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Abstract: In this paper, we have made a systematic study of partial fourth order perturbative
schemes due to triples to compute the ionization potential within Fock-space multi-reference
coupled-cluster theory. In particular, we have obtained computationally less expensive correlation
schemes due to fourth order triples. Prototype examples have been considered to explore the efficacy
of the approximate methods mentioned, while the bondonic formalism supporting the bonding
phenomenology is also respectively for the first time here advanced.

Keywords: ionization potential (IP); Fock-space coupled-cluster theory; perturbative triples;
multi-reference coupled-cluster; bondonic formalism

1. Introduction

Photo-ionization of electrons is a very important step to transfer the energy of radiation to matter
and thus plays a crucial role in physics and chemistry [1]. Ionization of main peaks is associated
with ejection of electrons from the molecular orbitals and simple Koopman’s approximation is often
inadequate to describe the process of ionization. While the satellite ionization peaks cannot be
explained without electron correlation, as pointed out by Cederbaum and co-workers [2], the role
of electron correlation and thus the correlated theories in the calculations of main peaks has been
noted in several works [3]. For the main peaks, such correlated theories improve the main peaks
significantly and very often without such correlation, even the qualitative ordering of ionization peaks
does not come out correctly. Several correlated theories, configuration interaction, perturbation-based,
Green’s function, equation-of-motion based theories have been used for vertical ionization potential (VIP)
calculation. The ones, which can produce direct calculation of VIPs by cancellation of the common
ground state energies, have been preferred [4,5]. Several quantum mechanical theories are able to
describe these energies as well as microscopic interactions of the systems. At the same time, theories
based on bondons provide the link to the extended systems [6,7]. The bondons describe chemical
particles, which are associated with electrons implicated in the chemical bond as single, delocalized, or
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lone pair; they have orientated direction of movement and depend on a chemical field. The bondons
can be found on the wave functions, on the covalent bonds, in dispersive–weak interactions, on the
mechanism of action between ligand and receptor, and even on the ionic interactions.

Among several quantum mechanical theories, including electron correlation from first-principle,
coupled-cluster (CC) theory [8] has been established as a state-of-the-art [8–17] theory for inclusion
of what is known as “dynamic electron correlation”. It sums up selective perturbation terms up
to infinite order through an exponential wave-operator [8]. Traditionally, CC theory is developed
with exponential wave-operator acting on a single determinant reference. It works well when a
particular determinant, like restricted Hartree–Fock (RHF), is dominant in the description of the
wave function. However, there are cases where multiple determinants have large amplitudes in the
configuration expansion of the wave-function. Example cases are excited states, molecules at stretched
geometries, ionized or electron-attached states etc. These are the cases where static correlation also
becomes dominant. For ionized states, such static correlation occurs due to the degeneracy of the
occupied orbitals, where the reference consists of multiple determinants involving what are termed
“active” holes. Multi-reference CC (MRCC) [18–42] has turned out to be a physically appealing theory
to take care of both static and dynamic correlation. Dynamical correlation is described by the CC
wave-operator satisfying Bloch equation or an equivalent equation, while the static correlation is
described by a diagonalization of an effective Hamiltonian over the small reference space. Such effective
Hamiltonian theories, first developed by Malrieu and co-workers [18], have been the cornerstone
of effective Hamiltonian MRCC theories. These are further sub-divided into Hilbert- [19–21] and
Fock-space (FS) [19,22–42] theories. Hilbert space theories have an associated cluster operator for every
determinant in the reference, with each of these determinants acting as a vacuum. Thus, the cluster
operators are hole-particle creation operators with respect to the corresponding vacuum. These are
ideally used for potential energy surfaces and the state-selective versions of the Hilbert-space theories
with some modifications are even more appropriate for energy surface of selected states. On the
other hand, the Fock-space CC (FS-CC) is based on a common vacuum, which defines holes and
particles. Exponential wave-operator acts on the reference function. Due to the common vacuum,
the reference space contains determinants classified to have holes and particles which may be called
“active”. The choice of active holes and particles often determines the success and convergence of
FS-CC theories. The cluster operators have a more complicated structure than the Hilbert-space theory
and contains destruction of the active holes and particles, along with other creation operators.

The FS-CC theories are ideally suited to the vertical ionization potential (IP), electron affinity (EA),
and excited state energies (EE) [24–26,29–33] and are formulated such that the common correlation of the
ground neutral molecule is cancelled. Thus, direct determination of these vertical energies is possible.
By sacrificing the direct determination, the adiabatic calculations of the above quantities can also be
done. In particular, the one active-hole reference, commonly denoted as (0.1) FS-sector, is very helpful
to describe the main ionization peaks.

The FS-CC, in singles and doubles approximations (FS-CCSD), has been extensively studied [24–26,37,41,42].
FS-CC was pioneered by several studies from the groups of Mukherjee [19,22,23,28], Kaldor [34,35],
Lindgren [40], Kutzelnigg [27], Bartlett [36], and others. Pal et. al used the FS-CCSD for applications to
VIP and low-lying EEs for a number of small molecules [30–33]. Kaldor and co-workers similarly used
FS-CC for atomic problems [34,35]. Related equation-of-motion-CC (EOM-CC) [39–46] was developed
for IP, EA, and EE and it is especially worth noting that EOM-CC provides identical results of IP and
EA as those obtained by the FS-CC for the (0.1) and (1.0) sector, respectively. However, FS-CC has
an advantage that it is fully size-extensive, while in EOM-CC, another similarity transformation is
required to bring the same effects [47,48].

In the quest to improve the results, it was important to introduce approximations to FS-CC,
which have higher terms than singles and doubles. On an analysis by Mukherjee and Pal and
co-workers [38,39], it was seen that the effective Hamiltonian, in singles and double approximations,
misses terms originating from the triples and contributing perturbatively at the third order. Inspired by
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the above analysis, the triply excited cluster amplitudes were included in the FS (0.1) sector at the third
order and later by Pal and co-workers at the fourth order [38]. Importance of triples in the context of
EOM-CC was also noted in several studies for IP, EA, and EE [43,48].

The objective of this paper is to relook the fourth order perturbative triples inclusion. We present
in this paper new partial fourth order schemes to FS-CCSD, which is also called MRCCSD, which may
be useful for IP calculation. The main purpose is to show that one can design computationally less
expensive partial fourth order triples schemes, which provide results in close agreement with the full
fourth order method. Thus, essentially, a computationally efficient scheme in the context of fourth
order triples to FS-CCSD will be presented.

The paper is presented as follows. In Section 2, we will introduce briefly the FS-CC, in particular,
the (0.1) sector FS, which is the main context of this paper. Subsequently, we present the different
fourth order schemes, from partial to the full, originating due to the triples; the corresponding
bondonic-diagrammatic general formalism that phenomenological support the present partial fourth
order triples schemes and further inspires the forthcoming perturbative many-body higher order
chemical bonding dynamics is then innovatively advanced. Results and discussion section (Section 3)
will highlight the main point of this paper, computationally the least expensive partial fourth order
scheme, called the MRCCSD+T∗ − a(4) scheme, provides results of IP in agreement with full fourth
order calculations in most cases. As one expects, the results of IPs are not very sensitive and the
experimental numbers can only be reproduced with vibrational corrections. In our calculations
presented here, the vibrational corrections are not included. In this section, third order triples results,
full (T∗(4)) and another partial fourth order scheme (T∗ − b(4)) will also presented, such that a more
detailed analysis can be made. We present results of outer-valence and inner-valence IPs of some test
systems, N2, CO, BeO, and CH+.

2. Conceptual Method

2.1. FS-CC Theory

The common vacuum defines the set of holes and particles, which can be further sub-divided
into “active” and “inactive” subsets. The reference in FS theory consists of determinants containing
active particles and holes. In case determinants with all possible active holes and particles included in
the model space, it is called a complete model space. If the reference consists of one active hole or
one active particle only, the choice of active subsets can be always such that it is complete. A general
m-active particle and n-active hole model space may be termed (m,n) model space. Such a reference
Ψ(0)[m,n]
µ may be written as:

Ψ(0)[m,n]
µ =

k∑
i

ciµϕ
[m,n]
i , (1)

where
∣∣∣∣ϕ[m,n]

i are k-number of determinants with m active particles and n active holes in the reference.

The wave-operator, Ω, transforming Ψ(0)
µ to Ψµ may be written as:

Ω =
{
ẽs[m,n]

}
, (2)

where:

S̃[m,n] =
m∑

k=0

n∑
l=0

s(k,l). (3)

Here, { } denotes the normal-ordering of the operators within the curly bracket. s(k,l) represents an
operator destroying exactly k active particles and l active holes. Thus, S̃[m,n] consists of operators which
can destroy up to m active particles and n active holes. The s(k,l) operators do not contract among
themselves, since the Ω is normal ordered. In addition to the destruction of k-active particles and l-active
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holes, the cluster operators also create holes and particles involving inactive orbitals. This defines
the total rank of the S operators. In singles and doubles approximations, one and two body cluster
operators are used. Thus, the Bloch equations are partially decoupled and are solved from the (0.0)
sector progressively upwards. The cluster operators are obtained through the Bloch equations at every
FS sector, starting from (0.0) to (m,n). It can be shown that since the wave-operator is normal ordered,
the equations for the lower sector are decoupled from the equations of the higher sector. This is called
sub-system embedding condition (SEC) [49]. For the specific (0.1) sector, which is a complete model
space, intermediate normalization (IN) is valid and the Bloch equation remains connected with IN [30,31].
For general model space, however, the connectivity of the Bloch equation is not consistence with the
IN [28] and in such case, the IN condition is sacrificed. The IN is given as PΩ ≡ P. The Bloch equations
for the specific (0,1) sector are:

P(0,0)
(
HNΩ −ΩHe f f

)
P(0,0) = 0, (4)

Q(0,0)
(
HNΩ −ΩHe f f

)
P(0,0) = 0, (5)

and:
P(0,1)

(
HNΩ −ΩHe f f

)
P(0,1) = 0, (6)

Q(0,1)
(
HNΩ −ΩHe f f

)
P(0,1) = 0. (7)

The first set of equations for (0.0) sector are, just the SRCC (single reference coupled cluster) equations.
HN is the normal ordered Hamiltonian. Using the IN condition, the (0,1) effective Hamiltonian H(0,1)

e f f
can be defined as:

P(0,1)H(0,1)
e f f P(0,1) = P(0,1)[HNΩ]cP

(0,1) . (8)

The Schrodinger equation can be written for all roots corresponding to the number of determinants
k in the reference space, as the eigen-value equation for H(0,1)

e f f in P(0,1) space:
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state, computing with respect to the RHF of the N-electron. Further, if we compute HN ≡
[
HNeS(0,0)]

c

and drop
(
H
)
closed

in the construction of H(0,1)
e f f , the common correlation energy of the ground state is

cancelled and we can obtain the direct difference energies. The earlier applications of FS-CC were done
using singles and doubles approximations i.e.:

S(0,0)
∼ S(0,0)

1 + S(0,0)
2 , (10)

S(0,1)
∼ S(0,1)

1 + S(0,1)
2 . (11)

This approximation is known as FS-CCSD approximation. The (0.0) sector operators are standard
hole-particle creation operators, while (0,1) operators have one active hole destruction operator. S(0,1)

1
operator must scatter from an inactive hole to an active hole and will thus be absent for a case where
all holes are active:

S(0,1)
1 =

∑
β<ah

∑
α∈ah

sαβX†βXα, (12)

S(0,1)
2 =

∑
δ

∑
γ

∑
β

∑
α∈ah

sαγ
βδ

{
X†βXαX†δXγ

}
, (13)

where ah refers to the subset of active holes.
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2.2. Perturbative Triples

The full inclusion of triples is very expensive and may be unnecessary. Therefore, approximations
have been proposed, motivated by perturbation. Perturbative triples were first proposed by
Pal et al. [29]. In order to consider a balanced correlation for an entire wave function, the inclusion of
both the T̂3

(0,0) and T̂3
(0,1) were considered. The corrections of the effective Hamiltonian at both third

and fourth order due to triples were taken into account. To analyze the effect of perturbative triples to

Ĥ(0,1)
e f f , let us first consider the expression of Ĥ(0,1)

e f f , including triples. First, let us write HN as the sum
of one-body, two-body, and three-body operators as:

HN = f N + vN + wN + . . . .

Higher-body HN will not be relevant for the discussion in this article. By definition, there are all
open parts of H, since the close part of H is dropped. This allows us to determine the difference of

energy directly. Analysis of Ĥ(0,1)
e f f includes triples:

Ĥ(0,1)
e f f = P̂(0,1)

{
f N + f N Ŝ(0,1)

1 + f N Ŝ(0,1)
2 + vN T̂ S(0,1)

2 + vN Ŝ(0,1)
3

}
P̂(0,1) . (14)

The equation for Ŝ(0,1)
3 can be written up to second order as:

Q̂(0,1)
3

{
f N Ŝ(0,1)

3 + vN Ŝ(0,1)
2 + wN − Ŝ(0,1)

3 f N

}
P̂(0,1)

= 0. (15)

We recall that correlation required for perturbation corrections, HN will now contain Ŝ(0,0)
3 , at the

right order. In fact, Ŝ(0,0)
3 , computed with vN Ŝ(0,0)

2 with the energy denominator from the SRCC

equation, suffices; wN constructed up to the second order, using
(
vN Ŝ(0,0)

2

)
L

is what is w[2]
N . For the

rest of the terms, we use the converged values of Ŝ(0,1)
2 amplitudes. The corrected Ŝ(0,1)

2 amplitudes,
at the second order, when inserted in Equation (14), provide what is called MRCCSD+T∗(3). This also

implies that while Ŝ(0,1)
3 is corrected up-to the second order, partial higher order corrections are also

taken care due to higher order effects on Ŝ(0,1)
2 from the MRCCSD equation.

To explain the various fourth order schemes, first, we include the effects of Ŝ(0,1)
3 , calculated up-to

2nd order from Equation (15) in the Ŝ(0,1)
2 amplitude equation. This results in additional changes of

Ŝ(0,1)
2 at third order:

Q̂(0,1)
2

{
f N Ŝ(0,1)

2 + vN + vN Ŝ(0,1)
2 + vN Ŝ(0,1)

3 + wN Ŝ(0,1)
2 − Ŝ(0,1)

2 Ĥ(0,1)
e f f

}
P̂(0,1)

= 0. (16)

Clearly, this will affect the effective Hamiltonian at the fourth order and this scheme has been called
MRCCSD+T∗ − a(4), which is a partial fourth order correction due to the triples. Hence, this scheme

only includes changes in Ŝ(0,1)
2 equation at the third order due to Ŝ(0,1)

3 amplitudes. Clearly, this comes

only from the second order Ŝ(0,1)
3 amplitudes, as are used in the T*(3) scheme.

Subsequently, we use wN to at least the third order with the term v Ŝ(0,0)
3 as well as the new values of

Ŝ(0,1)
2 , as obtained in the MRCCSD+T∗ − a(4) scheme, to calculate Ŝ(0,1)

3 amplitudes to the third order.
The resulting equation is as follows:

Q̂(0,1)
3

{
f N Ŝ(0,1)

3 + vN Ŝ(0,1)
2 + w[3]

N − Ŝ(0,1)
3 H

(0,1)
}

P̂(0,1)
= 0. (17)
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In contrast to Equation (15), wN is used up to the third order. This partially corrects Ŝ(0,1)
3 up-to

the third order. It is important to emphasize that up-to this stage, the corrections in terms of triples are
essentially non-iterative. Effective Hamiltonian, generated at this level, is still only partially correct
up to the fourth order. This, we call MRCCSD+T∗ − b(4). To highlight the difference between a(4)

and b(4) schemes due to the triples, a(4) includes changes in Ŝ(0,1)
2 amplitudes at the third order,

keeping Ŝ(0,1)
3 amplitudes at the sec ond order, while in b(4) scheme, additional corrections are made

to have Ŝ(0,1)
3 partially corrected via Equation (17).

Finally, the term vN Ŝ(0,1)
3 with the second order Ŝ(0,1)

3 has been included (one iteration) in Q(0,1)
3

equation to obtain the Ŝ(0,1)
3 values, which are correct up to third order ( Ŝ(0,1)

3
[3]):

Q̂(0,1)
3

{
f N Ŝ(0,1)

3 + vN Ŝ(0,1)
2 + w[3]

N + vN Ŝ(0,1)
3 − Ŝ(0,1)

3 H
(0,1)

}
P̂(0,1)

= 0. (18)

The consequent Ĥe f f is correct at least up to the fourth order. This final approximation is known

as MRCCSD+T∗(4). Effects of Ŝ(0,0)
3 in the construction of HN have been taken to obtain the desired

order correction.

2.3. Comparison with the Bondonic Diagrammatic Formalism of Many-Body Perturbation Theory

Since ionization potential issue is closely related with molecular stability, through correlation,
so with chemical bonding too, the natural additional matter may address how the quantum chemical
bonding ultimate theory may accommodate the present perturbative many-body high-order schemes,
in a general framework that may be eventually further developed. Fortunately, the bondonic theory of
chemical bonding [6,7] may address this matter in a phenomenological way. To unfold this venture,
one may start with the quantum electro-dynamically (Feynman) diagrams of chemical bonding,
having the bondons as “gluing bosons” of electrons in bonding (Figure 1a), in analogy with the photons
driving the free inter-electronic repulsion (Figure 1b). Starting from it, one may proceed with the next
phenomenological step towards proposing the chemical bonding diagram of Figure 2a, while recognizing
it is a superimposed of two interacting loops—in the decomposed version of Figure 2b.
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Note that in Figure 2, due to the bosonic character of bondons in chemical bonding modeling, the
interaction lines are mixed with the interaction centers, that is the single particle can self-interact in
the first order and interact at distance in the second order, respectively for the mixed states |1〉 and |2〉.
Accordingly, we may advance the bondonic graph (de)composition for electronic pairing in chemical
bonding as the following:

B[2](1) = 2−(1+2)
[
2
(

1
2

)
+ 2

(
2
2

)]
(19)

where we identified (from Figure 2b) the individual perturbative first and second order graphs, namely
the active-hole and the active hole-particle pair, respectively. The prefactors of Equation (19) we better
interpret when we provide its generalized form, i.e., for the N-body k-order of interaction:

B[N](k) = 2−(k+l)
[
N
(

k
N

)
+ N

(
k + 1

N

)]
= N22−(k+l)

[(
k
1

)
+

(
k + 1

1

)]
(20)

This way: k- stay for the perturbation order; l- accounts for the total number of loops over all

diagrams involved
(

k
1

)
,
(

k + 1
1

)
- see Ref. [50] for special realization of such diagrams up to the

fourth order, for instance; N- is the total number of electrons in the bonding state in matter (it can
be either ground state or valence state, or other involved in chemical reactivity therefore). Of course
Equation (20) is not “a derivation”, yet it has a phenomenological consistency, since: i) it carries the
“effective formalism” feature by involving the summation (superimposing) of diagrams “each centered”
on mate-/pairing- contributing active holes, as it is
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, along the higher interaction with active particles (k > 1), as the effective formalisms usually prescribe;
ii) it features the “superposition” multiplied with the ∼ N2 recalling the undiscernible particle statistics;
iii) it is a particle size dependent as ∼ N2 so “recuperating” in a bosonic way (viz. the bondons as
“gluing” the fermions in chemical bonding) the “condensation ordering parameter”, and being in
the same time suitable for chemical bonding dynamics – since chemical reactivity usually conveys
with ∼ N2 energy variation (e.g. by the chemical hardness dependency, etc.), see Ref. [51]. Moreover,
worth mentioning that earlier study of applying bondonic theory to elemental chemical bonding
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in hydrogen molecule revealed that, indeed, the presence of ∼ N2 order parameter in the master
quantum equation (of Hartree–Fock–Bogoliubov type) development; while, when combining with
fermionic superposition in a Heitler–London formalism leaves with the shifts of both nominator and
denominators of resulted variational energies of bonding, see Ref. [52]; this is in phenomenological
agreement with the many-body perturbation theory which, through infinite summation of interacting
orders yields with geometrical series solved with such energetic corrections in both effective potential
and in referential energies alike. Of course, much work should be done in order to establish one-to-one
correspondence between the present bondonic formalism as diagrammatic results and the standard
perturbative theory of N-states. Yet, the present endeavors like to open such a way. All-in-all, as a
corollary for the theoretical purpose of the actual paper, the bondonic diagrammatic framework of the
present partial fourth order triples scheme looks like the composed diagram:

B[1](α) × B[2](β) × B[3](γ) ×
(

1
1

)
∼ N7 (21)

Expression (21) fulfils the current approximation scaling approach, while allowing specific
realization (viz. the orders α, β,γ) as depending on the implemented scheme; particularly, the presently
implemented schemes are represented by the bondonic composed diagrams, respectively:

Eq. (14)/(15) : MRCCSD + T ∗ (3) . . .B[1](3) × B[2](2) × B[3](2) ×
(

1
1

)
(22)

Eq. (16) : MRCCSD + T ∗ (3) − a(4) . . . B[1](3) × B[2](3) × B[3](2) ×
(

1
1

)
(23)

Eq. (17) : MRCCSD + T ∗ (3) − b(4) . . .B[1](3) × B[2](2) × B[3](3) ×
(

1
1

)
(24)

Eq. (18) : MRCCSD + T ∗ (4) . . . B[1](3) × B[2](3) × B[3](3) ×
(

1
1

)
(25)

One remarks the elegancy in expressing each of the above schemes in coding of the one-body,
two-body, and three-body “bondonic operators”, in various orders of interactions, and with the
reference to the active-hole creation.

2.4. Computational Details

In this section, we present prototype results of VIP using the formulation of partial fourth order
schemes for inclusion of triples in FS-CCSD. We chose four molecules, N2, CO, BeO, and CH+ in
different basis-sets. For simplicity, in this and the subsequent section, we simply write IP in place of
VIP. We present MRCCSD, MRCCSD+T∗ (3), MRCCSD+T∗ − a(4), MRCCSD+T∗ − b(4), as well as full
MRCCSD+T∗(4) results for each of the molecules. We present the details of geometry, active orbitals,
and the basis sets used for each molecule below.

For N2, the two basis sets used are a [5s4p2d1f] (basis-A) and aug-cc-pVDZ basis (basis-B).
Experimental geometry of 2.07 a.u. has been used for the calculations. N2 is a well-tested molecule for
which earlier FS-CCSD results are available. Basis-A has been generated by contracting 11 primitive
s-type and 6 primitive p-type Gaussians to 5s and 40. Uncontracted 2d and 1f functions are added.
The entire basis has been included in the Supplementary Information. Two active holes, 3σg and
1πu (in actual calculation, three, sin ce π is a doubly degenerate orbital), are used as active.

For CO, the results have been computed with three different basis sets, cc-pVDZ, cc-pVTZ,
and augmented cc-pvDZ basis sets. Experimental bond distance of 2.132 a.u. has been used for the
calculations. We chose four active holes, 5σ, 1π (double degenerate), 4σ for the calculations.
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For BeO, we took π and σ orbitals, which are the two highest occupied molecular orbitals.
cc-pVDZ, cc-pVTZ, and augmented cc-pvDZ basis sets were used. Experimental geometry of 2.515 a.u
has been used to present vertical IPs using the above methods.

Finally, a small molecule, CH+, has been taken for study where two highest molecular orbitals
have been taken as active. In this case, however, we presented the lowest IP only. The calculation has
been done using cc-pVDZ and cc-pVTZ basis at a bond distance of 1.8 a.u., 1.9 a.u., and 2.0 a.u. The IP
calculations for CH+ was earlier used for discussing binding of CH 2+ [53,54].

The molecules and basis sets have been chosen such that the conclusion can be drawn on a verity
of things. A few cases have been chosen with augmentation of basis to explore the effects of diffuse
functions on vertical IPs.

3. Results and Discussions

First, we look at the results of IPs of N2 in the two bases (Table 1). We compare the results using
perturbative triples at third and fourth order. We find that in the basis-A, the results for both 3σg

and 1πu decrease with triples at third order and then oscillate. In this basis, we see not so significant
effect of fourth order correlation due to the triples. However, what is more important is that T∗ − a(4),
which is computationally the least expensive method and T∗ − b(4) can be regarded to be satisfactory.
Due to the oscillating nature, it is difficult to judge the quality of the approximations. This is true for
both 3σg and 1πu IPs. When we examine the results of IP in other basis, called basis-B, we find that
3σg and 1πu IPS have differing trends. 3σg IP increases with the triples and then typically at different
partial fourth order schemes oscillates. On the other hand, 1πu IP decreases with the triples at third
order before having oscillatory trends at partial fourth order schemes. One of the differences between
the two bases is the presence of diffuse functions in basis-B. It is likely that the diffuse functions affect
the 3σg and 1πu differently as we add the triples and can be the cause for varying trends. The results in
both the basis agree well with the experiments.

Table 1. Vertical ionization potentials of N2 using various basis sets.

METHODS Orbital
RESULTS (eV)

Basis-A
(5s4p2d1f)

Basis-B
(aug-cc-pVDZ)

MRCCSD
3σg 15.645 15.443

1πu 17.262 17.129

MRCCSD+T∗(3)
3σg 15.637 15.486

1πu 16.966 16.890

MRCCSD+T∗ − a(4)
3σg 15.280 15.189

1πu 16.750 16.685

MRCCSD+T∗ − b(4)
3σg 15.639 15.525

1πu 17.000 16.908

MRCCSD+T∗(4)
3σg 15.541 15.424

1πu 16.907 16.810

Experimental Ref. [55]
3σg 15.581 ± 0.008

1πu 16.8

As a next example, we consider CO molecule. Three different basis sets have been used. The results
are presented in Table 2. We find in all the three bases, the lowest IP i.e., one which is ionized from the
5σ orbital, decreases slightly at T∗ (3) level from MRCCSD results and then oscillates at different partial
fourth order levels. On the other hand, the other two inner valence IPs 1π and 4σ, have different trends
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at the third order level. It increases and then as in the earlier cases of triples at the fourth order levels,
oscillates. A comparison with basis-A indicates that diffuse functions do not play a significant role in
this case and neither does it change the trends of the three IPs.

Table 2. Vertical ionization potentials of CO using various basis sets.

METHODS Orbital
RESULTS (eV)

Basis-A
(cc-pVDZ)

Basis-B
(cc-pVTZ)

Basis-C
(aug-cc-pVDZ)

MRCCSD

5σg 13.827 14.149 13.995

1πu 16.746 17.048 16.915

4σu 19.487 19.759 19.678

MRCCSD+T∗(3)

5σg 13.616 13.967 13.837

1πu 16.847 17.137 17.092

4σu 20.030 20.274 20.293

MRCCSD+T∗ − a(4)

5σg 13.458 13.763 13.642

1πu 16.559 16.773 16.769

4σu 19.170 19.357 19.498

MRCCSD+T∗ − b(4)

5σg 13.663 13.988 13.865

1πu 16.766 17.026 16.995

4σu 19.424 19.653 19.769

MRCCSD+T∗(4)

5σg 13.575 13.903 13.773

1πu 16.716 16.968 16.936

4σu 19.336 19.554 19.671

Experimental Ref. [56]

5σg 14.0142 ± 0.0003

1πu 16.5

4σu 19.7

For BeO, the highest MO is of π symmetry. The IPs of the highest 1π and the nest highest 4σ
orbital are given in the Table 3.

We see in this case the larger effect of triples at third order. The IPs increase compared to
the SD results and then the partial fourth order triples bring them back towards the FS-CCSD
calculations. This is seen for all three cases. Comparing with the full results, we clearly see in this case,
MRCCSD+T∗ − a(4) results are quite sufficient in providing results close to the full. T∗ − b(4) makes
marginal changes. The trend is seen for all three basis sets, cc-pVDZ, cc-pVTZ, and aug-cc-pVDZ basis.
Comparison of cc-pVDZ and aug-cc-pVDZ, we also find the negligible contribution of diffuse functions.

As a final example, we discuss IPs of CH+. There were earlier studies on the stability of CH-dication,
many of which showed the repulsive nature of the bonding. Calculations by Wetmore et al. [53] using
a multi-reference configuration interaction model with dzp basis showed a shallow potential well of
a very small depth (0.01 eV) trapped behind a slight potential barrier in the ground state curve of
CH2+. The dip was caused by a strong interaction with the second excited state (C2+ + H) of the same
symmetry. It was, however, too shallow to explain and support the existence of a metastable dication
and, in fact, disappeared with a slightly larger basis set. We recomputed with somewhat larger basis
using the FS-CC method and observed a very small dip [5Total energy of CH-dication was computed
by adding the IP value to the SRCC ground sate energy of CH+. In that sense, the calculation of IP was
used to explain the binding of a radical. The calculation of potential energy surface (PES), however,
needs theories, which are of Hilbert-space type, but FS theory can be used to throw some light. In this
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example, we do not wish to generate PES, but calculate the lowest IP of CH+ at three bond distances to
see how they change with the triples using cc-pVTZ and cc-pVDZ basis. The results are presented in
Tables 4 and 5, respectively. We see from Table 4 that the IP for each of the distances decreases with the
triples at the third order as well as various partial fourth order schemes, compared with the MRCCSD.
The oscillating character of the partial fourth order schemes is not seen in this case. This indicates that
energy of the CH-dication will be less as triples are added to the MRCCSD. This, however, does not
indicate stronger binding, since we have not computed the full PES, computation of which is outside
the scope of the present paper. Further, the results of IP decrease with stretching from 1.8 a.u. to 2.0
a.u. For the cc-pVDZ basis reported in Table 5, we find similar trends, except that there is a slight
oscillation between MRCCSD +T* − a(4) and T* − b(4) results. For this small basis, for comparison,
we have presented full CI results. The general agreement is observed. What is of significance, however,
is that T∗ − a(4), which is computationally far less expensive, is sufficient for this case.

Table 3. Vertical IPs of BeO using various basis sets.

METHODS Orbital
RESULTS (eV)

Basis-A
(cc-pVDZ)

Basis-B
(aug-cc-pVDZ)

Basis-C
(cc-pVTZ)

MRCCSD
1πu 9.786 9.927 9.921

4σu 10.816 11.005 10.962

MRCCSD+T∗(3)
1πu 10.358 10.529 10.429

4σu 11.681 11.879 11.744

MRCCSD+T∗ − a(4)
1πu 9.646 9.648 9.649

4σu 10.539 10.556 10.540

MRCCSD+T∗ − b(4)
1πu 9.888 9.909 9.934

4σu 10.810 10.853 10.859

MRCCSD+T∗(4)
1πu 9.760 9.800 9.934

4σu 10.607 10.684 10.663

Experimental Ref. [57]
1πu 10.10

4σu 10.40

Table 4. Vertical IP of CH+ (lowest) in cc-pVTZ basis in eV.

IP
(eV) Methods

Bond
Distance (a.u.) MRCCSD MRCCSD+T*(3) MRCCSD+T*

−a(4) MRCCSD+T*
−b(4) MRCCSD+T*(4)

1.8 28.580 28.363 28.040 28.042 27.865

1.9 28.267 28.057 27.657 27.650 27.470

2.0 27.396 27.734 27.256 27.240 27.058

Table 5. Vertical IP of CH+ (lowest) in cc-pVDZ basis in eV.

IP (eV) Methods

Bond
Distance

(a.u.)
MRCCSD MRCCSD+T*(3) MRCCSD+T*

−a(4) MRCCSD+T*
−b(4) MRCCSD+T*(4) Full CI (FCI)

1.8 24.594 24.581 24.550 24.575 24.549 24.528

1.9 24.424 24.409 24.377 24.403 24.376 24.354

2.0 24.245 24.230 24.195 24.224 24.196 24.189
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We now look at the computational cost of different fourth order schemes. We note that the
schemes of third order and fourth order triples are calculated sequentially in the order MRCCSD+T*(3),
MRCCSD+T*− a(4), MRCCSD+T*− b(4), and MRCCSD+T*(4). Naturally computing times progressively
go up. All of these scale as N7. However, third order triples are calculated first and thus run fast.
These also have very few diagrams. Essentially, it means that the prefactor is quite small. The next
scheme computed is T∗ − a (4), followed by T∗ − b(4) and full fourth order. Clearly, the computational
time required goes in the same order. However, it is important to note that in terms of diagrams, the two
latter schemes T∗ − b(4) and full fourth order have more in number. Typical computing time to calculate
T*(4) takes at least 2 to 3 times the time that is taken for T* − a(4) for the molecules that we presented.
This will scale even worse as we go for larger molecules. Exact computing times are not relevant yet,
since the code is unoptimized. The prefactor for coding the diagrams of T* − a(4) is much smaller
compared to the prefactor for additional diagrams of T*− b(4). Although T*− a(4) results, by themselves,
are not sufficient, these will still turn out to be computationally optimum. Hence, we conclude that this
itself is a promising candidate for approximate inclusion of fourth order triples from the efficacy of
computational time. However, the approximations MRCCSD+T* − a(4) and MRCCSD+T* − b(4) have
the limitations in reproducing the full fourth order values, as is seen in the cases of N2 and CO.

4. Conclusions and Perspectives

Analysis of the results has pointed out that the MRCCSD+T∗ − a(4) scheme, has come out
as a promising candidate a search of computationally least expensive partial fourth order scheme.
With some limitations, it provides results in agreement with the full fourth order and experiments.
Moreover, the present partial fourth order triples schemes stimulate the advancing of the diagrammatic
bondonic formalism featuring the compact representation of the chemical bond dynamics, here applied
on vertical ionization schemes, while opening further challenging in treating exotic or bigger molecules
with the aid of diagrammatic perturbation theory for many-states.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/17/
6199/s1.
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