; ClCG10G020940), suppressing a futile cyclic version of arginine biosynthesis. Besides their role in
plant growth and development, polyamines like putrescine (Put), spermine (Spm), and spermidine (Spd)
play an important role in response to abiotic stress [81]. Put is synthesized directly from arginine by
catabolic enzymes arginine decarboxylase (ADC) or agmatine deiminase (ADI) or from ornithine, catalyzed
by ornithine decarboxylase (ODC). Put then converts to Spm and Spd via spermidine synthase and spermine
synthase in the presence of decarboxylated S-adenosylmethionine (dcSAM) [82], which is synthesized
by SAM decarboxylase (SAMDC) via decarboxylation of S-adenosylmethionine (SAM) [83]. In our
study, RNA-seq analysis showed up-regulation of SAMDC (ClCG05G011880) and relatively abundant
spermidine synthases (ClCG05G025220 and ClCG05G008800) but down-regulation of less abundant
spermidine synthases (ClCG06G016890 and ClCG05G005220) genes. Unlike ADC (ClCG06G014050),
expression of ADI (ClCG06G015290) and ODC (ClCG08G013990) involved in Put synthesis were
also up-regulated. Although the expression of ADC expression was reduced, an induction of ODC,
which catalyzes an alternative pathway of Put synthesis, seems to partly compensate the need for
production of Put during salt stress. The polyamines Spm and Spd also serve as precursors of β-alanine
synthesis in plants. β-alanine is converted to a quaternary ammonium osmoprotective compound
called β-alanine betaine participating in tolerance to high salt concentration [84,85]. Up-regulation
of polyamine oxidase 1 (ClCG09G003930) and polyamine oxidase 2 (ClCG07G010820, ClCG11G016630)
further supports the possible involvement of β-alanine in salt-induced responses.

3.2.3. Amino Acid Transporters

Altered amino acid compositions in response to salt stress subsequently result in alterations in
the expression of amino acid transporters. Several amino acid transporters have been identified in
plants [86–88] and are grouped into two subfamilies based on sequence similarities and biochemical
properties. Under salt stress, we identified a total of 45 up-regulated DEGs and 17 down-regulated
DEGs associated with amino acid transport function (Supplementary Materials, Table S6). Salt stress
induces changes in amino acid compositions, and the enhanced expression of amino acid transporters
has been validated in Arabidopsis [89], rice [87], and wheat [90]. The DEGs involved in amino acid
transport may play important roles in regulating the partitioning of different amino acids and maintain
osmotic potential in response to salt stress.

3.3. DEGs Associated with Nitrogen Metabolism

Nitrogen (N) metabolism, a central process for plant growth and development, is strongly
influenced by salinity. Excess salt disturbs different steps of N metabolism, namely nitrate (NO3

-) or
ammonium (NH4

+) uptake, N transport and assimilation into amino acids, and protein synthesis [91].
The absorbed N is reduced to nitrite by nitrate reductase (NR) and then to NH4

+ by nitrite reductase
(NiR). N is further assimilated into Gln and Glu via glutamine synthetase (GS) and glutamate synthase
(GOGAT) and used for further biosynthesis of other nitrogenous compounds. NH4

+ can be
incorporated into Glu by glutamate dehydrogenase (GDH). Although the activities of GOGAT, GS,
and GDH exhibit salt-dependent regulation, their regulation (induction or repression) varies among
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species, cultivars, tissues, and developmental changes [92,93]. A salt-induced reduction [94] and
stimulation [95] of NR activity have been reported in plants. Our results showed that salt stress
selectively inhibited high-affinity nitrate transporters (ClCG05G025540, ClCG03G003060) and NRT1 like
genes (ClCG02G009090, ClCG10G002910) but induced expression of low-affinity nitrate transporters
(ClCG06G016390, ClCG11G002980), suggesting differential impacts of salinity on the transporters.

Further, the down-regulation of two glutamate dehydrogenases (ClCG01G004910, ClCG04G005320,
ClCG07G013590), glutamine synthetase (ClCG09G004580), and carbonic anhydrases (ClCG05G025330,
ClCG10G018930) validated the negative impacts of salt stress on nitrogen assimilation. The expression
of the gene encoding alanine transaminase (ClCG09G001390) was up-regulated, causing 2-oxoglutarate
to generate Glu. Glutamate decarboxylase (GDC) promotes the synthesis of Pro and GABA from Glu.
Our data showed that the expression of GDCs (ClCG00G006020, ClCG01G006890, ClCG01G006910)
was highly induced in response to salt stress, implying increased accumulation of Pro and downstream
metabolites such as citrulline or polyamines contribute towards salt tolerance. Differential responses
of various members of the same gene family due to salt stress are consistent with a study in rice [96].
Accumulation of excess Ser can be attributed to the activation of phosphorylated pathways of Ser
synthesis as the expression of D-glycerate 3-kinase (ClCG09G002370), D-3-phosphoglycerate dehydrogenase
(ClCG05G010250) and phosphoserine aminotransferase (ClCG10G000330) were strongly up-regulated.
Ser is considered as a critical player in biochemical responses for the regulation of intracellular redox,
energy levels, and cellular pH, particularly in stress conditions [97].

3.4. Disruption of the Energy Metabolisms by the Salt Stresses

Effective photosynthesis results through coordinated activities of four protein complexes—PSI,
PSII, the cytochrome b6/f complex, and ATP synthase. As confirmed in the GO and KEGG pathway
enrichment analysis, several DEGs identified in this study associated with these complexes were
down-regulated due to salt stress (Figure S7, Supplementary Materials, Table S7). The down-regulation
of PsbO (ClCG01G016370), PsbP (ClCG07G010800), PsbQ (ClCG05G000900, ClCG03G005130),
PsbS (ClCG08G005640), and PsbW (ClCG02G016710, ClCG09G007590) in PSII complex were consistent
with decreasing magnitude of Fv/Fm, suggesting impaired chlorophyll fluorescence of PSII during salt
stress progression. Although both the PSI and PSII reaction centers are affected by salt stress, studies
in cucumber found that PSI is more vulnerable to injury than PSII [98]. Several genes encoding PSI
protein complex viz PsaE (ClCG11G010230), PsaF (ClCG01G009000), PsaG (ClCG10G004510), PsaH
(ClCG07G013150), PsaK(ClCG01G025030), PsaL(ClCG11G010740), PsaN (ClCG01G015380), and PsaO
(ClCG01G011760), along with proteins involved in photosynthetic electron transfer (PetE, PetF, PetH),
were also down-regulated confirming inhibition of photosynthetic activities under salt stress. A
decrease in electron transfer rate accumulates excess electrons leading to electron leakage, which results
in the outbreak of reactive oxygen species (ROS) and damage to the PSII reaction center [99,100]. Further,
nearly all the proteins (Lhca1 to Lhca5, Lhcb1 to 4, Lhcb7) involved in light-harvesting chlorophyll
(LHC) were down-regulated (Figure S8, Supplementary Materials, Table S7). The inactivation of
photosynthesis and LHC complex due to salt stress observed in this study is consistent with several
studies [56,101,102] and validates the role of PSI and PSII complexes in balancing energy supply and
ROS generation under salt stress in watermelon.

3.5. DEGs Associated with Hormonal Regulation

In the present study, the functional analysis identified many DEGs associated with hormone
signaling transduction pathways emphasizing the involvement of plant hormones in regulating the
response to salt stress in watermelon leaves. We grouped the DEGs into various phytohormone signaling
pathways, such as auxin (AUX), cytokinin (CTK), gibberellin (GA), abscisic acid (ABA), ethylene
(ETH), brassinosteroid (BR), jasmonic acid (JA), and salicylic acid (SA) (Figure 8, Supplementary
Materials, Table S8). Studies have confirmed the reduced auxin levels and decreased auxin transporter
expression in plants under saline conditions [103,104]. The expression of most of the genes involved in
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auxin signal transduction pathways such as auxin transporter protein 1 (AUX1), transport inhibitor
response (TIR1), auxin response factor gene (ARF), auxin early response gene (Aux/IAA), and small
auxin-up RNAs (SAUR) were significantly down-regulated in response to salt stress. Up-regulation
of GH3 genes due to salt stress is consistent with previous studies [105] and is possibly responsible
for triggering cellular mechanisms to protect cell auxin homeostasis during changes in extracellular
auxin levels. Although cytokinins play an important role in plant growth and development, numerous
pieces of evidence indicate both positive and negative effects on stress tolerance. Salt-treated plants
showed increased or decreased accumulation of active cytokinins in plants [106–108]. In our study,
expression of genes CRE1, B-ARR, and A-ARR were up-regulated, while B-ARR was down-regulated
due to salt stress. The changes in the expression of genes associated with cytokinins are consistent
with salt-induced changes in tomato [109,110] and Arabidopsis [108] plants.

The ABA signaling pathway is associated with salt stress-induced responses and helps plants
by reducing the buildup of Na+ and improving osmotic adjustment. In the present study, three of
the ABA receptors (PYR/PYL) and serine/threonine-protein kinase 2 (SNRK2) were significantly
down-regulated in salt treatment, suggesting inhibition of the ABA signaling pathway by saline
treatments. The only salt-induced changes in the expression of two F-box gibberellin-insensitive
dwarf2 (GID2) and transcription factor genes associated with the GA signaling pathway suggest a
sub-optimal role of the GA pathway in salt stress-induced responses in watermelon.

Although ethylene is a stress hormone regulating numerous stress responses, its specific roles in
salt stress tolerance in plants remain unclear [111]. In this study, we observed up-regulation of ethylene
receptors (ETR) and serine/threonine-protein kinase CTR1 (CTR1), which serve as negative regulators
of the ethylene signaling transduction pathway. On the contrary, a positive regulator of ethylene signal
transduction, ethylene-insensitive protein 3 (EIN3), was also up-regulated. No significant differences
in expression levels of EIN2 and ERF1/2 genes were observed. Taken together, salt stress seems to have
either a negative or trivial impact on the ethylene signaling pathway.

In the present study, genes involved in the BR pathway viz. BRI1-associated receptor kinase
(BAK1), BR-signaling kinase (BSK), brassinosteroid insensitive 2 (BIN2), and brassinosteroid resistant
1/2 (BZR1/2) were significantly up-regulated, suggesting activation of the BR signaling pathway in
response to salt stress. Similar activation of genes involved in the BR signaling pathway during salt
stress has been reported in Arabidopsis [112]. Up-regulation of the cyclin gene CycD3 in our study is
consistent with a study showing similar responses due to the exogenous application of 24-EBR [113].
Although the results confirm the activation of the BR signaling pathway, the exact functional relevance
of the BR pathway in salt-induced responses needs further investigation.

In the JA signal pathway, the expression of jasmonate ZIM domain-containing protein (JAZ)
genes and JASMONATE INSENSITIVE 1/MYC2 (JIN1/MYC2) were significantly up-regulated due
to salinity, indicating activation of JA signaling transduction by saline stress. The up-regulation of
COI1-dependent JA-responsive JAZ genes due to salt stress has been reported in Arabidopsis [114].
It is plausible to assume that salt stress-induced JA-Ile promotes the interaction of JAZ proteins with
COI1, followed by their degradation via the 26S proteasome and de-repression of MYC2 to induce
transcription of JA-responsive genes in watermelon.
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Figure 8. DEGs mapped to the plant hormone signaling transduction pathways in watermelon leaves.
(A) Auxin signaling pathway, (B) cytokinin pathway, (C) gibberellin (GA) pathway, (D) abscisic acid
pathway, (E) ethylene signaling pathway, (F) brassinosteroid pathway, (G) jasmonic acid pathway,
(H) salicylic acid pathway. The red and green boxes show the number of down- or up-regulated
DEGs, respectively.
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4. Materials and Methods

4.1. Salt Stress Experiment and Photochemical Efficiency Measurement

Watermelon (C. lanatus L. cv. Crimson Sweet) seeds were sown in trays filled with a soilless
media (Quick Dry Infield Conditioner, Turface Atheletics™, Buffalo Grove, IL, USA) and placed in the
greenhouse at the Texas A&M AgriLife Research and Extension Center, Uvalde, TX, USA. Six-week-old
seedlings with three fully expanded leaves were carefully lifted out from Turface media, washed under
running water, and incubated in 50 mL tubes (VWR®, Radnor Corporate Center, Radnor Township,
PA, USA) containing 300 mM NaCl and deionized water as a control (Barnstead™ Smart2Pure™
Water Purification System, Thermo Scientific, Waltham, MA, USA). The concentration of NaCl used
in this study was previously validated for its sensitivity in watermelon [115,116]. Chlorophyll
fluorescence was measured at the end of the experiment using a portable fluorometer (PAR-FluorPen
FP 110/D; PSI (Photon Systems Instruments), Drasov, Czech Republic) after dark adaption for 30 min.
This measurement was initiated from 1 h after initiation of the treatment and was continued every 2 h.
The maximum photochemical efficiency of PSII (Fv/Fm) was calculated according to the manufacturer’s
protocol. After 7 h of exposure to salt stress, leaf and root tissue samples were collected from four
independent seedlings for each treatment and flash-frozen using liquid nitrogen before storing at −80
°C for further processing.

4.2. Extraction Method and Quantification of Free Amino Acids with Ultra-Performance Liquid
Chromatography-Electron Spray Ionization Tandem Mass Spectrometry (UPLC-ESI-MS/MS)

Approximately 20 mg frozen tissue samples collected into 2 mL microcentrifuge tubes were
homogenized into fine powder in a paint shaker (Harbil model 5G-HD paint shaker) using 3 mm
stainless steel beads (Demag stainless steel balls, Abbott Ball Company, Inc., West Hartford, CT,
USA) to quantify free amino acids. Amino acids were extracted using an established protocol [34] by
suspending the homogenized samples in 100 mM cold HCl extraction buffer, followed by incubation
on ice (~20 min) and then centrifuging at a speed of 14,609× g for 20 min at 4 ◦C. The supernatants
were collected and filtered through a 96-well 0.45-µm-pore filter plate (Pall® Life Sciences Filter,
Pall Corporation, Port Washington, NY, USA). The eluents collected in 96-well trap plates were stored
at −20 ◦C for further amino acid quantification.

The derivatization of filtrates was carried out with an AccQ•Tag 3X Ultra-Fluor™ derivatization
kit (Waters Corporation, Milford, MA, USA) following the standard protocol. L-Norvaline (Sigma,
St. Louis, MO, USA) was used as an internal standard at a fixed concentration of at 25 pmol/µl. Amino
acid calibrators were purchased from KairosTM Amino Acid Kit (Waters Corporation, Milford, MA,
USA). Lyophilized amino acid powder of six amino acid calibrators representing different concentrations
(5.0 pmol/µL to 1000 pmol/µL) was reconstituted with 2 mL of 0.1 M HCl to establish detection limits
ranging from 0.45 pmol/µL to 90 pmol/µL. Calibration curves were built in TargetLynxTM Application
Manager (Waters Corporation, Milford, MA, USA).

UPLC-ESI-MS/MS analysis was performed using a Waters Acquity H-class UPLC system equipped
with a Waters Xevo TQ mass spectrometer by using electrospray ionization (ESI) probe. The Waters
Acquity H-class UPLC system was composed of an autosampler, a binary solvent manager, a Waters®

ACQUITY UPLC® Fluorescence (FLR) detector, a column heater and a Water’s AccQ•Tag Ultra column
(2.1 mm i.d. × 140 mm, 1.7 µm particles). The mobile phase consists of water phase (A) (0.1% formic
acid v/v) and acetonitrile (B) (0.1% formic acid v/v) with a stable flow rate at 0.5 mL/min and column
temperature setting at 55 °C. The gradient of non-linear separation was set as follows: 0–1 min (99%
A), 3.2 min (87.0% A), 8 min (86.5% A), and 9 min (5% A). Finally, 2 µL of the derivatized sample was
injected onto the column for analysis. IntelliStart software (Waters Corp, Milford, MA, USA) was
used to optimize amino acid multiple reaction monitoring (MRM) transitions, collision energy values,
and cone voltage. The ESI source was set to 150 ◦C with the gas desolvation flow rate at 1000 L/h, gas
flow cone at 20 L/h, desolvation temperature at 500 ◦C, the capillary voltage at 2.0 kV, gas collision
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energy varied from 15 to 30 V, and cone voltage at 30 V for detecting all amino acids. MRM was
operated in positive mode. Water’s MassLynx™ 4.1 software was used for instrument monitoring and
data acquisition. The data integration, calibration curves, and quantitation (0.45–90 pmol/µL) were
carried out with TargetLynx™ Application Manager (Waters Corporation, Milford, MA, USA).

4.3. cDNA Library Preparation and RNA-Seq Analysis of Salt-Stressed Seedling Leaves

Six independent libraries were created by using a total of 6 RNA samples from 3 replicate
leaf tissues of cv. Crimson Sweet under the control and salt-treated condition. The samples were
flash-frozen in liquid nitrogen and ground to a fine powder using 3-mm-diameter steel balls (Abbott Ball,
West Hartford, CT, USA) in a paint shaker (Harbil, Wheeling, IL, USA). Total RNA was extracted using
an RNeasy® Plant Mini Kit (QIAGEN Sciences, Germantown, MD, USA) as per the manufacturer’s
protocol. The purity of the RNA was confirmed using a NanoPhotometer® spectrophotometer
(IMPLEN GmbH, Inc., München, Germany). The RNA Nano 6000 Assay Kit of the Bioanalyzer 2100
system (Agilent Technologies, Santa Clara, CA, USA) was used to assess RNA integrity and quantitation.
Sequencing libraries were generated using a NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

(New England Biolabs, Ipswich, MA USA) following the manufacturer’s protocol. The clustering of
the index-coded samples was performed on a cBot Cluster Generation System using PE Cluster Kit
cBot-HS (Illumina) according to the manufacturer’s instructions. After cluster generation, the libraries
were sequenced on an Illumina Hiseq platform, and 150 bp paired-end reads were generated. Raw
reads of fastq format were processed to obtain clean reads by removing the adapter, reads containing
poly N (reads when uncertain nucleotides constitute more than 10 percent of either read; N > 10%),
and low-quality reads (reads when low-quality nucleotides (base quality less than 20) constitute more
than 50% of the read). The Qscore (quality value) of over 50% bases of these reads is ≤5) from raw
data. At the same time, Q20, Q30, and GC content of the clean data were calculated. Watermelon
reference genome version 2 (cv. Charleston Gray) and gene model annotation files were downloaded
from CuGenDB (http://cucurbitgenomics.org/). Index of the reference genome was built using Bowtie
v2.2.3, and paired-end clean reads were aligned to the reference genome using TopHat v2.0.12. HTSeq
v0.6.1 was used to count the reads mapped to each gene. FPKM [117] of each gene was calculated
based on the length of the gene and reads count mapped to this gene. Differential expression analysis
of genes was performed using the DESeq R package (1.18.0) [118]. Genes with p-value < 0.05 found by
DESeq were considered as differentially expressed. Gene ontology (GO) [119] enrichment analysis of
differentially expressed genes was implemented using the GOseq R package, in which gene length
bias was corrected. GO terms with a p-value less than 0.05 were considered significantly enriched by
DEGs. To test the statistical enrichment of differential expression genes, KOBAS software in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways database [120] was used. To identify the
source of variance in the expressed transcripts between control and salt treatment, and the repeatability
of samples within a group, principal component analysis (PCA) was used. PCA was performed using
the scikit-learn package [121] and plotted using Matplotlib [122]. The RNA-seq dataset is accessible
through GEO Series accession number GSE146087 (https://www.ncbi.nlm.nih.gov/geo/).

4.4. Validation by Quantitative Real-Time PCR

To validate the RNA-seq data, total RNA was extracted from three replicate leaf tissues of
salt-stressed seedlings (Crimson Sweet). The expression pattern of selected DEGs was examined
using quantitative real-time PCR (RT-qPCR). The gene-specific primers based on the selected unigene
sequences (Table S9) were designed using Primer Premier 3.0 software. Total RNA was extracted with
the Quick-RNA™Miniprep Kit (Zymo Research Corporation, Irvine, CA, USA) followed by DNase1
(Zymo Research Corporation, Irvine, CA, USA) treatment, and subjected to reverse transcription using
iScript RT Supermix (Bio-Rad Laboratories, Inc., Hercules, CA, USA ). The quality and quantity of
the RNA were examined using a Denovix DS-11+ spectrophotometer (DeNovix Inc. Wilmington, DE,
USA). Gene expression analysis via reverse transcription-qPCR was performed using a BioRad CFX96

http://cucurbitgenomics.org/
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qPCR instrument and by using a SsoAdv Univer SYBR GRN Master Kit (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). Watermelon β-actin and α-tubulin5 genes [123] were used as the internal controls,
and the relative expression levels (Cq values) for each gene were normalized by taking an average of
three biological replicates. The relative expression levels of each gene were calculated using the 2−∆∆Ct

method. The primers for qPCR used in this chapter are listed in Supplementary Materials, Table S9.

5. Conclusions

In conclusion, this study represents comprehensive information regarding the transcriptome
of watermelon seedlings in response to salt stress. The transcriptome profiling generated over 43
million reads from the control and salinity-treated libraries. The transcriptome assembly detected
7622 genes that were expressed differentially in response to salinity. These differentially expressed genes
included transcription factors, genes related to primary metabolism, endocytosis, hormonal pathways,
and transporters involved in responses to salinity. The gene expression patterns of the TFs identified
in this study help in improving our understanding of the significance of transcriptional regulation in
watermelon during salt stress. These results provide a basis for future studies aimed at discovering
novel genes, their functional validation in model species, and finding molecular mechanisms associated
with salt tolerance in watermelon.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/17/6036/s1.
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