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Abstract: Immunosuppression at tumor microenvironment (TME) is one of the major obstacles
to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated
macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor
development including general immunosuppression, which can be identified in terms of high
expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage
sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory
macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing
to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal
and tumor cells types, are emerging as key mediators of the cell to cell communication and have
been shown to have a role in the modulation of immune responses in the TME. Recent studies
demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype
of EVs of endosomal origin of 30-150nm in diameter. This characteristic renders sEVs an ideal
tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review,
we report the most recent literature data highlighting the critical role of TAMs in tumor development,
as well as the experimental evidences that has emerged from the biochemical characterization of sEV
membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME
by endogenously engineered sEVs for a new therapeutic approach against solid tumors.

Keywords: tumor-associated macrophages; tumor microenvironment; macrophage polarization;
mannose receptor; exosomes; extracellular vesicles; HIV-1 Nef

1. Introduction

Both immunosuppression and genetic escape are formidable weapons through which tumors
can elude host immune surveillance. Solid tumors develop in a quite complex context, referred
to as tumor microenvironment (TME) [1,2], which is composed of both cellular and non-cellular
elements, usually resulting in an immunosuppressive behavior. Counteracting such a general effect
would favor both spontaneous and therapeutic anti-tumor immunity, hence critically contributing to
control tumor cell growth. Therefore, subverting TME immunosuppression represents a major goal for
anticancer immunotherapies.
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Both normal and tumor cells constitutively release membrane-bilayered vesicles, commonly
referred to as extracellular vesicles (EVs) [3,4]. They differ in the mechanisms of biogenesis and
secretion, giving rise to the generation of a heterogeneous population of vesicles with different sizes
and contents [5,6], which include small EVs (sEVs) or exosomes and microvesicles or ectosomes.
Exosomes are vesicles of 30-150 nm diameter generated by inward budding of endosomal membranes
to form intraluminal vesicles that accumulate in intracellular organelles called multivesicular bodies
(MVBs). MVBs ultimately fuse with the plasma membrane, thereby releasing intraluminal vesicles into
the extracellular environment (Figure 1). On the contrary, ectosomes are 100-500 nm vesicles shed
by direct budding from the plasma membrane [7,8]. Different types of EVs often show overlapping
features that make difficult to obtain relatively pure preparations when purified from cell-conditioned
media or biological fluids. In this review, we will use the term sEV to refer to EV types co-isolated by
typical purification methods and exosomes to distinguish EV whose subcellular biogenesis strictly
derives from multivesicular bodies/endosomes [8].

Figure 1. Electron microscopy of multivesicular bodies (MVB) and small extracellular vesicles (sSEVs)

(a) TEM micrograph of multivesicular bodies with intraluminal vesicles in Mel501, a melanoma cell
line (b) SEM (Scanning Electron Microscope). Micrograph of sEVs purified from conditioned medium
of Mel501 cells by differential centrifugations. Courtesy of Francesca Iosi and the Microscopy Area of
the ISS Core Facilities.

SEVs carry a complex cargo of nucleic acids, proteins, and lipids that largely reflects the
characteristics and the functional state of the cells they originate from, and that will be delivered to
neighboring or distant cells [9,10]. As a result, the functions of those recipient cells will be modulated
by sEVs in a manner that is strictly dependent on the nature of producer cells, making sEVs central
players in intercellular communication and reprogramming of target cells [11]. Ectosomes generation
is a much less known process that requires the accumulation of their cargo at the cytosolic surface of
specific plasma membrane microdomains [7,12].

SEVs-mediated transfer of molecular and genetic material from one cell to another, either locally
or at long distance, is a key contributor to the mechanisms of intercellular communication involved
in various physiological and pathological conditions [13-15]. Moreover, for these reasons, sEVs are
now considered powerful tools for clinical applications, including advanced diagnostics, therapeutics,
and regenerative medicine [16-19].

The molecular composition of sEVs is determined by the cell type of origin as well as by
the intracellular pathway followed en route to their release into the extracellular space [8,20,21].
This heterogeneity confers to sEVs distinct properties, such as tropism to certain organs, and uptake by
specific cell types. In the case of tumor-derived sEVs, these events often lead to the impairment of
immune responses at TME [22], also favoring pre-metastatic niche formation and metastasis [23,24].
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In tumor cells, sEV biogenesis and ultimately sEV composition is a complex and regulated
process, which involves many different molecules associated with the sEV biogenesis pathway [4,25].
Whatever the cell type of origin, sEVs can be characterized, although not exclusively, by the presence
of different types of cell surface proteins, such as tetraspanins, (i.e., CD9, CD81, CD63), ESCRT
(endosomal sorting complex required for transport) proteins (Alix and TSG101), integrins, RNA,
DNA, lipids such as ceramide and the atypical phospholipid, lysobisphosphatidic acid (LBPA) [26],
and oligosaccharides [27].

TME exerts a key influence on tumor cells, and the resulting sEVs, responsible for proteins
and genetic material transfer from primary tumor cells, play a crucial role in metastatic colonization
and in the formation of the pre-metastatic niche, driving recipient cells to acquire a pro-tumorigenic
phenotype [23,28]. The selective conditions present in TME, such as the generation of a hypoxic [29]
and acidic environment [30], strongly influence sEV secretion by tumor cells, thus contributing to the
malignant tumor phenotype. Furthermore, sEV membrane composition reflects TME changes and
conceivably influence and control the different mechanisms of entry or interaction of sEVs with target
cells supporting tumor growth [31,32].

Interestingly, it has been described that major players of immunosuppression at the TME, i.e.,
immunosuppressive tumor-associated macrophages (TAMs), express on their surface high levels of
mannose receptor (MR, CD206) [33]. The MR is an endocytic receptor with a high affinity for high
mannose oligosaccharides, glycans highly enriched on the surface of sEVs [34]. In this review, literature
data regarding both TAM functions and the molecular structure of sEVs are reviewed. In addition, we
propose an original way to exploit typical molecular signatures of both TAMs and sEVs to counteract
the immunosuppression at the TME.

2. The Tumor Microenvironment

In solid tumors, cancer cells are embedded within a milieu that favors their proliferation and
comprises both cellular and non-cellular components. Fibroblasts, endothelial cells, and essentially all
types of immune cells are part of the TME [35,36]. Among non-cellular components, tumor-derived
sEVs play a key role in immune suppression. TME composition can vary among different tumors,
and between primary and metastatic neo-formations in the same patient, and is tightly associated with
the clinical outcome of cancer patients.

TMEs can be categorized based on different criteria. In terms of abundance of tumor-infiltrating
cytotoxic CD8+ T lymphocytes (CTLs), TMEs can be distinguished in either hot/inflamed, with the
highest content of CTLs, or cold/desert, with a virtual absence of infiltrated CTLs [37]. TME core
infiltrated by CTLs represents a favorable condition for an effective anticancer immune response, both
spontaneous and induced by immunotherapeutic interventions.

TME is populated by different kinds of immune cells having immune suppressive actions.
Among these are myeloid-derived suppressor cells, neutrophils, CD4+ Treg lymphocytes,
and immunosuppressive M2-like TAMs [38]. These latter cells can represent up to 50% of the
tumor mass, and play a key role in the immune evasion at TME by secreting proteases, angiogenic
factors, and pro-tumoral products. The functional plasticity of TAMs modifies their phenotype and
activity in response to a great number of microenvironmental stimuli, although the mechanisms that
determine the different polarization states are still to be elucidated [39]. These different functional
states often coexist and can significantly vary between different tumors [40,41]. TAMs can also dispose
at the tumor margin, where they can interact with CTLs, thus inhibiting their infiltration towards
tumor cells [42]. For all these reasons, immunosuppressive TAMs have been identified as a major
cell target for novel designs of cancer immunotherapies focused on improving the overall anti-tumor
immune response. A schematic representation of cells populating TEM is illustrated in Figure 2.
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Figure 2. Schematic representation of cells populating the tumor microenvironment (TME).

3. The TAM-Mediated Immunosuppression at the TME

A large number of macrophages infiltrate solid tumors, thereby influencing several aspects of
tumor development [43]. The most relevant effects include suppression of anticancer immunity;,
angiogenesis promotion, and support for metastasis. Macrophages are recruited at TME, in response
to the secretion by tumor cells and other TME cell types, of a number of chemoattractant soluble
factors, including vascular-endothelial growth factor A (VEGF-A) [44], chemokine ligand 2 (CCL2) [45],
and colony-stimulating factor 1 (CSF-1) [46].

TME-populating macrophages can be schematically distinguished in M1- and M2-like
macrophages. M1-like macrophages show both pro-inflammatory and immune-stimulatory properties,
thus exerting an anti-tumor function. On the other hand, M2-like macrophages favor tumor angiogenesis
and immunosuppression. Such a distinction, although useful from both therapeutic and diagnostic
points of view, is now outdated, due to the identification of a large number of intermediate subclasses,
i.e.,, up to 19 [47]. They have been identified through most recent transcriptomic techniques, e.g.,
single-cell mass cytometry and single-cell RNA sequencing [48-50], and in vivo represent a continuum
of functional phenotypes with intermediates showing overlapping features.

TAMs can be characterized by the expression of different surface markers [47,51], distinct metabolic
changes [52,53], and a broad transcriptional repertoire with the involvement of key transcription
factors, which can be activated by the environmental signals received. In particular, members of the
signal transducer and activator of transcription (STAT), peroxisome proliferator-activated receptors
(PPARSs), interferon regulatory factor (IRF), and nuclear transcription factor-kB (NF-«B) families are
essential for macrophage polarization toward the M1 profile [41,54,55].

M2-like TAMSs contribute to tumor angiogenesis by secreting soluble factors inducing endothelial
cell proliferation, including VEGF-A, interleukin (IL)-1§3, IL-6, tumor necrosis factor (TNF)x, CXCLS,
and fibroblast growth factor (FGF)-2 [56]. In particular, the secretion of VEGF-A by perivascular
TAMSs can increase vascular permeability and access of tumor cells to peripheral blood circulation [57].
On the other hand, the production of proteases, e.g., matrix-metalloproteases, induces degradation of
extracellular matrix and the consequent liberation of embedded soluble factors released by both cancer
and stromal cells having pro-tumoral effects and favoring metastasization.

TAM-mediated immunosuppression at TME is essentially mediated by three concurrent
mechanisms: (i) Release of soluble immunosuppressive factors, e.g., IL-10, CCL22, and transforming
growth factor (TGF)-« as well as factors recruiting regulatory T cells (Treg) [58]; (ii) expression of
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ligands for lymphocyte suppressor factors PD-1 and CTLA-4, i.e., PDL-1 and CD80, as well as other
checkpoint inhibitors with similar functions, including B7-H4, V-domain Ig suppressor of T cell
activation (VISTA) [59], and vascular endothelial receptor (CLEVER) [60], and (iii) starving the TME of
L-arginine, i.e., an essential factor for T-cell activity, through the release of arginase-1 [61]. Figure 3
illustrates the principal mechanisms of TAM mediated immunosuppression at the TME.

TAM-Mediated Immunosuppression at the TME

Tumor _ _ TAM

VEGF-A matrix-metalloproteases IL10 Expression of:
IL-1B cathepsins TGF-p PDL-1
IL-6 CCL22 CD80
TNF-a t arginase-1 B7-H4
CXCL8 VISTA
FGF-2 Tumorigenesis, CLEVER

1 ) metastatization ) 1

Tumor growth Immunosuppression
angiogenesis
Figure 3. Principal mechanisms of tumor-associated macrophage (TAM) mediated immunosuppression
at the tumor microenvironment (TME).

The multiple immunosuppressive signals at play within the TME greatly reduce the efficacy
of current immunotherapies. Therefore, new strategies to effectively reprogram the various
immunosuppressive cell types at the TME are urgently needed.

4. Re-Programming of TAMs

Immunosuppressive TAMs represent a privileged therapeutic target for the treatment of solid
tumors, especially in the case immune checkpoint blockers (ICBs) are used. Given the enormous
therapeutic value of TAMs re-education towards M1-like macrophages to promote tumor regression,
much attention has focused on effective strategies aimed at targeting TAMs, including the blockade
of the M2 phenotype, enhanced activation of M1 macrophages and reprogramming of TAMs toward
M1-like phenotype [58,62-65]. Many of these different approaches against immunosuppressive TAMs
have been summarized in Table 1 and strategies directed at TAM reprogramming illustrated in Figure 4.
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Table 1. Selected strategies to target tumor-associated macrophages (TAMs).

Mechanism of Action Active Agent Vehicle Carrier Target References
. . . Shigella Flexneri
Depletion of M2 TAMs Shiga toxins attenuated strain TAMs [66]
Immunotoxins TAMs Receptors [67,68]
Bisphosphonates (e.g., .
clodrolip, zoledronic acid) Liposomes TAMs, Kupffer cells [69,70]
Trabectedin TAMs [71]
Tyrosine Kinase Inhibitors endothelial and myeloid [72,73]
(e.g., Dasatinib, Bosutinib) cells in TEM, TAMs "
Inhibition of CCR2 inhibitors;
circulating monocyte anti-CCR2/CCL2 blocking TAMs CCR2 [45,74-76]
recruitment into tumor antibodies
Antagonists of
CXCL12/CXCR4 axis TAMs CXCR4 77,78
anti-CSF-1R antibody TAMs CSF-1R [79,80]
neutralizing CD11b CD11b on Myeloid Cells [81,82]
antibody
Blockade of M2 Tyrosine kinase inhibitors or )
Phenotype drugs blocking STAT3 TAMs STAT3 [83,84]
drugs blocking STAT6 TAMs STAT6 [85]
Enhanced Activation . . . .
of M1 Macrophages Th1 cytokines like IFN-y TAMs STAT1 stimulation [86,87]
metformin TAMS AM.PKOd [88]
stimulation
toll-like receptor agonists, . .
CpG-ODNSs; PI3Ky deletion TAMs NF-kB stimulation [89-91]
Reprogramming TAMs
Toward M1-Like mRNAs; miRNA Targeted TAMs [92,93]
Nanocarriers
Phenotype
SiRNA Different types of TAMs [94-96]
Nanoparticles
anti-CD40 antibody TAMSs CD40 [97-99]
anti-MARCO antibody TAMs MARCO [100]
Trastuzumab-modified
gefitinib/vorinostat Mannosylated TAMs MR [101]
Liposomes
Drug free Mapnosylated TAMs MR [102]
Liposomes
RP-182 Peptide TAMs MR [103]

AMPK«1, AMP-activated protein kinase; CCL2, C—C chemokine ligand 2; CCR2, C-C chemokine receptor type
2; CSF-1, Colony-Stimulating Factor 1; CSF-1R, colony-stimulating factor 1 receptor; CXCL12, C-X-C motif
chemokine 12; CXCR4, C-X-C chemokine receptor type 4; CpG-ODN, unmethylated cytosineguanine (CpG)
oligodeoxynucleotides; IFN-y, interferon gamma; MARCO, macrophage receptor with collagenous structure; MR,
mannose receptor/CD206; NF-«kB, nuclear factor kappa B; PI3Ky, phosphoinositide 3-kinase; STAT, signal transducer
and activator of transcription.

Promising results have been obtained with direct activation of M1-like macrophages by Th1
cytokines like IFN-y [87], and by targeting toll-like receptors (TLR) and/or CD40 with agonists and
monoclonal antibodies [97-99]. However, the onset of systemic inflammation limited the therapeutic
efficacy of these approaches in vivo, and additional investigations are ongoing to circumvent this
hurdle. In any case, considering the functional plasticity of macrophages, re-educating M2- versus an
M1-like macrophage phenotype currently appears the most attractive therapeutic option.
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Figure 4. Scheme of current strategies for tumor-associated macrophage (TAM) reprogramming,.

A major hindrance to effective targeting of immunosuppressive TAMs is represented by the
scarcity of specific protein markers expressed on M2 macrophages. Some potential targets, whose
expression also correlates with poor prognosis, have been investigated. Among them, the selective
targeting of MARCO (macrophage receptor with collagenous structure) with monoclonal antibodies
has been recently used to promote a switch to an M1-activated phenotype [100].

Increasing evidence suggests that a valuable alternative is represented by targeting the MR, which
is highly expressed on M2, but not M1 macrophages [92,103-105].

5. The Mannose Receptor in M1 Polarization

MR is expressed on TAMs where is a prototypical marker of M2-type activation. It is also expressed
on the surface of immature dendritic cells (DCs), liver sinusoidal endothelial cells, and other tissue
macrophages. Earlier studies have demonstrated that MR expression is strongly down-regulated by
IFN-y [106], and upregulated by interleukin-4 (IL-4) [107]. The MRisa 175 kDa Typelintegral membrane
protein that belongs to the family of C-type lectin receptors and binds glycoconjugates terminated in
mannose, fucose, or N-acetil-f3-p-glucosamine (GlcNAc) in a calcium-dependent manner [108-110].
The receptor contains three distinct extracellular domains, i.e., an N-terminal cysteine-rich domain (CR)
that binds sulfated carbohydrates, a fibronectin type II domain (FNII) that binds collagen, and eight
tandem C-type lectin carbohydrate-recognition domains (CRDs) [111,112]. CRDs have only weak
affinity affinities for single sugars, and several CRDs need to be clustered to achieve high-affinity
binding to oligosaccharides. This clustering allows for the internalization of mannosylated proteins
and other exogenous molecules, including allergens and microbial products.

MR is a highly effective clathrin-dependent endocytic receptor that constantly recycles between the
plasma membrane and the early endosomal compartment [111]. Most part of MRs is intracellular, while
only ~15% of the cellular pool can be found on the cell surface. Like other members of the C-type lectin
receptor family, the MR undergoes conformational changes upon ligand binding or as pH decreases in
intracellular compartments [111,113]. Once acidification takes place in the endosomal compartment,
the MR dissociates from its ligands, and the empty receptor recycles back to the plasma membrane.

Several approaches have been adopted to target the MR and selectively deliver therapeutic
nanoparticles. Among these, drug-free mannosylated liposomes have been shown to induce effective
anti-tumor activity by enhancing the expression ratio of CD86/MR [102]. In another study, mannosylated
nanoparticles suitable for intracellular delivery of drug carriers have been shown to selectively target
with high specificity MR expressing macrophages [104].
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MR conformational changes that occur upon ligand binding have been recently exploited to target
M2 macrophages and induce reprogramming toward M1 phenotypes. For instance, precision targeting
with short peptides showed some potential for the intracellular delivery of therapeutically relevant
molecules [114]. In addition, a very recent report showed that direct binding of MR with a synthetic
peptide (RP-182), i.e., an analogue of naturally occurring antimicrobial peptides, activates phagocytosis
and autophagy in M2-like macrophages, reverting these cells into an anti-tumor M1-like phenotype
with increased M1 cytokine production and phagocytosis of cancer cells [103].

On the other hand, also cell-secreted sEVs can be considered attractive candidates to specifically
target M2-like macrophages via the MR, since they expose high mannose and other classes of N-linked
oligosaccharides on their surface [115,116].

6. Extracellular Vesicles for Anti-Tumor Therapy

Pioneering studies have shown that sEVs secreted by DCs pulsed with cancer peptides successfully
eradicate established tumors in mice [117]. Furthermore, tumor-derived EVs are a source of neoantigens
that, once internalized by DCs, could cross-prime CD8+ T cells and lead to tumor rejection [118]. Since
these early studies, the field of sEVs-based cancer therapeutics has attracted many efforts, and sEVs
have emerged as promising tools for targeted drug delivery. Despite a growing interest in these
nanovesicles as natural carriers, there are still many open questions that need further investigation.
For example, specific recognition by target cells is of fundamental importance for an effective delivery
of bioactive molecules. EVs uptake may occur via receptor-mediated endocytosis or phagocytosis, or
direct fusion with the plasma membrane. Some studies have pointed at integrins [24] and scavenging
receptors [119] as mediators of EVs targeting, but current knowledge on this matter is rapidly evolving
and has been recently comprehensively reviewed [5,7,120-122].

The different modes of sEV uptake may result in distinct localization and functional effects of
the sEVs components, but it is still unknown whether a specific route of entry is to be preferred for a
successful transfer of EVs cargo. Thus, understanding through which mechanisms sEVs deliver their
content into target cells is a central point that needs to be further elucidated. To the best of current
knowledge, while either non-selective uptake or direct fusion with the plasma membrane of target
cells seem to be the preferential mechanisms of bulk sEV incorporation (Figure 5) [123], alternative and
more specific routes of uptake may depend on the characteristics of surface components of both sEV
and target cells.

2 HO b Me665/1

Figure 5. Fluorescent sEVs uptake by different cell lines. Confocal fluorescence microscopy images
of green fluorescent sEVs derived from melanoma Me665/1 cells transferred on (a) CHO cells and
(b) Me665/1 cells in nonspecific conditions [66]. Blue-fluorescent nuclei are stained with DAPI.
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Tumor-derived EVs can be efficiently taken up by DCs for antigen processing and cross-presentation
to tumor-specific CTLs [124]. Immature DCs (iDCs) internalize EVs more efficiently than mature DCs,
whereas mature DCs retain more EVs on the cell surface [125]. The surface of iDCs harbors sugar-binding
C-type lectin receptors (CLRs) [126,127], which is a characteristic shared with M2-like macrophages.

Glycomic studies conducted to date demonstrate that surface glycoprofiles of sEVs contain high
amounts of mannose and other classes of N-linked oligosaccharides [27,34,128,129] making them
suitable ligands for the MR. Recently, it has also been shown that mannose-modified serum sEVs
display elevated uptake by murine DCs [116]. This evidence, together with a number of studies
showing that mannosylation of both liposomes [102] and synthetic nanocarriers [130,131] enhance
cellular uptake by M2 macrophages, inducing stimulation and polarization of macrophages toward
the M1 phenotype, point to sEVs as powerful ligands of M2 macrophages. Furthermore, the affinity
of EVs membrane components (i.e., proteins, lipids, and glycans) for certain tissues greatly affects
biodistribution of EVs in vivo, thus, encouraging studies aimed at altering the surface of EVs to
improve targeting to selected organs. Many different strategies have been adopted, but there is now
accumulating evidence that carbohydrates on the vesicle surface participate in the recognition and
uptake of EVs by phagocytes. Interestingly, manipulation of surface glycans on EVs either by removal
of sialic acid [132] or by treatment with N-glycosidases [133,134] alters the uptake capacity of different
cells. In the first case, the change also affects the in vivo biodistribution of sEVs showing accumulation
of desialylated sEVs in the lungs. Altogether, these results point to the importance of N-glycosylation
in cellular uptake, but since different cell types respond differently to glycosylation changes appears
evident that the cell to be targeted, with its endowment of specific protein receptors, represent the
cornerstone of receptor ligand recognition.

7. Molecular Basis of TAM Re-Programming by Engineered sEVs

The subversion of TAM-mediated immunosuppression at TME through macrophage transcriptional
reprogramming represents a quite attractive option for anticancer combined immunotherapy. Like normal
cells, tumor cells also constitutively release sEVs, which interact primarily with TME cell constituents.
SEVs, as naturally occurring vesicles, have a low intrinsic immunogenic profile, are able to avoid, at least in
part, the degradative pathway and possess the ability to overcome the blood-brain barrier. Consequently,
they have emerged as an important means to deliver therapeutic agents. In this context, engineering
tumor-derived sEVs with molecules inducing an inflammatory-like macrophage phenotype would be
instrumental in alleviating the immunosuppression at TME. Over the past few years, several engineering
strategies have been devised to manipulate tumor-derived sEVs in order to induce cellular and innate
immunity. SEV engineering can be carried out either at the level of producer cells or directly on purified
sEVs. The different approaches used mostly depend on cargo properties, such as hydrophilicity,
hydrophobicity, and molecular weight, as each method has a different loading capacity. For example,
chemicophysical methods like electroporation are widely used for loading relatively large molecules.
such as siRNA or miRNA into sEVs [19]. Particularly for cancer research, the observation that exosomal
miRNAs effectively engage target mRNA and suppress gene expression in recipient cells has been
heavily favored. Due to the availability of various cellular engineering methods, different types of
RNAs that are released via sEVs have also been exploited and recently reviewed [11].

During the past decade, many efforts have been devoted to transfect sEV-producing cells
with plasmids encoding protein sequences that, once uploaded in the nanovesicles, are able to
alter the phenotype of target cells [135-138]. However, a method to target M2 macrophages with
sEVs capable of inducing their reprogramming to M1 anti-tumor phenotype is not yet available.
One major hurdle in EVs research for an effective therapeutic application is represented by the
lack of optimized isolation, characterization and quantification procedures. Various purification
techniques, such as differential ultracentrifugation, density gradients, precipitation, filtration, size
exclusion chromatography, and immunoisolation are currently used to obtain less heterogeneous
sEVs preparation; however, quantification often relies on the total protein content of EVs. Fluorescent
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labeling techniques are more accurate and have the main advantage that track EVs in vivo [139,140].
The different approaches for TAMs reprogramming by engineered EVs are schematically illustrated in
Figure 6.

Molecular Basis of TAM Re-Programming by Engineered EVs

EV M2 TAM
» Receptor mediated
1 endocytosis
WU » Direct fusion
Q—‘ mRNA I_';_;
= | miRNA 11‘
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Figure 6. TAMs reprogramming by engineered EVs.
8. HIV-1 Nef Protein as Effector of TAM Reprogramming

A plausible candidate for reprogramming M2 macrophages is the Human immunodeficiency
virus (HIV)-1 Negative Regulatory Factor (Nef) protein [141], a 27 kilodalton (kDa) scaffold protein,
which lacks enzymatic activities. After synthesis at free ribosomes, Nef reaches both intracellular
and plasma membranes with which it tightly interacts through its N-terminal myristoylation. Nef
acts as a scaffold/adaptor element in triggering activation of signal transducing molecules like p21
PAK-2, NF-kB, STATs, ERK1/2, Vav, and Src family kinases. In most cases, signal activation occurs
upon Nef association with lipid raft microdomains at cell membranes [142-144]. The fact that also sEV
membranes are enriched in lipid raft microdomains explains why Nef can be found in EVs [145-149].

Cumulate literature data demonstrate that the presence of Nef inside macrophages induces
a strong pro-inflammatory response. In particular, Nef switches on the transcription of many
inflammatory genes, as well as the release of inflammatory factors like CCL3, CCL4, IL-1p3, IL-6,
TNF-« [150,151], and interferon gamma (IFN)-y [152]. This potent pro-inflammatory response is
mediated by the activation of several signal transduction molecules, including STAT-1, 2, and 3, NF-kB,
JNK, ERK1/2, and MAPK [153,154]. The inflammatory effects of Nef on macrophages depends on four
glutamate-acidic cluster domain located at 62-65 amino acid position [155].

Data from many independent investigation groups strongly support the idea that Nef associates
with EVs at low levels [156,157]. Conversely, we identified a Nef mutant incorporating in sEVs/EVs
at quite high levels [158]. This Nef mutant (referred to as Nef™ ") is defective for the most part of
Nef functions, including down-regulation of cell membrane receptors, Nef-associated kinase (NAK)
activation, an increase of HIV expression [159]. Nevertheless, it maintains an unaltered acidic cluster
domain that correlates with the induction of cell activation in antigen-presenting cells when it is
delivered by nanovesicles [160].

Considering this evidence, one may hypothesize that the delivery of Nef™"-engineered EVs inside
M2-TAMs would be instrumental in re-educating macrophages at TME from an M2-like to an M1-like
phenotype. In the case of solid tumors, this design could be applied through a quite simple strategy,
i.e., tumor cell engineering for Nef™ut expression through retroviral vector-mediated transduction.
In this way, only actively replicating cells at the TME, hence preferably tumor cells, are expected to
be transduced. Nef-engineered tumor-derived sEVs may diffuse within TME, thereby preferentially
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entering MR positive TAMs in view of the mannose expressed on the sEV surface. Once internalized
by macrophages, Nef™ ! might switch on intracellular signals—ultimately leading to the release
of pro-inflammatory factors. These factors might act in an autocrine/paracrine loop to induce the
reprogramming of macrophage transcriptional profile toward the M1-like phenotype (Figure 7).

Nef-sEV @
Nef-RV ®

40 _ ° K-
ﬁ?\\ O f \\JN(@ - pola-ll-:.\zh;tion
@ Y% = =)
0o &

-

dead tumor cell

N inflammatory N
= '\N_® soluble factors
s MR/CD206

Figure 7. Scheme of the proposed mechanism for TAM reprogramming. Tumor cells are transfected
with retroviral vectors expressing Nef™ ! (Nef-RV). Nef-engineered sEVs (Nef-sEV) are then released
into the TME infiltrated with M2 like macrophages expressing the mannose receptor (MR/CD206). MR
mediated uptake of Nef-Sev might induce polarization of M2 into M1 like macrophages—ultimately
leading to the release of pro-inflammatory factors.

Eventually, this mechanism, which essentially hijacks the sEV-mediated intercellular
communication at the TME, is expected to alleviate the immune suppression at the TME, thereby
favoring the action of anticancer adaptive immune responses.

Hopefully, once supported by experimental confirmation, this design would have a therapeutic
utility in the battle against solid tumors.

9. Conclusions

Immunosuppression at TME protects cancer cells from both spontaneous and artificially generated
host immune responses. Hence, subverting immunosuppression should be considered a priority
for any anticancer immunotherapeutic strategy. Even if M2-like TAMs are major players, other cell
types contribute to the general immunosuppression at TME, including CD4+ Tregs lymphocytes,
myeloid-derived suppressor cells, and neutrophils [42]. Similar to macrophages, neutrophils can
polarize in pro- and anti-tumor phenotypes, depending on the stimuli they receive at TME. Interestingly,
it has been reported that IFN-y can polarize neutrophils towards an anti-tumor phenotype [161].
Considering the quite high levels of IFN-y transcripts induced by Nef in macrophages, the delivery of
Nef™-engineered, tumor-derived sEVs to M2-like TAMs is expected to have paracrine anti-tumor
effects also on neutrophils that populate the TME.

The strategy we propose is certainly only one of many potential new anti-tumor therapeutic
approaches that the manipulation of sEVs/EVs can offer. The increase in knowledge of the sEV/EVs
biology, mainly regarding the mechanisms of cell entry, will favor the implementation of new and
more efficient therapeutic approaches against tumors and infectious diseases.
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