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Abstract: Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon
healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often
resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively
affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current
treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore,
it is of great importance to identify key molecular and cellular processes involved in the progression
of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration.
To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue
engineering approaches are considered options, though none can yet be considered conclusive in their
reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical
tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to
compare different available tendon in vitro differentiation strategies to clarify the state of art regarding
the differentiation process.

Keywords: in vitro; tendon differentiation; stem cells

1. Introduction

Tendons connect muscles to bones and allow movements. Lesions and inflammation can occur in
tendons because of mechanical stress, aging, genetic predisposition, or lesions and inflammation [1].
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Tendinopathy is term used with refering to tendon disorders, and it is a generic descriptive term for
the clinical condition in and around tendons arising from overuse [1]. The major conditions affecting
tendons are tendinitis and tendinosis; the first is characterized by inflammation and pain, while
the second is probably caused by tendinous degeneration [2]. In tendinopathy, the homeostasis of
the tissue may be deeply affected resulting in permanent changes of the native tendon structures and
mechanics [3]. Spontaneous adult tendon healing results in scar tissue formation and fibrosis, and
it is accompanied by alterations in the biomechanical properties of the tissue. Adult tendons have
a limited natural healing capacity and often respond poorly to current treatments focused on exercise,
drug delivery, and surgical procedures [3]. The incapacity of complete healing derives from the nature
of tendon with its poor cellularity, limited vascularization, and low metabolism [3,4]. The cellular
component of the tendon is very low, and with age, it tends to diminish and change in morphology,
with loss of stemness markers [5–7]. As the tendon is a mechanosensitive tissue and extracellular matrix
(ECM) remodeling is influenced by mechanical stimulation [8,9], prolonged rehabilitation is considered
a valid alternative to surgery that offers great support and is more efficient than pharmacological
therapy. Regeneration, studied in fetal healing, is characterized by restoration of the native structural
and functional properties of the tissue, without scar formation [10]. Therefore, it is of great importance
to identify key molecular and cellular processes involved in the progression of tendinopathies and
in tendon response to them to develop effective therapeutic strategies and drive the tissue toward
regeneration. Unfortunately, the understanding of tendon biology and healing is incomplete, and
the development of innovative treatment modalities is still lagging behind increasing demands [1]. To
treat tendon diseases and support tendon regeneration, cell-based therapy, as well as tissue engineering
approaches, are now considered as potential approaches to reproduce a safe and successful long-term
solution for the full microarchitecture and biomechanical tissue recovery. The first step prior to any
stem cell-based procedure or tissue-engineered approach to improve tendon healing and regeneration
in vivo is the in vitro model. In vitro techniques are fundamental to:

• Identify and/or compare the tenogenic plasticity of different stem/progenitor cell sources,
• Define and drive cell mechanism and environmental conditions leading tenogenesis,
• Control step-wise signaling molecules and pathways,
• Direct stem cell pre-commitment before transplantation (reducing tumorigenic risks with

embryonic stem cells (ESCs), unwilling differentiation path of mesenchymal stem cells (MSCs) or
to increase tissue integration),

• Study the tenogenic properties of stem cells,
• Test teno-inductive properties of new scaffolds,
• Validate biomechanical teno-inductive stimuli.

At this current time, in vitro differentiation techniques are not yet validated. This review aims
to compare available in vitro tendon differentiation strategies to clarify the state of art with respect
to a differentiation process that remains an open biological challenge for researchers, bioengineers,
and clinicians. We will begin with tendon structure, functions, and biology before describing different
sources of stem cells, and finally proceeding with collating the most used tendon-inductive techniques
(hypoxia, physical stimuli, biomaterials, growth factor, and co-culture) (Figure 1).
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Figure 1. In vitro strategies for tendon tissue engineering. Tendon tissue engineering refers to a 
multidisciplinary field that aims at the inducement of tissue repair or regeneration. Therefore, it 
involves the combination of several key factors, such as cells, scaffolds, biochemical and mechanical 
inputs to produce a functional tendon-like construct. Abbreviations. PGA: polyglycolic acids; PLA: 
polylactic acids, PCL: polycaprolactones; PLGA: poly(lactic-co-glycolic) acids; PLCL: poly (lactil-co-
captolactone) acids; ESCs: embryonic stem cells; iPSCs: induced pluripotent stem cells; AECs: 
amniotic epithelial stem cells; AMCs: amniotic mesenchymal stem cells; AFCs: amniotic fluid stem 
cells; UB-MSCs: umbilical cord mesenchymal stem cells; BMSCs: bone marrow mesenchymal stem 
cells; ADSCs: adipose derived mesenchymal stem cells; TPSCs: tendon progenitors stem cells; TGFβ: 
transforming growth factor beta; BMPs: bone morphogenetic proteins; CTGF: connective tissue 
growth factor; FGFs: fibroblastic growth factors; IGF-1: VEGF: vascular endothelial growth factor; 
PDGFs: platelet-derived growth factor. 

1.1. Tendon Structure 

Tendons are fibro-elastic structures that connect muscles to bones or other insertion structures, 
have a high resistance to mechanical loads, and allow the conduction, distribution, and modulation 
of the force exerted by the muscles to the structures to which they are connected. The point of union 
with the muscle is the myotendinous junction, whereas the point of union with the bone is the 
osteotendinous junction or enthesis. Healthy tendons have high strength and minimal elasticity to 
resist mechanical loads. Human tendons rupture happens at 8% strain, while 4% strain produces 
plastic deformation. Tendons are made up of millions of a “base unit”, the fascicle, which consist of 
twisted bundles of collagen fibrils, whose number and thickness determines the final size of the 
tendon [11]. 

1.1.1. Paratenon, Epitenon, and Endotenon 

Tendons are surrounded by a loose areolar connective tissue called paratenon, whose main 
components are type I and type III collagen fibrils, elastic fibrils, and synovial cells lining the inner 
surface of the paratenon. It is elastic, and allows free movement of the tendon with respect to the 
surrounding tissues. 

Figure 1. In vitro strategies for tendon tissue engineering. Tendon tissue engineering refers to
a multidisciplinary field that aims at the inducement of tissue repair or regeneration. Therefore, it
involves the combination of several key factors, such as cells, scaffolds, biochemical and mechanical
inputs to produce a functional tendon-like construct. Abbreviations. PGA: polyglycolic acids;
PLA: polylactic acids, PCL: polycaprolactones; PLGA: poly(lactic-co-glycolic) acids; PLCL: poly
(lactil-co-captolactone) acids; ESCs: embryonic stem cells; iPSCs: induced pluripotent stem cells; AECs:
amniotic epithelial stem cells; AMCs: amniotic mesenchymal stem cells; AFCs: amniotic fluid stem
cells; UB-MSCs: umbilical cord mesenchymal stem cells; BMSCs: bone marrow mesenchymal stem
cells; ADSCs: adipose derived mesenchymal stem cells; TPSCs: tendon progenitors stem cells; TGFβ:
transforming growth factor beta; BMPs: bone morphogenetic proteins; CTGF: connective tissue growth
factor; FGFs: fibroblastic growth factors; IGF-1: VEGF: vascular endothelial growth factor; PDGFs:
platelet-derived growth factor.

1.1. Tendon Structure

Tendons are fibro-elastic structures that connect muscles to bones or other insertion structures,
have a high resistance to mechanical loads, and allow the conduction, distribution, and modulation of
the force exerted by the muscles to the structures to which they are connected. The point of union with
the muscle is the myotendinous junction, whereas the point of union with the bone is the osteotendinous
junction or enthesis. Healthy tendons have high strength and minimal elasticity to resist mechanical
loads. Human tendons rupture happens at 8% strain, while 4% strain produces plastic deformation.
Tendons are made up of millions of a “base unit”, the fascicle, which consist of twisted bundles of
collagen fibrils, whose number and thickness determines the final size of the tendon [11].

1.1.1. Paratenon, Epitenon, and Endotenon

Tendons are surrounded by a loose areolar connective tissue called paratenon, whose main
components are type I and type III collagen fibrils, elastic fibrils, and synovial cells lining the inner
surface of the paratenon. It is elastic, and allows free movement of the tendon with respect to
the surrounding tissues.

The epitenon is a thin connective tissue sheath that surrounds the entire tendon below the paratenon
that contains the vascular, lymphatic, and nervous structures. The epitenon and paratenon together
are often defined as the peritendon.
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The epitenon on its inner surface is in contact with the endotenon, which wraps around the collagen
fibers themselves and contains the blood vessels, nerves, and lymphatics [12].

1.1.2. Tendon Properties

The structure of tendons is organized to provide resistance against longitudinal stresses generated
by muscles. Microscopically, healthy tendons are dense connective tissues predominantly composed
of parallel, closely packed collagen fibers and cells within a well-ordered extracellular matrix (ECM).
Collagen represents the major component (60% to 85% dry weight) of the ECM, collagen type I being
the most abundant and responsible for the fibrous structure [12]. In the tendon, collagen molecules are
arranged in a hierarchical manner. Collagen is alternated with the ground substance, a less fibrous
and high hydrated matrix (Figure 2) [13]. This organization is called fiber composites, and collagen is
structured in an aligned fiber composite in each level of hierarchical levels from nano- to macro-scale.
Collagen type I molecules aggregate to form collagen fibrils, the basic nanostructural tendon unit. In
particular, the soluble form of tropocollagen molecules crosslinks in order to produce insoluble collagen
molecules that gradually aggregate into defined units, which are clearly visible under the electron
microscope and referred to as collagen fibrils. Bundles of fibrils form fibers, which become fiber groups,
into fiber bundles or fascicles. Collagen fascicles are aligned in the direction of force application [14].
Each fascicle is surrounded by a connective tissue compartment (endotenon) to form larger bundles
that are surrounded by another connective tissue sheath (epitenon), where nerves, blood vessels, and
tendon stem/progenitor cells are situated.
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has been cross-sectioned, but it is clearly evident the parallel orientation of the collagen fibers (red 
arrows) (scale bar = 10 μm). Tendon images were obtained by field emission-scanning electron 
microscopy (FE-SEM, mod. LEO 1525; Carl Zeiss, Oberkochen, Germany). Samples were fixed in 4% 
paraformaldehyde (PFA), dehydrated with critical point dryer (mod. K850 Emitech, Assing, Rome, 
Italy), and cut before to be coated with a gold (250 Å thickness) using a sputter coater (mod.108 Å; 

Figure 2. Hierarchical arrangement of the structure of tendons: (a) Scanning electron microscopy (SEM)
of a transverse section of collagen fiber bundles (scale bar = 10 µm); (b) SEM image of longitudinal
collagen bundles in which their parallel arrangement along the longitudinal axis of the tendon is
clearly shown; each collagen bundle is surrounded by the endotenon (scale bar = 20 µm); (c) SEM
image that shows the multiple collagen fiber bundles that make up the tendon. The sample has been
cross-sectioned, but it is clearly evident the parallel orientation of the collagen fibers (red arrows) (scale
bar = 10 µm). Tendon images were obtained by field emission-scanning electron microscopy (FE-SEM,
mod. LEO 1525; Carl Zeiss, Oberkochen, Germany). Samples were fixed in 4% paraformaldehyde
(PFA), dehydrated with critical point dryer (mod. K850 Emitech, Assing, Rome, Italy), and cut before
to be coated with a gold (250 Å thickness) using a sputter coater (mod.108 Å; Agar Scientific, Stansted,
UK), courtesy of Giovanna Della Porta and Electron Microscopy Labs at Dept. of Industrial Engineering,
University of Salerno.
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The collagen fibers are spatially organized in a different manner according to the various
structures that make up a tendon: those in the epitenon have a mainly longitudinal path, while in
the peritenon, they become oblique and transverse, and finally, in the endotenon, they have a complex
three-dimensional structure [15].

The complexity of a tendon structure is very important where its basic function is to transmit
the force created by the muscle to the bone to make joint movement possible. This is determined by
the macro and complex microstructure of tendons and tendon fibers. During the various stages of
the movement, tendons are exposed to longitudinal, transverse, and rotational forces. In addition, they
must be able to withstand the contusion and compression. The three-dimensional internal structure of
the fibers forms a buffer system against the forces of various directions and thus prevents damage and
breakage of the fibers. The alteration of the physical forces that influence a tendon in increasing or
reducing stress or compressive load causes a marked and predictable change in the tendon composition
and structure. In general, stress segments may have greater responsiveness and regeneration than
pressure areas. This may partly explain the clinical problems encountered in the treatment of tendon
injuries within the tendon sheath.

Tendon cells, which are localized in the tendons ECM, are key players in growth, maintenance,
ECM synthesis and turnover, homeostasis, and remodeling in the case of minor or more severe
disturbances to tissue. Mature tendons contain predominantly tenocytes and tenoblasts, which account
for around 90–95% of the cell population [3].

Since there is no specific marker for these cells, the terms simply refer to cells of different shapes [16].
Tenocytes are spindle-shaped, fibroblast-like cells with elongated nuclei and a thin cytoplasm that
form a complex network of cytoplasmic processes that link adjacent cells via gap junctions [5,17]. Gap
junction communication is essential to create networks amongst tenocytes that can exchange ions and
small molecules (<1 kDa), ensuring electrical coupling [18] and facilitating the diffusion of signaling
and nutrients in this poorly vascularized tissue [19]. Gap junction communication in tendons allows
the coordination of synthetic responses to mechanical stimuli (i.e., mechanotransduction). Tenocytes are
terminally differentiated cells typically anchored to the collagen and located throughout tendon tissue.
Fully differentiated tendon cells (tenocytes) are localized between the collagen fibers [1]. The resident
tenocytes finely regulate the anabolic and catabolic processes taking place in the extracellular matrix,
and they mediate tendon repair by a complex modulation of tendon homeostasis. Recently, specific
miRNAs have been described for tendon matrix healing and regeneration [20].

Tenoblasts are relatively round cells with larger ovoid nuclei contained mainly in the endotenon [16].
They are immature tendon cells that give rise to tenocytes. It is suggested that tenoblasts are dominant
in young tendons and that they transform into tenocytes during maturation and aging [21]. Resident
tendon stem/progenitor cells (TSPC) have been recently characterized in tendon tissue of several
species [22–25]. TSPCs represent 1–4% of tendon resident cells, and they exhibit the same characteristics
as adult mesenchymal stem cells (MSC) [25]. TSCPs can be sorted on CD44 positivity [26] and express
MSC markers Stro 1 and CD146 and tenogenic markersα-smooth muscle actin (α-Sma) and tenomodulin
(Tnmd) [21,27,28]. The characteristics of this cell population are affected with age; in particular, their
number and self-renewal potential decrease with time [26]. This could explain the low ability of adult
tendons to spontaneous healing.

1.1.3. Tendon Components

Tendons are a fibrous connective tissue formed mainly by collagen fibers, which determine
mechanical and physiological properties, and elastin fibers that give it elasticity [29]. Collagen and
elastin are immersed in a matrix of proteoglycans and water, where the collagen is 60% to 85% of
the dry mass of the tendon, while the elastin is just 2% [30]. Collagen type I is the predominant protein,
with small amounts (about 5%) of collagen type III and type V.
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(1) Collagen

The basic unit of collagen type I is formed from tropocollagen, which is a protein made by three
polypeptide chains that give rise to a right-handed triple helix. The alpha chains of collagen are
characterized by a specific repeating triplet of amino acids: glycine, proline and 4-hydroxyproline.
The glycine residue, every three positions, allows the spiraling of the chains, while the other two amino
acids stabilize the helix through the formations of hydrogen bonds. The presence of hydroxylysine
is also essential for the formation of intermolecular cross-links, which are responsible for the high
tensile strength of collagen fibers [31]. The hydroxylation of proline and lysine residues, having
fundamental importance for the stabilization of the tendon structure, takes place through specific
enzymes (hydroxylase) utilizing as a cofactor vitamin C, which is an essential micronutrient for
the health of the tendon.

Collagen degradation is provided by collagenases that cut the alpha chain collagen, leading to
despiralization and denaturation of the molecules that occur through cathepsin G, chymotrypsin-like,
and elastase proteolytic enzymes [32].

Collagen type III is the second most abundant matrix collagen protein component, and it regulates
the size of type I collagen fibrils during collagen fibrillogenesis [32]. It could be found also in
the endotenon [33], but its function is still unknown.

In the center of collagen I fibrils, there is collagen type V, which is probably involved in
fibrillogenesis [34]. Low amounts of non-fibrillar collagens are found in tendons such as collagen type
VI in the pericellular matrix. Collagens types XII and XIV provide a connection between type I collagen
and other matrix molecules, and they have a role in the tendon development process [35].

(2) Elastin

Elastin, the most abundant and core protein of elastic fibers, is an essential structural constituent
of tendons responsible for maintaining structural integrity and elasticity during normal function,
allowing the tissue to return to its original shape once subjected to tensile force or strain. In some
tendons, elastin acts to increase the efficiency of locomotion by stretching and storing energy during
landing, which it can release later during the locomotion cycle [36]. In addition, it allows the return of
the tissue to its original shape without energy input, which is extremely important during regeneration.
Elastin is composed of amino acids glycine, valine, alanine, and proline, which form the basic units of
tropoelastin, and they are joined together by covalent bonds to give a strong and elastic structure [29].
Elastogenesis is the process responsible for the formation of elastin within the elastic fibers. However,
even if elastin is considered one of the most stable proteins in the body due to its highly resistance to
proteolytic degradation, its turnover is limited to the physiological reduced postnatal elastogenesis,
making the regeneration of the elastic fibers extremely compromising [37]. Moreover, with aging,
elastin content is reduced, which may contribute to increasing tendon stiffness and reduce its resilience,
leading to a complete tendon regeneration failure [38].

(3) Proteoglycans

The most abundant tendon non-fibrous protein is proteoglycans, and they are the 1–5% of
the tendon dry weight. They have a core protein attached to one or more polysaccharides called
glycosaminoglycan (GAG), which are negatively charged and attract water into the tendon [13].
Decorin is the most abundant proteoglycan and represents 80% of the total proteoglycan. Decorin
has an important role in fibrillogenesis during development and maturation. Together with biglycan
and lumincan, decorin is involved in the early stage of development [39]. Decorin also influences
the mechanical properties of tendons, transferring the load to collagen fibrils and promoting slides
between fibrils [13,40]. Tendons, as well as cartilage and bone, are also rich in other GAGs such as
chondroitin sulfate [41].
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(4) Glycoprotein

Glycoproteins are glycosylated proteins that have a similar structure to proteoglycans with less
branched components. These structural proteins create a “bridge” between the molecules present in
the ECM and the cell component present in the same matrix [4,29]. The most represented glycoprotein
in tendons is cartilage oligomeric protein (COMP). It is located in the inter-fibrillar matrix, but it is not
present in the endotenon [33]. COMP’s role is uncertain; as knockout mice did not show any tendon
defect [42]. Another glycoprotein present in tendons in low quantity is Tenascin-C (Tnc), which is
composed of six subunits bound together by N-terminal inter-chain cross-links. It may have a role
in tendon elasticity, as it is present in the tendon region submitted to high forces, and its levels are
modulated by mechanical stress [43].

1.1.4. Tendon Vasculature

Tendons are vascularized, but less than muscles and ligaments, and the level of vascularization
depends on the structure and site. Nutrients can also reach tendons due to the diffusion of synovial
fluid that provides a significant amount of nutrients for many tendons [44]. The tissues enclosing
and surrounding the tendon provide cellular and vascular factors that are useful for healing and
the nutrition of the internal tissue. During development, tendons are supplied with a rich capillary
network and have high cellular and metabolic activity [5,45]. However, mature tendons are poorly
vascularized [46]. Blood vessels are generally arranged longitudinally within the tendon, passing
around the collagen fiber bundles in the endotenon [5,47].

Angiogenesis is regulated by a series of growth factors and cytokines whose role is not yet well
identified in normal, injured, and healing tendons [48,49]. Vascular endothelial growth factor (VEGF)
has the key role in tendon healing, as it is expressed in early stages of the healing process [48]. VEGF
is also a key element of homeostasis restoration during regeneration, and it contributes to the ECM
biomechanical properties [50]. Active angiogenesis is required for the formation of the intravascular
plexus after injury during the formation of granulation tissue, but for the complete recovery of
the biomechanical properties, a specific blood vessel network must be formed to replace the vascular
plexus [51].

In this context, it has been demonstrated with stem-cell based therapies conducted on experimental
injured tendons that amniotic epithelial stem cells (AECs) induce healing through a rapid blood vessel
regression and remodeling that promotes a regenerative program [50,52]. Even if the angiogenetic
mechanisms involved in tendon healing remain unknown, they can be related to the modulatory
influence of AECs on VEGF expression/synthesis and/or to the widespread anti-inflammatory effects
promoted in situ. A prompt VEGF inhibition represents a positive event to maintain/reach tendon
homeostasis [50,52].

VEGF gene therapy was applied to improve tendon vascularization [53,54]. VEGF165-transfected
bone marrow-derived MSCs significantly promoted angiogenesis during graft remodeling of anterior
cruciate ligament reconstruction, allowing restoration of the mechanical properties in rabbits [55].

VEGF is also demonstrated to have a role in sustaining the protection and survival of tendon
cells [56]. Healthy human tenocytes express several VEGF isoforms [56], and VEGFA mRNA is strongly
upregulated following hypoxia under both low- and high-serum conditions. Additionally, VEGF
protein released in culture medium increased fourfold by anoxia, exercising a rescue role from cell
death [56].

There is a paucity of literature concerning the distribution of receptors for potential angiogenic
growth factors, such as those for VEGF (VEGFR-1, VEGFR-2, and VEGFR-3). An understanding about
these growth factors and their receptors would help to further determine the role that they play in
tendon injury and pathology.
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1.1.5. Tendon Innervation

Tendon innervation regards the surrounding structures that comprehend paratenon, endotenon,
and epitenon. The tendon proper has non-innervation. Nerves in tendons are characterized by
a low degree of myelinated nerves fast transmitting Aα- and Aβ-fibers and by a higher degree of
unmyelinated, slow transmitting Aγ-, Aδ-, B- and C-fibers [57]. The nerves that end with Aα- and
Aβ-fibers are nerve types I–III and mediate mechanoreception, while nerves that end Aγ-, Aδ-, and
C-fibers are type IVa, and they are called nociceptors. Nociceptors mediate deep tissue pain and
hyperalgesia, which is responsible for the pain in tendinopathy. The autonomic nerves ending with
B-fibers are made of type IVb fibers, and they are mainly localized in the walls of small arteries,
arterioles, capillaries, and post-capillary veins exerting vasomotor actions [58]. The peripheral nervous
system is involved in the regulation of various efferent physiological responses.

Indeed, the nervous system plays an important part in pain regulation, inflammation, and tendon
homeostasis. This neuronal regulation in healthy and damaged tendons is mediated by three major
groups of molecules, including opioids, neuroregulators, autonomous, and excitatory glutamatergic
neurotransmitters, which act on cell proliferation, the expression of cytokines and growth factors,
inflammation, immune responses, and hormone release [58].

After tendon injury and during the healing phase, there is an extensive nerve in-growth in
the tendon proper, followed by a time-dependent different neuronal release that is autonomous and
glutamatergic, which amplifies and regulates inflammation and tendon regeneration [59].

In particular, substance P (SP) and calcitonin gene-related peptide (CGRP), are supposed to be
stimulators of cell proliferation and stem cells recruitment because of their presence in sprouting free
nerve in fibroblast during tendon healing [60,61]. They also stimulate the proliferation of endothelial
cells [62,63], suggesting a role in angiogenesis [58].

However, if in damaged tendons there is an excessive and prolonged presence of sensory
and glutamatergic neurotransmitters, this condition suggests an association with inflammatory and
hypertrophic responses of the tissue, followed by an abnormal augmentation of sprouting sensory
nerves and SP expression supposed to trigger pain signaling and hyper-proliferative/degenerative
events associated with tendinopathy [64]. In the future, pharmacotherapy and tissue engineering
strategies selective for neuronal mediators and their receptors could be used as effective therapies for
tendon disorders [65].

1.2. Tendon Function

The tendon’s function is to transmit force from muscle and absorb external forces, limiting
the damage to them [66]. They exhibit high mechanical strength, good flexibility, and an optimal level
of elasticity in playing their unique role. Tendons are viscous elastic tissues that show stress, relaxation,
and slow movement [67].

The mechanical behavior of collagen depends on the number and types of intramolecular and
intermolecular bonds [68]. At rest, the collagen fibers and fibrils show a curled configuration [69].
The initial concave portion of the curve (“start”), where the tendon is brought to a 2% level of stress, is
the lowering of the curled model. Beyond this point, the tendons are deformed into a linear style as
a result of an intramolecular sliding of collagen triple helices, and the fibers become more parallel.
With a mechanical stress below 4%, the tendon behaves as an elastic, returning to its original length.
When stress is above 4%, microscopic damage can occur. Micro stress damage ranging from 8% to
10% occurs intra-fibril with a molecular slip [70]. X-ray diffraction studies show that the elongation of
collagen fibrils initially occur as a result of molecular elongation, but the space between the molecules
increases with the stress augmentation, resulting in slippage of the adjacent lateral molecules [71].
After this, the full damage occurs rapidly, and the fibers quickly entangle on themselves.

The breaking strength of tendons is related to their thickness and collagen content. A tendon
with an area of 1 cm2 can support a weight that varies from 500 to 1000 kg. During activities such as
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jumping and lifting weights, tendons are intensely stressed [72]. It was measured that the Achilles
tendon was submitted to a force corresponding to 12.5 times the body weight during a race [73].

The primary function of the tendon is to transfer force generated by muscle contraction to
the skeleton, facilitating movement around joints and positioning the limbs, playing an important role
in locomotion [74,75]. For efficient function, tendons must be strong and stiff under uniaxial tension,
but also they have to retain viscoelasticity properties [76,77]. Tendon composition and the hierarchical
organization of structural molecules in the ECM confer these properties to the tissue.

The correct orientation of collagen molecules within the fibrils is responsible for the high mechanical
strength of the tendon. The fibrils are stabilized by chemical cross-links between collagen molecules [78–
80]. These cross-links are formed by lysyl-oxidases that exert their enzymatic activity on specific
lysine and hydroxylysine residues at the ends of the collagen molecules in the telopeptide regions,
increasing the mechanical strength of the collagen fibrils [81]. At first, reducible cross-links connect two
amino acids [80]. As the tissue ages, these combine with another adjacent amino acid to form mature
trifunctional cross-links. The best-characterized mature cross-links are hydroxylysylpyridinoline.
The amount of hydroxylysylpyridinoline in a given connective tissue is related to its mechanical
function [79]; tendons have a high hydroxylysylpyridinoline content compared with other soft
tissues [82], although there are substantial differences between the different types of tendons [34].
The hydroxylysylpyridinoline content does not change significantly after skeletal maturity, and these
cross-links probably do not contribute to the altered physical properties of ageing tendons [83].

Some tendons are energy-storing structures, since they have the supplementary role of managing
energy expenditure in humans and animals [74,84]. Compared to positional tendons (i.e., equine
common digital extensor tendon (CDET) and human anterior tibialis tendon), energy-storing tendons
(i.e., equine superficial digital flexor tendon (SDFT) and human Achilles tendon) are more elastic and
extensible. Indeed, being subjected to high strains, they are required to stretch and recoil. Maximum
in vivo failure strain for the CDET is 2.5% [85], which is almost 4 times lower than the 9.7% estimated
in vitro for the SDFT [86]. By contrast, in vivo strain of 16%, recorded in the SDFT during gallop [87],
is similar to the failure strain of 15–17% measured in vitro [77,88]. However, despite the SDFT having
a very low safety margin, some horses compete in very top-level races without ever suffering from
a tendon injury.

The calf muscles act on the Achilles tendon during contraction, determining the plantar flexion
of the foot. Standing on the toes, walking, running, and jumping all depend on this contraction.
The Achilles tendon sustains the person’s entire body weight during each step, so it may be subjected
to substantial forces connected to speed, stride, terrain, and additional weight being carried or
pushed [88]. To various degrees, tendons store elastic energy, and the Achilles tendon has been
shown to be specialized in this very important capability. It has been demonstrated that the shorter
the time between the switch from dorsi- to plantarflexion, the greater the elongation of the tendon.
Furthermore, the higher the switch frequency, the greater the increase of the work loaded onto
the tendon [89]. Dorsiflexion of the foot, immediately followed by plantarflexion (i.e., in walking,
running and jumping), has been shown to store and release more elastic energy to the tendon, compared
to the solely plantarflexion, which is probably because of the nearly isometric work of the muscle fibers
of the calf during the switch [90]. This demonstrates that the coordination of structural elements in
the muscle and tendon is important to withstand the very rapid force shifts present in these tissues.
Thorpe et al. [14] reported that energy-storing tendons exhibit a specialized endotenon with low
stiffness and fatigue resistance, which may enhance tendon elastic behavior in order to stretch and
recoil efficiently. With aging, endotenon loses these characteristics, especially in energy-storing tendons,
making them more prone to injury [91].

This could be also due to the fact that elastin, which localizes in the endotenon of energy-storing
tendons, reduces in quantity and becomes more disorganized with aging [38].

Furthermore, tendon is a viscoelastic tissue, meaning it combines viscous and elastic behaviors.
Tendon viscoelastic behavior [70,92] depends on age and activity, and it derives from a network of
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interactions that involves collagenous proteins, water, collagens, and proteoglycans. The unloading
curve of a viscoelastic material/tissue does not proceed along the loading curve, and the material/tissue
will not return to its initial shape and dimension immediately upon the removal of the applied
deformation. In respect to this behavior, known as hysteresis, the area between the loading and
unloading curve represents the amount of energy lost during the cycle. In viscoelastic materials,
the hysteresis is considerable, and a lot of energy is lost during loading. It is generally thought that
hysteresis derives from the reorganization of the multilevel fibers composite structure, with a water
movement through the tissue [13].

Tendon development, homeostasis, pathology, and injury healing are driven by applied mechanical
loads [93]. Mechanical forces are translated, by means of mechanotransduction processes, into
biochemical signals that are able to activate and control key signaling pathways into tendon cells [94,
95]. However, if on the one hand normal mechanical loads are essential for appropriate tendon
development/maintenance and to induce anabolic responses in tendon cells [95], on the other, abnormal
mechanical forces cause pathological conditions (such as tendinopathy), determining the cellular
catabolic adaption of the tendon [1,96].

Mechanical in vitro tests on tendons involve separate clamps to grip the isolated tendon sample,
ensuring it firmly. The tendon is loaded along its longitudinal axis, and the force and displacement are
recorded at a constant speed until the tissue fails. Tendon mechanical response is described plotting
the applied extension and the resulting force as a stress–strain curve. The stiffness of the samples is
represented by the slope of the curve: for a stiffer tendon, a steeper gradient indicates greater forces to
extend the sample [97].

In a typical stress–strain curve, three distinctive regions can be identified (Figure 3). (1) First, there
is a toe region that indicates the stretching out of the crimped pattern of the collagen fiber bundles,
which is visible by polarized light microscopy. This crimped configuration, not observable under
tension, acts as a buffer against fiber damage and reappears only when the stress stops and the stretched
collagen bundles back to the resting state, thanks to the elastin fibers in the ECM [98]. (2) The toe
region is followed by a linear region. The slope of this region is constant and represents the stiffness, or
Young’s modulus. At this point, the collagen fiber bundles have no longer a crimped configuration.
(3) Lastly, there is a failure region where the collagen fibers fail, leading tendon tissue to rupture.
Therefore, the mechanical characteristics of the collagen fibers are directly correlated to the mechanical
properties of the tendon [99]. Up to 4% elongation, a series of stretches reproduce the stress–strain
curve, but when this limit is exceeded, the crimped configuration undergoes subsequent deformations
not reproducing the original curve. Eight percent elongation or more, caused by acute stress, leads
tendon tissue to rupture [23].
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Figure 3. Typical stress–strain curve for tendon tissue. The schematization illustrates the behavior of
collagen fibers: under tensile strain, they stretch out absorbing shock, and when the stimulus disappears,
they return to their initial configuration. If the stretching limit is exceeded, overcoming the physiological
range, the tissue may suffer microscopic and macroscopic traumas. Adapted from [100].

The initial concave portion of the curve (toe region), where the tendon is brought to a 2% level of
stress, is the lowering of the curled model.

Recently, mechanical characterization methods have focused on an in vivo analysis of tendon
mechanics, in particular about Achilles tendon mechanics. Achilles tendon mechanical properties
are usually studied under an applied load. Ultrasound is used to measure the stretching, which
is obtained when the muscles apply a force to the tendon [101]. However, this is feasible only for
superficial tendons, focusing the in vivo studies on the Achilles or patellar tendons. The movement of
the tendon-to-muscle interface is tracked by means of ultrasound within the calf, establishing tendon
extension and length. Motion markers are usually arranged on a known location (the calcaneus) to
check undesired movements during measurements.

This provides a considerably more representative measure of stiffness during the tendon loading
range [102].

The function, age, sex, location, and species of individual tendons define their specific physiological
loads. Moreover, tendon tissue is not isolated, but it communicates with both bone (enthesis) and
muscle (by means of the myotendinous junction). In these transition regions, the tissue composition,
material properties, and strain distributions can vary [103], often constituting the initiation sites of
tendon injury, with following modifications in the cellular/matrix response [104]. The precise loading
levels required for tendon repair and the exact level of stimulation (magnitude, frequency, and duration)
required for tendon homeostasis remain unknown, but the comprehension of these aspects is essential
to know the mechanobiological stimuli required to induce anabolic activity or reduce catabolic activity
in tendon tissue [94].

1.3. Tendon Biology

Tendon biology is an essential key to understanding the mechanisms involved in tendon
differentiation. However, little is known about tendon ontogenesis and development.

Tendon is a dynamic tissue that continually remodels itself from prenatal to postnatal life
throughout adulthood and aging.
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In prenatal lifetime, during embryogenesis, cartilage develops from sclerotome and muscle
from myotome, while tendon ontogenesis derives from the dorsolateral sclerotome, which is
called the syndetome [105]. This compartment was identified thanks to the discovery of the beta
helix–loop–helix transcription factor Scleraxis (Scx) [105,106], which is an early marker of tendon
development and differentiation [107,108].

Tendon specification happens firstly with the appearance of progenitor cells and secondly with
the commitment and differentiation as a consequence of signaling cascade [109].

The first tendons in mice embryogenesis appear around embryonic day E9.5–12.5. These are
the axial tendon progenitors that connect muscles to the spinal column. These tendons originate from
the syndetome and express the beta helix–loop–helix transcription factor Scx [108].

The role of surrounding cells is crucial to drive tendons’ differentiation. In fact, the final
commitment to tenocytes comes from the signal of the upper myotome that, after somite formation,
expresses myogenic factor 5 (Myf5) and myoblast determination protein 1 (Myod1) in the muscle
progenitors. Additionally, to controlling muscle specification, Myf5 and Myod1 are responsible
for the activation of fibroblast growth factors (FGFs), whose signaling pathway induces Scx in
the dorsolateral sclerotome of mouse [110].

Limb tendons develop differently when compared to the cells from which derive axial tendons. In
fact, tendon progenitor cells of the limb tendons do not have a specific location in the somite, but they
are localized around the lateral plate mesoderm and they are mixed with myoblasts [111,112]. FGF
and transforming growth factor superfamily proteins (TGF-β) have been reported to be inducers of
limb tendons [113–115]. TGF-β is a key signal in tenogenesis. In fact, double mutant TGFβ 2−/−/TGFβ
3−/− mouse embryos lose tendons and ligaments in the limbs, trunk, tail, and head [116]. Recently,
a new transcription factor, Mohawk (Mkx), was found to be responsible for the promotion of tendon
lineage commitment and differentiation influencing the expression of collagen type I, type XIV, and
tenomodulin (Tnmd) [117–122].

Tnmd is the best-known mature marker for tendons [123–125]. Tnmd mRNA expression was
detected at day E14.5 corresponding to the differentiation stage of tendon progenitors [115]; however,
Tnmd transcript was found already at embryonic day E9.5 [126]. This could mean that Tnmd is not
only a mature tendon marker, but it could have a role in tendon development.

Early growth response 1 and 2 factors (Egr1/2) act as molecular sensors for mechanical signals [127]
and are involved in collagen maturation and final tendon commitment [117,128–130]. Recent evidence
has demonstrated that the protein kinase B-mammalian target of rapamycin (AKT–mTOR) axis is
essential for tenogenesis. Cong et al. [131] showed its importance in mesenchymal stem cells (MSCs)
and tendon differentiation. In particular, AKT–mTOR was found to be involved in collagen production
and tendon differentiation, and it is a downstream signaling of TGF-β, which is involved in regulating
tenogenic transcription [131].

Tendons differentiation combines the specialization of cellular compartment with the organization
of the extracellular matrix (ECM), which is crucial to define tissue biomechanics properties such as
elasticity and strength [132].

ECM proteins deposition is led by the transcription factors responsible for tenocytes’ development
and differentiation. In particular, Scx has a crucial role in triggering the deposition of collagen type I
and II. In fact, the loss of Scx in Scx−/− mutant mice has a negative effect on tenocyte differentiation,
resulting in the atrophy of force-transmitting tendons and into a disorganized tendon ECM [133].
Moreover, the expression of the structural collagens, Col Ia1, Col Ia2, Col III a1, and Col XIV a1, is
strongly reduced as Scx controls directly collagen transcription [134,135]. In addition, the glycoprotein
tenomodulin is downregulated in Scx−/− mutants [133,136]. The loss of Scx also results in alteration
at the structural level of tendons, disrupting the sheets surrounding the collagen fibrils [133]. This
evidence demonstrates that Scx is involved tendon ECM production, which is necessary for effective
force transmission.
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Both Egr1 and Egr2 are fundamental for tenocyte differentiation, regulating the tendon ECM
and binding to tendon-specific enhancer elements of Col Ia1 and Col Ia2, which are also bound by
Scx [129,130,135]. Egr1−/− mutant mice also downregulate Tnmd and these mice, in adult age, heal
slowly after tendon injuries [129].

Mohawk is another regulator of ECM deposition. In fact, Mkx−/− mutant mice form normal
tendons at first, but later, they show reduced levels of Col Ia1, Col Ia2, Tnmd, fibromodulin (Fmod),
and decorin (Dcn) as well as thinning of collagen fibrils [120–122]. As well as Scx, Mkx can function as
a transcriptional activator after the complexation with proteins receptors of TFGβ super-family Smad
2/3 (the acronym Smad refers to the homologies of the Caenorhabditis elegans SMA and Drosophila
MAD), to promote Collagen I a1, Collagen I a2, tenomodulin and decorin expression [118,119].

In postnatal lifetime, tendons retain a small population of cells with stem cell properties, which are
called tendon-derived stem/progenitor cells (TSPCs) resident in the tendon stem cell niche. The stem-cell
niche has been defined as a specialized microenvironment that maintains a balance of quiescence,
self-renewal, and cell-fate commitment of the stem cells it hosts. The stem-cell niche is a 3D structure
composed of stem cells, cytokines, and specialized ECM [137].

Bi et al. [21] showed that human and mouse TSPCs resided in a niche environment. In particular,
they are localized in the long parallel chains of collagen fibrils and surrounded predominantly by
ECM components. TSPCs, isolated from the stem cells niche, show adult mesenchymal stem cell
(MSC) properties such as the presence of specific surface antigens, self-renewal, clonogenicity, and
three-lineage differentiation capability (adipogenic, osteogenic, and chondrogenic). They also express
tendon-related genes such as scleraxis and tenomodulin. In fact, TSPCS were proven able to differentiate
into tenocytes in vitro [21,30]. Moreover, Bi et al. [21] demonstrated that ECM changes affect TSPCs’
fate and behavior. Of note, stem cell properties were strictly under the control of an ECM biglycan
(Bgn) and fibromodulin (Fmod)-rich niche. Indeed, the depletion of two critical components using
mice-deficient models resulted in impaired tendon formation and lower Scx and Tnmd expression.
This is a crucial discovery in tendon biology, providing evidence of the existence of a specialized
tendon stem cell microenvironment maintaining tissue homeostasis and modulating the inflammatory
response, the interaction between cells, and the environment during inflammation [138]. TSPCS opened
new perspectives in tendon healing and regeneration strategies even if the key aspect of the reduced
availability of autologous tendon tissues continues to limit the practical impact of this discovery.

During life, ECM is continually remodeled in response to mechanical force. In fact, tenocytes
actively sense mechanical stimulation, and this leads to changes in gene expression, cytoskeletal
organization, and ECM protein secretion [8,9]. Remodeling of the ECM depends on the activities
of matrix metalloproteinases (MMPs) and their corresponding tissue inhibitors (TIMPs), as well as
disintegrin and metalloprotease with thrombospondin repeats (ADAMTS) proteases [9,139–141].

In an ovine model of tendon maturation from fetus to adult lifetime, the cell nuclei morphology,
cellularity, PI (proliferation index), and Cxs 43 and 32 (connexins involved in gap junction present mostly
in immature tendon) decreased. Moreover, biochemical changes induced a dramatic reduction of ECM
molecules, growth factors, such as TGFβ1, vascular endothelial growth factor (VEGF) and nerve growth
factor (NGF), as well as blood vessels and nerve fibers in adult tissues [5]. Further, molecular changes
in senescent accelerated mouse induced acute tendon lesion [142]. In particular, they demonstrated
increased inflammation and decreased tendon remodeling in injured aged tendons. In fact, they found
an upregulation of interleukin (IL)-6 in an injured aged mouse, lower levels of tenomodulin and
collagen type III, impaired expression of TIMP, and higher metalloproteinases [142]. Alteration in
tenomodulin level causes inferior tendon repair process, resulting in adipocyte accumulation and
fibrovascular scar formation during early tendon healing [143].

The ability of tendon-derived stem/progenitor cells to differentiate into tenocytes diminishes with
age [133,144]. Aging in tendons results in morphological and molecular changes that involve both
cells and ECM. In fact, in adult life, tendon becomes a specialized tissue with few cells that reduce
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their communication and synthetic activity [7]. With aging, TSPCs lose their stem markers, and they
undergo a series of changes that affect their healing ability [6].

Taken together, these data suggest that aging affects the ability to repair after injury.
Next to physiological aging, there are a series of pathological situations that affect tendons such

as injury or tendinopathy [3].
Thanks to new technologies in proteomics, we know that when tendinopathy occurs, there are

changes in the expression of many ECM tendon proteins [3,145]. For example, there is an increase in
collagen I and III, metalloproteinase (MMP)-1-9-13, tissue inhibitor of metalloproteinase (TIMP)-1, and
VEGF with a decrease in MMP-3 [146].

Tenascin-C expression is sensible to mechanical strain and it is upregulated with tendinopathy.
Glycoproteins such as fibronectin and thrombospondin have a role in tendon repair as they are
highly expressed during tendon regeneration [3]. Proteoglycans enable the diffusion of water-soluble
molecules and the migration of cells into areas of tendon injury. Type III collagen is overexpressed
during repair, and it is replaced by type I collagen during post-injury remodeling [147]. The ratio of
type III to type I collagen may be an indicator of the tendon repair process [147].

All the evidence collected to date demonstrated that tenogenesis is a stepwise process characterized
by sequential markers. Scx is the early marker of tenogenesis, and it is also considered a crucial gene in
adult tissue during the early phase of progenitor cell commitment [108] and in modulating tenocyte
mechanotransduction. Mendias et al. [148] demonstrated that Scx-GFP mice subjected to a treadmill
training program increased gene expression of scleraxis, tenomodulin, and type I collagen [148].
Mutant mice Scx−/− showed alteration in tendon matrix and disorganization that led to an intermixing
of tenocytes and endotenon cells. Moreover, these mice had a limited use of paws and were unable to
move the tail [133].

Equine tendon fibroblasts exposed to siRNA targeting of Scx showed an impaired ability to
migrate on softer surfaces, and they exhibited differences in focal adhesion morphology compared to
controls, suggesting a potential role for Scx in modulating tenocyte mechanotransduction [149].

Dyment et al. [150], using a murine patellar defect model and Scx-GFP reporter mice, described
an Scx role during the healing process. After injury, the cells of the paratenon that normally do not
express Scx migrated toward the defect site and expressed scleraxis and smooth muscle actin alpha by
day 7. Cells contained in the injured site displayed an increase of Col I and Col III but a decreased
expression of tenogenic transcription factors (Scx and Mkx) and collagen assembly genes (Fmod and
Dcn). By contrast, Egr1/2 and Tnc were upregulated. These results suggest that paratenon cells, which
normally do not express Scx, turn on Scx as response to an injury, and they deposit matrix to overcome
the defect [150]. This evidence demonstrated that Scx is not only involved in tendon development, but
it has a role also in adult physiology and illness.

Mohawk can be considered another marker of tendon development as it regulates the deposition
of Col I and tenascin C through the binding of Smad3. In fact, Mkx−/− mutant mice show defects in
total collagen deposition and a small collagen fibers diameter. Moreover, the tendon tensile strength
of mutant mice is decreased, suggesting a role of Mkx in affecting the mechanical properties of
tendons [120].

Early growth response 1 and 2 factors (Egr1/2) are involved in tendon differentiation, regulating
transcription factors and ECM deposition. In fact, knockout mice display less Scx and Col I
expression [130]. Egr also displayed functions in tendons healing as tendon-injured mice, after
Egr1-transfected cells, showed an increase in tendon gene expression, including Egr1, Scx, Col I a1, Col
I a2, and Tnmd [129].

Furthermore, the mammalian target of rapamycin (mTor) is emerging as an important regulator
of tenogenesis. It has a role in tendon differentiation, as it was upregulated in the tenogenesis of
MSC [131]. Apparently, it is involved in tendon healing, as it is downregulated in tendinopathy tissue.
Moreover, an ablation of mTor in tendons results in less deposition of Col I [131].

Mature tendons are characterized by the expression of tenomodulin and thrombospondin [151].
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Tenomodulin was first discovered by Brandau et al. [126] and Shukunami et al. [151], and it is
considered a late marker in tendons [136]. Studies demonstrated that Tnmd is downregulated in Scx
and Mkx mutant mice, suggesting that in tendon development Tnmd is regulated by these transcription
factors [122,133]. Tnmd knockout mice revealed reduced tenocyte proliferation, premature ageing of
TPSCs, and abnormal collagen fibrils [123,124].

In human tendon rupture, Tnmd was downregulated, while VEGF and MMP 1, 2, and 13
increased [152]. Tnmd presence has a positive role in tendon and cells function [153].

Thrombospondin (Thbs) is considered another late tendon marker [154]. It was demonstrated
that knockout mice displayed abnormal collagen fibrils, glycosaminoglycan modifications, decreased
expression of a TGF-β receptor beta-glycan, decreased activity of lipoprotein lipase, and decreased
uptake of very low-density lipoprotein (VLDL), and forelimb grip strength was reduced [155]. Thbs
has a role in regulating ECM deposition and also in the repair of myotendinous junction (MTJs) [156].

Tenascin C is an important component of the extracellular matrix, and it was found in MTJs [157,
158]. Moreover, it could play a role in collagen fibers orientation [157]. Tnc is regulated by mechanic
stimulation, and it is upregulated in the case of tendinopathy [158–160]. An interesting study
of Mehr et al. [160] showed that Tcn mRNA and protein expression was upregulated, in vitro, in
the portion of tendon subjected to compression with respect to the portion not directly affected by
mechanical stimulation. Moreover, they demonstrated that the Tnc used in culture is able to decrease
cell adhesion to fibronectin. All these data suggest that Tnc is modulated by mechanical stimuli and
has a role in maintaining the fibrocartilaginous region of tendons [160].

Among tendon markers, Col I and Col III can also be considered. They are the major component
of ECM, and their deposition is controlled by transcription factors Scx, Egr1/2, and Mkx [120,130,134].
Collagen content is essential for healthy tendons. In fact, alteration of the Col I and Col III ratio can be
an indicator of tendinopathy [147]. Moreover, during the healing process, they have different functions,
as Col III appears during the proliferative phase and Col I is more deposited during the last phase of
remodeling [3].

Therefore, the transcription factors Scx, Egr1/2, Mkx, mTOR, and molecules tenomodulin,
thrombospondin, tenascin C, and collagen type I and III can be considered as the most important
markers associated with tendons.

Tendon biology comprehends different factors that together create a delicate balance that can be
easily disrupted. Tissue engineering could be a solution to tendinopathy, because tendons are not able
to repair themselves properly during aging or after injuries.

2. In Vitro Tenogenesis Techniques

In vitro tenogenic techniques are fundamental to understanding tendon biology and to mimic
the physiological environment that allows tenogenesis to proceed in vivo. The first step in assessing
an in vitro technique is the choice of the cell source, and the literature generally describes the use of
either tendon-derived stem cells (or tendon progenitor stem cells), tenocytes, stem cells from fetal or
adult origin, including embryonic stem cells, amniotic-derived stem cells, and mesenchymal stem cells
from different tissue origins (bone marrow, adipose tissue). Then, there is technique selection seeking
to reproduce the complex microenvironment to support tendon differentiation. Scientometric research
on the Scopus database revealed a significant bibliographic production of tendon differentiation
techniques, but in vitro technique publications represent a minor part compared to the total papers
found (Figure 4). Moreover, the scientometric research revealed four main topics in the field of tendon
differentiation corresponding to stem cells, growth factors, physical stimuli, and biomaterials (Figure 5).
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Figure 5. The comparative scientometric analysis of available publications on the Scopus database on
tendon differentiation and in vitro tendon differentiation reveals four main common topics: stem cells,
growth factors, biomaterials, and physical stimuli. The topic papers’ distributions amongst topics are
independent of tendon differentiation sub-category (tendon or in vitro tendon differentiation). Stem
cells are the most represented one (approximately 65%) followed by growth factors (approximately
20%), biomaterials (approximately 10%), and finally physical stimuli (for both 5%).

Here, we are going to focus on the in vitro application of these four main topics and two further
promising in vitro techniques: hypoxia and co-culture. The term hypoxia term has relevance only
when used in describing a reduction in oxygen tension below that which would routinely be considered
as normoxic for that tissue. The physiological, normoxic, and oxygen conditions for a tendon in vivo
due to its low levels of vascularization is in the range of 1–5% O2. Scaffolds are able to reproduce
the ECM, mechanical stimulation is the condition to which the tendon is subjected in vivo, growth
factors are naturally involved in tendon development and repair, and co-culture allows communication
between tissue and stem cells, or between two different stem cells, producing a soluble factor that is
able to stimulate tendon differentiation.



Int. J. Mol. Sci. 2020, 21, 6726 17 of 78

2.1. Stem Cells

Different types of stem cells sources have been explored in vitro to determine their capacity to
differentiate into tenocytes for use in regenerative medicine. The scientometric analysis revealed
a consistent production on this topic (Figure 6). Many techniques have been used to induce tenocyte
differentiation, but a validated protocol still does not exist [161]. The validation of the tendon-inductive
techniques is essential for the in vitro model, since it represents a preliminary step to all the applications
in which differentiated cells can be used. The tenogenic potential of stem cells from different
origins have been tested in vitro in order to find the most suitable stem cell type for applications in
regenerative medicine.
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Here, we will review the tenogenic potential of pluripotent stem cells, which are the most plastic,
proceeding with multipotent stem cells derived from tendons and other tissue. Among pluripotent
stem cells, both embryonic and induced pluripotent stem cells have been investigated. Embryonic
stem cells (ESCs) could be suitable for tissue engineering because of their ability to differentiate into all
tissues derived from the three germ layers [162]. The proliferation capacity of ESCs is a clear advantage
by providing sufficient cell numbers [163].

The stepwise differentiation of hESCs into tenocytes through a mesenchymal transition stage has
been achieved by first passaging at confluence into 10% serum replacement medium plus fibroblastic
growth factor-2 (FGF-2) followed by a second passaging at confluence into 20% fetal bovine serum
containing media. Then, cells were seeded at colony-forming densities and emergent colonies with
fibroblast-like morphologies were designated as hESC-derived mesenchymal stem cells (hESC-MSCs)
and cultured under uniaxial static tension to produce an engineered tendon. After 14 days, the construct
showed a high level of Scx gene expression. The hESC-MSCs engineered tendon was also able to
improve tendon healing and regeneration in vivo after implantation [164].

Chen et al. [165] demonstrated that hESCs-MSCs obtained with the above protocol [164] were
induced to tendon differentiation with the combination of Scx overexpression and mechanical force
stimulation. In particular, Scx overexpression led hESCs to a tenocyte commitment characterized by
the expression of Col 1 and Tnc and a reduced expression of SRY-box transcription factor 9 (Sox9) [165].

Then, this protocol [164] was further elaborated when following on from the induction of
mesenchymal transition, the hESCs-MSC were seeded onto a knitted silk–collagen sponge scaffold [166].
When subjected to mechanical stimulation in vitro, hESC-MSCs exhibited tenocyte-like morphology
and an expression of tendon-related gene markers such as Col I, Col III, Scx, and mechanosensory
structures and molecules such as cilia, integrins, and myosin. When implanted in vivo, the engineered
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construct resulted in enhanced tendon regeneration in situ and superior mechanical performance
characteristics [166]. Mechanical stimulation free differentiation of hESCs was also proven under
a 2% O2 condition combined with the supplementation of BMP12 and BMP13. These cells displayed
a tenomodulin expression pattern and morphology consistent with that of the primary tenocyte used
as control. Moreover, they demonstrated a consistent expression of Col I, Col III, Dcn, Tnc, Thsb4, and
Tnmd gene levels [167].

Induced pluripotent stem cells (iPSCs) can avoid the ethical concerns associated with hESC [168,
169]. In principle iPSCs should have no biological difference to hESC and should also be suitable for
tenodifferentiative purposes, although to this point, few studies have explored this [170]. Recently,
Komura et al. [171] have demonstrated that murine iPSCs can be differentiated into tenocytes. They
created reporter mice that expressed enhanced green fluorescent protein (EGFP), driven by the promoter
of the tendon-specific Scleraxis (Scx) transcription factor gene, from which they generated iPSCs.
The iPSC-derived EGFP-positive cells were treated with a tenogenic differentiation protocol designed
to mimic tendon development and differentiation in embryogenesis. In particular, they supplemented
the culture media with growth factors and molecules involved in tendon development at different
stages of culture. On day 2, Wnt3a and Activin A were added; on day 3, embryonic bodies (EBs) were
cultured in differentiation medium supplemented with basic fibroblast growth factors-2 (bFGF-2). On
day 5, EBs were harvested and dissociated to single cells that were cultured in differentiation medium
supplemented with insulin-transferrin selenium, TGF-β1 and bFGF. These iPSCs exhibited elevated
expression of tendon-specific genes, including Scx, Mkx, Tnmd, and Fibromodulin (Fmod). These
cells were also able to promote tendon regeneration in mice after transplantation into injured tendons,
reducing scar formation via the paracrine effect [171].

Another category of stem cells comprehends fetal and adult multipotent stem cells derived from
tendons or other systems. Fetal multipotent stem cells used to reproduce tenogenesis in vitro are
amnion-derived and umbilical cord stem cells. Interestingly, these cells are emerging as a new resource
for tissue engineering and regenerative medicine [172,173], since they conjugate a remarkable plasticity
with associated safety properties [172].

Amnion-derived stem cells can include amniotic epithelial stem cells (AECs), amniotic
mesenchymal stem cells (AMCs), and amniotic fluid stem cells (AFCs). Amniotic epithelial stem cells
are a relevant and promising resource for tissue engineering and regenerative medicine [174,175].
Several reports describe how AECs display anti-inflammatory [176–178], anti-fibroblast [179], and
antimicrobial properties [180] together with a low immunogenicity and tumorigenicity [181,182].
Moreover, they can be collected from human or animal amniotic membranes from the placenta as
a discarded tissue with few ethical issues [173,183].

The tenogenic potential of amniotic-derived cells has been demonstrated both in vitro and
in vivo [184–189].

Barboni et al. [184] showed that ovine AECs, by following a stepwise differentiation process, can
develop a fully differentiated tendon phenotype. The protocol relied on exposing AECs to a co-culture
microenvironment with ovine calcaneal fetal or adult tendon explant or tenocytes that resulted in
AECs displaying a tenocyte morphology and a high level expression of tendon-related genes such as
Scx, Tnmd, Thsb4, Col I, and protein such as Col I and Connexine 32, 43. Moreover, they expressed
mesenchymal marker αSma. Interestingly, tenocyte differentiation was optimal with AECs co-cultured
with fetal tendon explant or tenocytes than with adult tendon or tenocytes.

AECs tenocyte differentiation was also tested on a poly(lactic-co-glycolil) acids (PLGA) electrospun
tendon-mimetic scaffold. They displayed an expression of mesenchymal markers (Snail, Vimentin,
αSma) after 48 h and tenogenic marker expression (Col I and Tnmd) after 28 days of culture [190].

AECs could be well suited to develop an understanding of the efficiency of tendon induction
techniques as they lack mesenchymal and tenogenic markers when harvested but acquire them through
the differentiation process [184,188,191,192].



Int. J. Mol. Sci. 2020, 21, 6726 19 of 78

Amniotic mesenchymal stem cells were shown to differentiate toward the tenogenic lineage in
a transwell co-culture system after growth factor induction. Specifically, human mesenchymal amniotic
stem cells (hAMSCs) co-cultured in a transwell system with human anterior cruciate ligament fibroblasts
(hACLFs) and exposed to basic fibroblast growth factor (bFGF) and transforming growth factor beta-1
(TGFβ1) showed an increased deposition of collagen types I and III and mRNA upregulation of
collagen types I and III, fibronectin, and tenascin C [193].

Moreover, amniotic fluid-derived stem cells showed the ability to differentiate into tenocytes
after bone morphogenetic protein 12 (BMP-12) stimulation displaying an upregulation of Tnmd and
Dcn [194].

Mesenchymal stem cells from the umbilical cord (UB) are also described as undergoing tenogenic
differentiation when culture with BMP12 resulted in the expression of mohawk homeobox, collagen
type I alpha 1, scleraxis, tenomodulin, and decorin at day 10 of culture [195,196].

Adult stem cells belonging to the mesenchymal stem cell family have a differentiation potential
and paracrine effect reported to play a crucial role in their beneficial properties by promoting
angiogenesis, stimulating local progenitor and mature cells, or regulating inflammation and immune
cell functions [197]. Adult MSCs are mainly isolated from bone marrow (BMSCs) and adipose tissue
(ADSC).

Bone marrow mesenchymal stem cells (BMSCs) are the most widely used stem cell type. BMSCs
are described as being tenocyte differentiation competent following exposure to growth factors such as
GDF5, BMP14, and/or mechanical stimulation [198–200].

BMSCs showed tenogenic commitment as a consequence of the combination of bone morphogenetic
proteins (BMP-12 and 14) alongside transforming growth factor beta (TGF-β) and vascular endothelial
growth factor (VEGF) both in 2D and 3D cultures within fibrin-based constructs. The expression of
tenogenic gene markers, such as Tnc and Col I after 7 days of culture and Tnmd and Col III after
14 days [201] were noted. A fibrin hydrogel merged with an elastic braided hyaluronated band
scaffold was also described as committing human BMSC into a tenogenic phenotype under cyclic
strain [198,202]. Dai et al. [203] showed that BMSCs are more responsive to bone morphogenetic
protein-12 (BMP-12) stimulation compared to ADSCs [204].

However, BMSCs also have some limitations, such as painful harvesting procedures with frequently
low cell yield, reduced MSC quality with advanced donor age [204], ectopic ossification, and higher
risk of adhesion formation when transplanted in vivo [205].

MSCs derived from adipose tissue (ADSCs) are an attractive candidate cell type due to their easy
isolation, multi-potentiality, and high responsiveness to distinct environment stimuli [206]. This cell
type’s tenogenic ability has been shown including when exposed to tendon extracellular matrix and
TGFβ3 [207]. Moreover, ADSCs seeded on a tropoelastin-coated biomimetic scaffold, after 21 days,
showed an increased protein expression of tendon-related markers such as Scx and Tnmd and were
able to secrete extracellular matrix components such as Col I, Col III, Tnc, and Dcn [203].

ADSCs’ ability to undergo tenogenic differentiation was successfully tested with
a tenocyte-imprinted substrate on polydimethylsiloxane (PDMS). After 14 days, ADSCs expressed
tendon-related protein scleraxis and tenomodulin [208]. However, the main disadvantage of ADSCs is
their preference toward adipogenesis [209].

Stem cells can also be genetically modified to either maintain a tenogenic phenotype or promote
differentiation toward the tenogenic lineage [210]. A risk of cell application is a phenotypic drift of
primary cells during the in vitro differentiation protocols, as ESCs and MSC can form teratoma or
ectopic bone tissue, respectively. Gene transfection can be used also to improve the paracrine properties
of stem cells in order to have a major effect in vivo [1].

Human embryonic stem cells transfected with Scx following on from mesenchymal transition
showed tenogenic commitment after mechanical stimulation. In fact, these cells expressed more
tenomodulin gene expression and more ECM deposition with respect to control cells or to those treated
with only Scx overexpression or mechanical stimulation [165]. BMSCs transfected with BMP-12 induced



Int. J. Mol. Sci. 2020, 21, 6726 20 of 78

differentiation into tenocytes enhancing Col I and Scx mRNA expression [200]. Further evidence
showed that BMSC can be induced toward tenogenic differentiation after transfection with an adenoviral
vector carrying bFGF or BMP-2 increasing the expression of Scx and Col I [211]. Guerquin et al. [129]
demonstrated that forced Egr1 expression programmed MSCs toward the tendon lineage, promoted
the formation of in vitro engineered tendons, and increased the formation of tendon-like tissues in
a rat model of Achilles tendon injury. They suggested that the ability of EGR1 to promote tendon
differentiation was partially mediated by TGF-β2 [129]. Hsieh et al. [212] tested Scleraxis-programmed
mesenchymal stem cells (hMSC-Scx) in the healing of a rat Achilles tendon defect. hMSC-Scx reduced
ectopic bone formation and increased the ECM protein expression of collagen type I and III, biglycan,
decorin, lumican, and elastin [212].

Tendon-related somatic stem cells have created the possibility for tendons to use a precommited
source of tissue specific stem/progenitor cells. Tendon progenitor stem cells (TSPCs) represent
a particular category of multipotent stem cells being tendon-derived with inherent pro-tenogenic
abilities. TSPCs were first reported and described in 2007 [21] and subsequently identified in different
tendons, isolated from different species, and further characterized [213]. TSPCs express higher mRNA
levels of tendon-related gene markers including the transcription factor Scx and the late differentiation
factor Tnmd [214]. TSPCs spontaneously undergo tenocyte differentiation in vitro [215] and exposure
to tendon ECM component in vitro, such as biglycan; they also enhance TSPCs differentiation into
tenocytes, as they express late tendon-specific markers such as thrombospondin 4 and tenomodulin at
gene and protein levels [93].

As TSPCs are poor in number when harvested, they need to be amplified in vitro, but
their expansion leads to an overexpression of osteogenic markers and a loss of morphological
characteristics [216,217]. Stem cells can be a solution to improve tendon healing and regeneration, but
each of them have many advantages and disadvantages. Different techniques can be used to induce
tendon differentiation, but the stepwise process could avoid unanticipated differentiation.

2.2. Hypoxia

Oxygen is one of the most important environmental factors for cells both in vivo and in vitro.
It is a vital molecule serving as a metabolic substrate and a signaling mediator [218] in maintaining
tissue homeostasis and supporting tissue regeneration [219,220]. Cellular adaptation to oxygen levels
relies on a family of hypoxia-inducible transcription factors (HIFs) that sense changes in environmental
oxygen and orchestrate a complex transcriptional program, especially HIF1 α, which is defined as
the “master regulator” of hypoxia, as it is the best characterized key player in cellular response to
hypoxia [221]. In cellular or tissue normoxic, or physiological normoxia, environments, HIF1a is
constantly expressed, but its conserved proline residues are hydroxylated by Prolyl hydroxylase
domain enzymes (PHDs). This oxygen-dependent hydroxylation creates a binding site for the von
Hippel–Lindau (VHL) protein, which is a component of the E3 ubiquitin ligase complex that leads
the HIF1α subunit to proteasomal destruction [222]. When lower than normoxic oxygen concentrations
occur, the HIF-1α protein is stabilized and accumulates inside the nucleus [223], where it can induce
the transcription of many genes with adaptive functions [224]. Indeed, HIFs’ contribution to oxygen
homeostasis is linked to several molecular mechanisms, including the synthesis of DNA, mRNA,
microRNA, and protein [225].

Curiously, while the addition of exogenous growth factors has been largely adopted in cell culture
for the induction of tenogenic differentiation [226], less attention has been paid to the influence of
oxygen. Oxygen plays an important role in different aspects of cell biogenesis such as metabolism,
migration, angiogenesis, proliferation, differentiation, and apoptosis [227]. For this reason, low O2

tension cultures have been employed in recent years to reproduce physiological normoxic environments
of cells [228,229]. Scientometric analysis highlights that scientific production on the use of hypoxia for
in vitro tenogenic techniques remains low compared to the other techniques (Figure 7). Generally, for
historical reasons, cell and tissue culture is performed at atmospheric O2 levels that correspond to
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160 mmHg (20–21% O2), but once air is inspired, the oxygen pressure already begins to decrease to
150 mmHg, and when oxygen is delivered via the blood circulation into alveolus, it moves down along
a gradient of about 100–120 mmHg [230]. In the body districts, oxygen tensions become progressively
lower, and although it is difficult to record the exact oxygen level that cells experience within their
specific microenvironment, oxygen concentrations between 2% and 9% (14.4–64.8 mmHg) have been
considered as the “physiologic normoxia” [231] depending on the vascular density [219] and the balance
between oxygen supply and consumption [230].Int. J. Mol. Sci. 2020, 21, x 21 of 78 
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In bone marrow, a primary source for mesenchymal and hematopoietic stem cells, pO2

concentrations range from 1.5% O2 [232] to 7% [233].
Fully mineralized bone tissue exists at a very low pO2, and the oxygen concentration of articular

chondrocytes is less than 10% at the surface and decreases at 1% in the deepest layer [234]. Hence,
the blood flow regulates the tissue oxygen pressure [235], whereby less vascularized organs receive
less oxygen, and their pO2 is significantly lowered [220].

Tendons and ligaments are poorly vascularized tissues in comparison to other body districts [75],
but to the best of our knowledge, there are no exact recordings of oxygen values in tendons. Skeletal
muscle oxygenation is about 2–5% O2 [236] ranging from 7.5 to 31 mmHg where the high variability
depends on the rate of oxygen consumption of muscles [235], and the oxygen consumption of tendons
and ligaments is 7.5 times lower than skeletal muscles [3]. This means that tenocytes can be anticipated
to live in a physiological low O2 environment [237]; thus, a lower oxygen tension appears to be critical
for tendon recovery and remodeling in vivo or for the preservation of resident cells phenotype ex vivo.
The two major types of cells contained in tendons are tenocytes and the recently isolated tendon stem
cells (TSCs) [93], which can promote tendon repair [238].

In TSCs culture, oxygen tension control promotes in vitro expansion and phenotype
maintenance [239]. Primary tenocytes cultured in low O2 tensions (2% O2) showed enhanced
proliferation at different passages in comparison to tenocytes cultured in air oxygen (20% O2), without
modifications in their function and phenotype [240]. In addition, culturing tenocytes in low O2 tension
decreased matrix metalloproteinase-1 (MMP-1) expression, leading to increased collagen deposition
that could be beneficial for engineered tendon maturation [240].

Maintaining cells in vitro at low pO2 would also favor stemness over differentiation [241]. Indeed,
under the 5% O2, human TSC (hTSC) grow faster, showing a significantly higher expression of stem
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cell marker genes levels (Oct-4 and Nanog) and exhibiting a more potent multi-differentiation capacity
in terms of adipogenesis, chondrogenesis, and osteogenesis. Moreover, when implanted with an
engineered tendon matrix (ETM), hTSCs cultured in hypoxic conditions produced more extensive
tendon-like structures [242].

The increase of clonogenicity, cell proliferation, and DNA synthesis of hTDSC and their higher
levels of tendon-related marker tenomodulin (Tnmd) at 2% O2 confirm that tendon normoxia
might be helpful for an efficient expansion of hTDSCs in vitro and consequently for tendon tissue
engineering [238]. However, a recent study reported that 5% O2 improved hTSCs self-renewal enabled
the recovery of sufficient TSCs for tissue engineering, while the self-renewal capacity of hTSCs kept in
a physiologically hypoxic 0.5% O2 was inhibited. Furthermore, expression levels of stem cell markers
nucleostemin (NS), homeobox protein Nanog (Nanog), octamer-binding transcription factor 4 (Oct-4),
and stage specific embryo antigen 4 (SSEA-4) were inhibited in 0.5% O2 and 20% O2. These results
suggest that precise oxygen levels must be determined and kept within a certain range for optimal
outcomes [243]. The difficulties linked to tendon repair led to the development of novel strategies for
tissue replacement such as stem cell therapy, which has received increasing attention as an alternative
therapeutic option [244]. In fact, oxygen tension can modulate tenogenic differentiation also in different
stem cells sources, such as adipose-derived mesenchymal stem cells (ADMSCs), embryonic stem cells
(ESCs), and mesenchymal stem cells (MSCs).

Evidence suggests that HIF-1a might play a role in regulating differentiation under hypoxia [224].
Indeed, HIF-1a expression was found to be significantly upregulated during adiposed derived
mesenchymal stem cells (ADMSc) differentiation into tenocytes-like cells, but when ADMSCs were
treated with HIF-1a inhibitor, the effect of hypoxia on the differentiation was attenuated. More in
detail, the increase of collagen I and III (Col I and Col III), Tnmd, thrombospondin-4 (Thbs-4), and
Scleraxis (Scx) were significantly reduced in the HIF-1a inhibitor-treated group in comparison to
the vehicle-treated group in hypoxic co-culture system with tenocyte [226].

Due to the challenge of in vitro tenogenesis, it could be a good strategy to combine more factors
in order to improve the development of stem cell-based therapies for tendon treatment. In this
context, Dale and others [167] combined tendon normoxia and growth factors. They demonstrated that
human ESCs cultures supplemented with a cocktail of bone morphogenetic protein-12, -13 (BMP-12,
BMP-13) and ascorbic acid (AA) can induce tenogenic differentiation in vitro when cultured under low
oxygen (2% O2) conditions. The stable transcription of tendon-linked and specific genes was observed
alongside the deposition of a tendon-like matrix and elongated, synapsing, cells with concurrent
tenomodulin expression [167]. Another factor that may influence tenogenesis is the microRNA 210
(miR-210), which has been linked to HIF1a activity [245,246]; in fact, miR-210 is upregulated in response
to hypoxia. When oxygen levels decrease, HIF-1 protein and its transcriptional activity increase as well
as miR-210, which triggers a positive feedback loop, suppressing the activity of a negative regulator of
HIF-1, glycerol-3-phosphate dehydrogenase 1-like (GPD1L), resulting in HIF-1 stabilization [247].

The local administration of synthetic miR-210 into the injured Achilles tendon enhanced its healing
via the acceleration of angiogenesis in an early phase. After 2 weeks of recovery from the surgery, they
found regular dense collagen fibers with higher diameter in the miR-210 treated in comparison to
the control. After 12 weeks, the miR-210 group exhibited parallel and dense fibers in repaired Achilles
tendons, while wavy and loose fibers were still observed in the control group [248].

MSCs are an important source in regenerative medicine and have received great attention
in the tenogenic differentiation and regeneration of functional tendons [203]. When cultured in
normoxic conditions, MSCs display enhanced proliferation rates, retention of stem cell properties,
inhibition of senescence, and increased differentiation ability [249,250]. The therapeutic effects of
MSCs transplantation could depend on the release of paracrine factors such as growth factors and
cytokines [251]. Conditioned media derived from normoxic MSCs have been applied for stimulating
wound and fracture healing [252]. It has been demonstrated that normoxic MSCs increased bone repair
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capacity in vivo in an immunocompromised mice model of a calvarial defect [253] and Achilles tendon
healing with enhanced biomechanical strength compared with air oxygen cultured MSCs [254].

Finally, amniotic epithelial cells (AEC) are another source of stem cells that are able to differentiate
toward the tenogenic lineage both in vitro [184] and in vivo [52]. This was evidenced in Achilles Tendon
Regeneration [52] due to their spontaneous inclination toward epithelial–mesenchymal transition (EMT)
during in vitro amplification [191]. Through the EMT process, epithelial cells acquire a mesenchymal
phenotype, and several studies have proved that low oxygen is an important factor in the regulation of
multiple genes involved in the EMT process [255,256]. HIF-1α stimulates the transcription of Twist,
which is a factor that leads EMT [257]. Although there is no evidence of an oxygen effect on AEC
tenogenic induction, we can speculate that the modulation of EMT by oxygen levels might improve this
process in AEC, enhancing their natural tendency in mesenchymal differentiation and their capacity of
differentiating into tenocyte lineage.

In conclusion, it is necessary to acquire a holistic view of stem cell regulation and reproduce
the physiological conditions of stem niches that provide all the signals necessary for the maintenance
of resident cells properties. For this reason, controlling oxygen tension from atmospheric (20%) to
a more physiological level could be a good strategy to reach this goal. It is essential to note that tissue
normoxia varies substantially in vivo, existing as gradients within tissue [258], whereby cell cultures
could be influenced by oxygen concentrations [243] or time of exposure [259], and this means that
the choice of adequate cell culture conditions is critical in order to develop effective cellular therapies.

2.3. Physical Stimuli

Tendon development, homeostasis, and regeneration following injury are based on the ability
of tendon cells to biologically respond to externally applied forces. Tendons response to physiologic
loading is strictly linked to its structure, cellular organization, and to the dynamic interactions between
cells and their microenvironment [94].

Indeed, tendon cells are highly sensitive to mechanical inputs, and according to the magnitude,
frequency, direction, and duration of the applied loads, they can adapt to their extracellular matrix in
a catabolic or anabolic way [260–262]. Mechanical stimuli can also induce the activation of a biologic
response that involves a complex set of pathways between the cell surface (ion channels, focal adhesion
kinases, integrins, cytoskeleton) and the nucleus [94]. Just as physiologic loads are important to
maintain tendon homeostasis [263,264], abnormal ones can cause injuries [265–267]. The study of
tendon mechanobiology is essential to understand both the pathophysiology in tendon disease and
the benefits of controlled applied loading during tendon healing and regeneration [94]. In fact,
the bibliographic production on in vitro physical stimuli is still increasing (Figure 8).

Tendon tissue engineering strategies are largely scaffold-based, relying on decellularized structures,
polymers, and/or gels that, mimicking the extracellular matrix environment, are able to provide an
initial supportive structure to which mechanical loads can be applied. Choosing the scaffold with an
appropriate mechanical behavior, e.g., stiffness and elasticity, a given load is delivered to the seeded
cells. Scaffold mechanical properties have to match specific biochemical features such as bioresorbability
and bioavailability to promote new tissue formation at the same time when implanted in vivo [166].
In this context, a bioreactor can act as a system that is able to recreate in vitro a suitable culture
environment, which mimics the in vivo dynamics experienced by cells during tendon maturation,
allowing cellular proliferation/differentiation and matrix production. Bioreactors for tendon tissue
engineering require specific basic components such as an actuating system and a culture chamber,
which provide, respectively, a construct’s mechanical stimulation and a controlled culture environment;
continuous loading monitoring plus a feedback actuating system have been also described [268]. In this
sense, both biopolymer scaffolds and bioreactors are complementary paradigms of tissue engineering,
both converging to develop highly predictive in vitro biomimetic systems to study tendon regeneration
and healing strategies.
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Bioreactors can provide a given physical stimulus by direct or indirect modes. Indeed, tensile strain
can be delivered directly by applying a cyclic and programmable load to the scaffold system, aiming to
mimic in vitro the biomechanical environment of tendon tissue. Alternatively, a given strain indirectly
provided to cells can be achieved by using different physical stimuli such as magnetic fields or acoustic
waves. Based on these concepts, several custom-made bioreactors have been developed [202,263,264].
Two of these have become commercially available such as the LigaGen system (www.tissuegrowth.
com/) or The Bose®ElectroForce®BioDynamic® system (www.bose-electroforce.com). Commercial
bioreactors are well designed even if they cannot meet all the specific requirements such as an easy and
rapid scaffold fixation operation, adequate number of in vitro duplicates, or the necessity of a reduced
amount of medium in the culture chamber [268].

Several in vitro studies are described using custom-made bioreactor systems including mechanical
stimulation bioreactors. Compared to static, planar, and culture, scaffold-based approaches that
undergo specific strain stimulation display more elongated cellular morphology and increased cell
density. Moreover, compared to a load-free culture environment, a bioengineered scaffold can show
up to a 9-fold increase in the cell number after 2 weeks of cyclic stretching [269]. On the contrary, it
has been demonstrated that after 4 weeks in static conditions, tenocytes lose their typical elongated
shape, becoming rounded, and the collagen fibers appear more crimped [270]. Tensile loads can deliver
to the cells specific input to increase collagen synthesis with spatial organization along the stress
direction and provide protection from collagenase [261,271,272]. Mechanical stimulation promoted
the formation of bundles with parallel collagen fibrils, upregulating proteoglycans (decorin, biglycan,
fibromodulin, and fibronectin) in the extracellular matrix [273,274]. The formation of collagen fibers
along the direction of loading also results in an enhancement or optimization of the mechanical
properties of the bioengineered tissue, such as stiffness, elastic modulus, maximum tensile stress, and
maximum load [275–277].

The gene expression of tenogenic markers is also positively influenced by cyclic strain. For
example, collagen type 1 expression under dynamic conditions has been reported to be three times
higher than static conditions after 2 weeks of culture [278]. Furthermore, mechanical stimulus
has been reported to orchestrate tenogenic differentiation upregulating Scleraxis, a helix–loop–helix
transcription factor specific for tenocytes and their progenitors and particularly responsive to mechanical
inputs [165,279–281]. Consistently, recent studies a showed reversible loss of Scleraxis expression after
a gradual and temporary loss of tensile strain [282]. Another study demonstrated the upregulation of
collagen type 1, collagen type 3, and Tenascin-C in human marrow stromal cells encapsulated in an oligo
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(poly (ethylene glycol) fumarate (OPF) hydrogel and cultured under cyclic tensile strain (10%, 1 Hz, 3 h
of strain followed by 3 h without) for 21 days [283]. Additional data showed that only 24 h of moderate
cyclic axial stretching (2% strain, 1 Hz) promoted the tenogenic differentiation and tendon matrix
synthesis by equine adipose-derived mesenchymal stromal cells seeded on decellularized tendon
matrix scaffolds, upregulating collagen type 3, decorin, Scleraxis and Tenascin-C [284]. Moreover, it
has been reported that an intermittent cyclic tensile strain (10% applied strain, 1 Hz, 10 min every 6 h)
enhanced the proliferation and tenogenic differentiation of human bone marrow-derived mesenchymal
stem cells cultured in anisotropic collagen–glycosaminoglycan (CG) scaffolds, via time-dependent
activation of ERK 1/2 and Smad 2/3 pathways. Cyclic strain promoted the activation of tendon-related
(Tenascin-C, Mohawk and Scleraxis) and extracellular matrix biosynthesis-related genes (collagen type
3, Decorin, COMP) [285]. The effect of mechanical stimulation was further investigated on human
embryonic stem cells-derived mesenchymal stem cells seeded on a collagen–silk scaffold. It was
found that dynamic mechanical stimulation directed cells into a tenocyte-like morphology, expressing
tendon-related markers (collagen type 1 and 3, Scleraxis) and other mechanosensory molecules (cilia,
integrins, and myosin) [166]. However, the frequency of stimulation appears to be important in human
tendon tissue engineering [276].

Moreover, also the percentage of strain applied can have different effects on tenogenic
differentiation. For instance, tenocytes cultured for 12 days upon poly(glycerol-sebacate) (PGS)
sheets under 6% cyclic strain exhibited a tendon-like gene expression profile compared to 3% and 0%
strain groups [286], while uniaxial cyclic tensile stretching at 8% strain exclusively induced tenogenic
differentiation of human bone marrow-derived mesenchymal stem cells, with protein and gene
expression comparable to primary tenocytes [287]. On the other hand, constant strain has been found
to negatively affect tendon diameter [288], also inhibiting cell proliferation and increasing apoptosis,
potentially through the increase of heat shock protein (HSP)-72 expression [289]. In conclusion,
maximum load, frequencies and cyclic strain are all parameters that have to be taken into account
in order to achieve a highly predictive in vitro tendon-like bioengineered system. However, despite
the importance of the choice of proper bioreactor device and operative parameters, this aspect has to
be strictly merged with the scaffold mechanical properties. Indeed, it has to be underlined that any
mechanical input can only be effectively delivered to a scaffold (i.e., to the cells on board) by taking
into account the mechanical behavior such as the stiffness and elasticity of the specific scaffold chosen.
In this sense, scaffold characteristics and mechanical performances have to be strictly selected and
adapted to the bioreactor device.

Specific load to cells can be delivered using bioreactors designed with magnetic fields or shock
waves. These bioreactors are designed for tendon tissue engineering because both electromagnetic
field and shock waves are non-invasive therapies [290] and directly applicable in vivo to the injury site
for the treatment of inflammation response, post-surgery re-tears [291,292] or tendinopathies [293–296].
Even if both therapies have been reported to have biological effects on impaired tendon tissue
in vivo, including the local release of angiogenic factors and neovascularization, the differentiation
of mesenchymal stem cells, and reduction in inflammatory mediators, the mechanism that induces
regenerative and tissue-repairing effects in vivo is still under debate [297].

Magnetic bioreactor in vitro systems mainly provide a specific stress when the scaffold is designed
with magnetic nanomaterials that are capable of responding to the applied magnetic field. In this
sense, magnetic nanoparticles can act as magnetic actuators that are able to induce a specific strain that
can trigger intracellular pathways or the release of biochemical signals [298]. Alternatively, magnetic
particles can also be used as mechanotransduction platforms that are able to transmit forces to the cells
in a localized manner, enabling the downstream activation of key tenogenic signaling pathways [299].
As mechanical bioreactors require scaffolds with proper elastic properties, Alternate Magnetic Force
(AMF) bioreactors must be implemented with magnetic scaffolds and fabricated with biomaterials
incorporating magnetic nanoparticles, resulting in magnetically responsive systems that are able to
remotely boost cell mechanotransduction pathways [300,301]. The combination of magnetic fields
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and magnetic nanoparticles embedded within a 3D scaffold can create transient physical forces that
are transferrable to cells present in the scaffold in close proximity to the nanoparticles, promoting
the activation of signaling pathways involved in tendon development, homeostasis, and repair [302].
For instance, 3D printing technology has been used to fabricate an aligned fibrous structure of starch
with poly(ε-caprolactone) (SPCL) carrying iron oxide magnetic nanoparticles and human Adipose
Stem Cells (hASCs). The magnetic stimulation, obtained by an external magnetic field, promoted
hASCs tenogenic differentiation, as confirmed by the expression of tendon markers and a collagenous
tendon-like matrix [303]. More recently, magnetically responsive fibrous scaffolds have been obtained
with an aligned electrospun thread of PCL and cellulose nanocrystals coated with iron oxide magnetic
nanoparticles. Magnetomechanical stimulation of hASCs promoted their tenogenic commitment with
higher degrees of cell cytoskeleton anisotropic organization, increased expression of tendon-related
markers, and a pro-healing inflammatory gene profile, compared to unstimulated samples [304].
Moreover, magnetic nanoparticles can be attached to the cell membrane, and specific receptors can
be activated using Alternating Magnetic Fields (AMFs) [298,305,306]. As a consequence of these
simulations, a mechanotransduction event is obtained, evidencing the ability of cells to respond to
mechanical stimuli using biochemical signals [307] Specific receptors on the cell membrane can be
tagged with magnetic nanoparticles and then mechanoactivated with remote magnetic fields [308,309].
This approach was explored to induce the tenogenic differentiation of hASCs. The Activin receptor type
IIA (ActRIIA) in hASCs was targeted with anti-ActRIIA functionalized magnetic nanoparticles and
externally activated using an oscillating magnetic bioreactor. The results showed hASCs commitment
into the tenogenic lineage via activation of the TGF-β/Smad2/3 signaling pathway [310].

Shock Waves bioreactors (SW) use transient short-term acoustic pulses with high peak pressure
and a very short rise time to peak pressure (nanoseconds with short pulse duration) generated
with a piezoelectric device. A combined treatment of shock waves and tenogenic medium (basal
medium supplemented with 50 ng/mL of human insulin-like growth factor-1 and 10 ng/mL of human
transforming growth factor β1) improved the differentiation of hASCs toward tenoblast-like cells,
as evidenced by the upregulation of specific tendon markers, spindle-shaped cell morphology, and
extracellular matrix fiber deposition [311]. Moreover, waves enhanced the functional activities of
injured tendon-derived tenocytes, such as proliferation and migration [312], or they seemed to accelerate
the induced differentiation of human tendon-derived stem/progenitor cells [313].

The above highlights the importance of a dynamic culture for tendon tissue engineering strategies
where an appropriate pattern of mechanical stimulation plays an important role in the design
of engineered tendon-like in vitro models. On the other hand, it is also evident that a dynamic
cultivation can be obtained when taking into account scaffold composition and design, fabrication, and
functionalization. Only through consideration of these aspects can the physical input can be effectively
delivered to the cells and a biological response generated. In this sense, the mathematical modeling
of the force distribution along the tridimensional scaffold after a specific load or force applied may
further help the understanding of the biological output [202,314].

2.4. Biomaterials

The design of a tissue regeneration matrix is based on two essential aspects: the material that
constitutes it and the structure it should have. The ideal support matrix, “scaffold”, should possess
optimum cell compatibility and should not draw out an inflammatory response or demonstrate
immunogenicity or cytotoxicity [315,316]. Moreover, the scaffold must be bioresorbable, so that
its by-products are eliminated through natural metabolic pathways in the human body with no
residual side effects [315]. In particular, the scaffold designed for tendon tissue engineering must
mimic the architecture of the native healthy tissue and compensate for its mechanical properties [315].
Three features of the tendon-like scaffold are crucial for tendon tissue engineering; the scaffold
should be teno-inductive (capable of inducing the cell differentiation toward the tenogenic lineage),
teno-conductive (support tendon growth and promote the ingrowth of surrounding tendon), and
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capable of teno-integration (integrate into surrounding tendon) [316]. The teno-inductive potential of
the tendon-like matrix will be taken into consideration, since only in vitro studies will be discussed
and described in Figure 9.
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2.4.1. Materials

Biomaterials play a pivotal role in scaffold fabrication providing three-dimensional templates
and synthetic extracellular matrix environments for tissue regeneration. To fulfill the diverse needs
in tissue engineering, various materials have been exploited. Polymers, materials widely used for
scaffold design, are divided into two different categories: natural and synthetic. Polymers and their
applications are crucial in tendon tissue engineering.

(1) Natural Polymers

Polymers of natural origin, such as collagen, silk, and chitosan, represent an interesting material
choice for mimicry of the natural structure of a tendon and its properties. Collagen may be considered
a good platform for tendon repair and reconstruction, since it represents the major component
of the tendon and is characterized by its good biocompatibility properties [317]. For this reason,
many researchers have focused on producing scaffolds with collagen alone or mixed with other
molecules such as proteoglycans [318,319]. Despite the attraction offered by its biocompatibility,
the main drawbacks of collagen scaffolds lie in their unsuitable mechanical properties linked to rapid
degradation kinetics and poor structural stability as well as potentially their immunogenic character
due to animal origin [320]. Alternative materials have been proposed for tendon reconstruction such
as silk, which is a fibrous material secreted by spiders and by the caterpillars of certain butterflies
(caterpillar of the mulberry bombyx) [321,322]. Silk possesses exceptional mechanical properties
in terms of strength, toughness, and elasticity, making it popular in the field of tendon tissue
engineering [323]. However, when used alone, silk does not allow sufficient cellular attachment or
growth [322,323], forcing its use in combination with other materials that share similarity with native
tendon ECM to improve its bioactivity [324,325]. Chitosan is another natural polymer that has been
identified as a promising candidate for tissue engineering, since it shares many structural similarities
with glycosaminoglycans (GAGs) present in native tendon ECM [326,327]. It is characterized by
its biocompatibility, biodegradability, antibacterial capacity, and non-toxicity [328]. Despite these
advantages, the high stiffness of chitosan membranes makes them challenging for applications in
tendon tissue engineering due to their low mechanical properties [327].
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(2) Synthetic Polymers

Another attractive material candidate for tendon tissue engineering is the synthetic polymers. This
is due to their high flexibility and reproducible mechanical properties when compared to natural ones.
The interest in bioresorbable synthetic polymers lies in the possibility of modulating their properties
by varying their chemical composition and their structure, for example by choosing a particular molar
mass or crystallinity or by combining two polymers with different characteristics. On the other hand,
these polymers are mostly inexpensive, can be scaled industrially, and are thermoplastic, making
them moldable and allowing the development of a wide variety of different structures [317,329,330].
Synthetic materials are common in tendon tissue engineering and belong mostly to aliphatic polyesters
such as polyglycolic acids (PGA), polylactic acids (PLA), and polycaprolactones (PCL), as well
as their copolymers poly (lactic-co-glycolic) acids (PLGA) and poly (lactic-co-caprolactone) acids
(PLCL) [329,331–334]. Other materials are also used such as Poly (ester urethane) urea (PEUUR) [335,
336], polyurethane (PU) [337], and polyethylene oxide (PEO) [338–340].

2.4.2. Scaffold Fabrication

Different traditional techniques have been used to fabricate scaffolds for tendon regeneration
including sponges [341–343], freeze-drying [323,324,344,345], supercritical fluid processing [346,347],
extruding [348], electrochemically aligned collagen [319,349,350], and electrospinning [322,325,332,
333,351,352]. Recently, 3D bioprinting has emerged as an novel technique in the field of tissue
engineering aiming at fabricating organized scaffolds with complex shapes [352–356]. In comparison
with the conventional techniques above listed, 3D scaffolds possess a better controllable pore size
and geometry as well as with good mechanical properties that are easily designed and fabricated
using 3D printing to mimic the ECM of the tissue to be regenerated [357]. Many 3D printers are now
available to fulfill the requirements of the ECM to be fabricated with heterogeneous structures or
interfaces [358,359].

To date, amongst these techniques, considering the morphology of native tendons and their
oriented fibrillary structure, the electrospinning process is selected for its capability to obtain fibrous
constructs, with an average diameter ranging between the nano- and the micro-scale, aimed at
resembling the architecture of the native tendon ECM [360]. The scaffolds produced via electrospinning
are considered and discussed. Electrospinning is a shaping technique that has become very popular in
the fields of biomaterials and tissue engineering due to its potential to produce fibers of micrometric
or even nanometric diameters via the application of an electrostatic field [361–364]. In detail, when
a high voltage is applied on the polymer solution, a pendant drop will be formed at the needle
tip. Two electrostatic forces will be applied on the formed pendant drop and are divided into
electrostatic repulsion and Columbic forces that are formed between the surface charges and exerted
by the external electric field, respectively [361,362,365]. The obtained structures have the advantage of
being three-dimensional and are increasingly comparable to real tendon structures. The microstructure
of the produced support matrices possesses a large specific surface area that aims to increase the cell
adhesion capacity, promote protein adsorption, and present more anchoring sites for receptors on
the cell membrane [363,365,366]. Such microporous architectures are in fact close to the morphology of
the collagen fibers constituting the tendon ECM, allowing a biomimetic character to strongly promote
cell colonization and differentiation [190,318,325,367]. The produced fibers can be adjusted and modified
by varying the polymer (concentration, conductivity, solvent) and electrospinning process parameters
(flow rate, voltage, collector, distance between needle and collector) [190,318,328,368,369]. Different
synthetic polymer scaffolds can be fabricated by optimizing electrospinning process parameters for
tendon tissue engineering. It is of great interest to understand how scaffold parameters including fiber
alignment and diameter size affect cell behavior by controlling and modulating their proliferation and
differentiation. The fabricated synthetic scaffolds can have a fiber diameter ranging from nanometers
(<1 µm) to micrometers (>1 µm) with fiber alignment ranging from randomly oriented fibers to aligned
fibers arranged in parallel. Fiber alignment is considered as a key factor for mimicking tendon ECM
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and can be modulated and optimized on the basis of the collector used. Randomly oriented fibers
can be obtained using a ground collector while those with aligned topography can be fabricated
using a rotator drum/mandrel [190,338,340,350,370] and parallel copper electrodes [301]. By using an
electrospinning technique, different scaffold shapes for tendon tissue engineering have been fabricated
such as aligned meshes [190,328,335,339,340,350,370], bundles [371], multilayer scaffolds [368], and
stacked and braided scaffolds [166,367,372]. In the biomimetic concept of tendon-like ECM, the effect
of fiber orientation and diameter size are evident on the mechanical properties of the produced
electrospun scaffolds (Table 1) as well as on the cellular biological response (Table 2).
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Table 1. Ultrastructure and mechanical matrix properties in tendon tissue engineering.

Materials Shape and Structure of the Scaffold Mechanical Properties of the Scaffold Ref.

Silk fibroin–collagen

As-spun scaffold→ diameter = 1.15 µm; pore size = 43.79 µm2

Cross-linked scaffold with ethanol→ diameter = 0.76 µm; pore size =
21.39 µm2

Cross-linked scaffold with methanol→ diameter = 0.91 µm; pore size
= 10.81 µm2

Cross-linked scaffold with ethanol→ Stress = 1.2 MPa;
Modulus of elasticity = 4.2 MPa

Cross-linked scaffold with methanol→ Stress = 2.92 MPa;
Modulus of elasticity = 9.78 MPa

[324]

PLGA–Silk fibroin

Knitted silk scaffold (3 yarns, diameter = 10 µm) coated with
electrospun PLGA nanofibers diameter = 200–700 nm

Thickness of the knitted scaffolds = 0.6–1 mm
Thickness of the coated hybrid scaffolds = 0.8–1.4 mm

Hybrid scaffold→ failure load = 70.8 N;
stiffness = 4.29 N/mm [325]

CS–PCL Random nanofibers = 215.79 nm
Aligned nanofibers = 175.82 nm n.d. [328]

PEUUR Four randomly oriented meshes with diameter: 0.28, 0.72, 0.82, 2.3 µm
Two meshes with aligned fibers with diameter: 0.46 and 0.53 µm n.d. [335]

PEUUR Aligned and randomly oriented fibers with different diameter size
<1 µm, >1–2 µm<, and >2 µm n.d. [336]

PU Aligned and random nanofibers with diameter of ≈657 nm;
porosity = 85%; total pore area = 61.8 m2/g

Aligned nanofibers→ Young’s modulus = 2500 kPa;
Ultimate strength = 3520 kPa; Max strain = 1.08

Random nanofibers→ Young’s modulus = 540 kPa;
Ultimate strength = 1130 kPa; Max strain = 1.03

[337]

PLLA/PEO loaded
with TSA

PLLA/PEO random mats→ diameter = 1.51 µm
PLLA/PEO/TSA random mats→ diameter = 1.44 µm

PLLA/PEO aligned mats→ diameter = 1.73 µm
PLLA/PEO/TSA aligned mats→ diameter = 1.63 µm

PLLA/PEO/TSA random mats→ Young’s modulus = 513.09
MPa; Tensile strength = 12.5 MPa

PLLA/PEO/TSA aligned mats→ Young’s Modulus = 51.59
MPa; Tensile strength = 2.70 MPa

[338]

PLGA
(85:15)/COL/PU

Randomly oriented scaffolds with average fiber diameter size of
1.92 µm and pore size of 174.7 µm2

Aligned fiber scaffold with average fiber diameter size of 0.712 µm and
pore size of 6.75 µm2

Random fiber 1.92 µm→ Young’s Modulus = 20.76 MPa;
Ultimate Tensile Strain = 56.16%; Tensile Stress = 1.17 MPa
Aligned fiber 0.712 µm→ Young’s Modulus = 38.11 MPa;

Ultimate Tensile Strain = 82.99%; Tensile Stress = 1.80 MPa [350]

PLGA
(50:50)/COL1/PU

Randomly oriented scaffolds with average fiber diameter size of
2.82 µm and pore size of 211.3 µm2

Aligned fiber scaffold with average fiber diameter size of 0.759 µm and
4.67 µm2

Random fiber 2.82 µm→ Young’s Modulus = 75.4 MPa;
Ultimate Tensile Strain = 28.55%; Tensile Stress = 0.86 MPa
Aligned fiber 0.759 µm→ Young’s Modulus = 52.46 MPa;

Ultimate Tensile Strain = 79.48%; Tensile Stress = 2.46 MPa
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Table 1. Cont.

Materials Shape and Structure of the Scaffold Mechanical Properties of the Scaffold Ref.

PLGA (85:15) Aligned fleeces→ diameter = 2.5 µm
Random fleeces→ diameter = 2.1 µm

Aligned fibers→ stress = 26.02 MPa and strain = 344%
Random fibers→ stress = 15 MPa and strain = 240% [190]

PCL and PLLA Sheets of aligned PCL→ diameter = 898 nm; pore size = 14.3 µm
Sheet of aligned PLLA→ diameter = 869 µm; pore size = 21 µm

Braided PCL scaffolds→ Young’s Modulus = 45.96 MPa;
Ultimate stress = 19.99 MPa; Ultimate Strain = 0.62 mm/mm;

Stiffness = 11.25 N/mm;
Stacked PCL scaffolds→ Young’s Modulus = 66.48 MPa;

Ultimate stress = 8.73 MPa; Ultimate Strain = 0.24 mm/mm;
Stiffness = 36.51 N/mm;

Braided PLLA scaffolds→ Young’s Modulus = 45.57 MPa;
Ultimate stress = 5.74 MPa; Ultimate Strain = 0.50 mm/mm;

Stiffness = 5.94 N/mm;
Stacked PLLA scaffolds→ Young’s Modulus = 118.47 MPa;
Ultimate stress = 5.76 MPa; Ultimate Strain = 0.22 mm/mm;

Stiffness = 24.31 N/mm;

[367]

PCL

Random multilayer scaffolds→ diameter = 1.76 µm; thickness =
0.75 mm

Aligned multilayer scaffolds→ diameter = 1.57 µm; thickness =
0.43 mm

Random multilayer→ Elastic Modulus = 12 MPa; Yield
Strength = 0.5 MPa

Aligned multilayer→ Elastic Modulus = 18 MPa; Yield
Strength = 1.5 MPa

[368]

PLLA
Mat thickness ranged between 0.14 and 0.17 mm

Aligned fibers = 430 nm
Random fibers = 450 nm

Aligned fibers→ Stiffness = 3.48 N/mm; Failure force =
1.88 N; Young’s Modulus = 22.76 MPa

Random fibers→ Stiffness = 0.07 N/mm; Failure force =
0.17 N; Young’s Modulus = 0.63 MPa

[369]

PLGA (85:15)

Aligned scaffold→thickness = 0.22 mm; diameter = 615 nm; pore
diameter = 4.228 µm; porosity = 80.745%; permeability = 7.87 ×

10−12 m4/N s
Random scaffold→ thickness = 0.19 mm; diameter = 568 nm; pore

diameter = 4.914 µm; porosity = 81.760%; permeability = 5.72 ×
10−12 m4/N s

Aligned scaffolds→ Elastic Modulus = 341 MPa; Yield
Strength = 9.8 MPa; Ultimate Stress = 12 MPa and Strain = 8%

Random scaffolds→ Elastic Modulus = 107 MPa; Yield
Strength = 2.5 MPa; Ultimate Stress = 3.7 MPa and Strain =

80%.

[370]

PLLA/COL1 (75:25) Individual aligned fiber with diameter = 0.36 µm and bundle diameter
= 624.9 µm

Bundle PLLA/Col1 (75:25)→ failure stress = 11.3 MPa; work
to failure = 0.225 J/mm3; [371]

PLLA/COL1 (50:50) Individual aligned fiber with diameter = 0.39 µm and bundle diameter
= 643.1 µm

Bundle PLLA/Col1 (50::50)→ failure stress = 6 MPa; work to
failure = 0.208 J/mm3;
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Table 1. Cont.

Materials Shape and Structure of the Scaffold Mechanical Properties of the Scaffold Ref.

PCL

PCL yarns with diameter = 208.5 µm
Yarn diameter size = 460.2 nm, pore size = 12.2 µm

Random PCL diameter = 484.5 nm, pore size = 2.1 µm
Aligned PCL diameter = 452.3 nm, pore size = 1.4 µm

Yarn PCL woven fabrics→ Young’s modulus = 70 MPa;
Ultimate tensile strength = 10.7 MPa; Elongation at failure =

48%
Random mesh→ Young’s modulus = 5.2 MPa; Ultimate
tensile strength = 2.2 MPa; Elongation at failure = 240%

Aligned mesh→ Young’s modulus = 13.6 MPa; Ultimate
tensile strength = 5 MPa; Elongation at failure = 45%

[373]

PCL/DT-NPs
PCL/DT-NP scaffold

PCL and PCL/DT-NP twisted yarn using 12 threads
Diameter range 313–346 µm

PCL→ Young’s modulus = 12 MPa; Strain at break =
3.4 mm·mm−1; Stress = 2.9 MPa

PCL/DT-NP2.5→ Young’s modulus = 18 MPa; Strain at break
= 3.9 mm·mm−1; Stress = 4.2 MPa

PCL/DT-NP5→ Young’s modulus = 22 MPa; Strain at break
= 4.2 mm·mm−1; Stress = 4.8 MPa

[304]

PLLA/PCL

Braided aligned PLLA and PCL nanofibers with diameter ≈990 and
945 nm, respectively.

Varying number of stitches (SPI) (8, 12, 16, 20 and 24)→↑ braid angle
from 47◦ to 67◦

PCL/PLLA (100/0)→ Ultimate strength = 50.57 MPa; ultimate
strain = 1.01 mm/mm; Young’s modulus = 121.21 MPa

PCL/PLLA (75/25)→ Ultimate strength = 20.30 MPa; ultimate
strain = 2.30 mm/mm; Young’s modulus = 78.71 MPa

PCL/PLLA (50/50)→ Ultimate strength = 4.64 MPa; ultimate
strain = 0.75 mm/mm; Young’s modulus = 14.79 MPa

PCL/PLLA (25/75)→ Ultimate strength = 2.78 MPa; ultimate
strain = 1.85 mm/mm; Young’s modulus = 5.25 MPa

PCL/PLLA (0/100)→ Ultimate strength = 13.47 MPa; ultimate
strain = 0.75 mm/mm; Young’s modulus = 48.50 MPa

Different braiding angles→↑ strength, Young’s Modulus and
yield strength and ↓ yield strain with the braiding angles of

67◦ (8 SPI) compared to 47◦ (24 SPI)

[374]

PLGA (85:15) Aligned fibers with diameters 320 nm, 680 nm, and 1.80 µm

The UTS and yield strength of the scaffolds remained
unchanged whether is the fiber diameter size.

The tensile modulus increased by increasing fiber diameter
size while elongation at break and ductility decreased when

the fiber diameter size in increased.

[375]
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Table 1. Cont.

Materials Shape and Structure of the Scaffold Mechanical Properties of the Scaffold Ref.

PCL Four PCL mats with randomly oriented fiber and different diameter
size; 0.11, 0.78, 1.88, and 3.43 µm

fiber diameters (range of 0.1–3.4 µm)→ Young’s modulus =
7.6–30.6 MPa;

ultimate tensile strength = 0.9–6.3 MPa; strain at break =
49–442%

[376]

PLGA (85:15)

Aligned nanofibers→ diameter = 615 nm; pore size = 4.23 µm;
porosity = 80.75%

Random nanofibers→ diameter = 667 nm; pore size = 4.91 µm;
porosity = 81.76%

n.d. [377]

PLGA (85:15)
Meshes of randomly oriented fiber with diameter nano-1 (390 nm),

nano-2 (740 nm), micro (1.42 µm)
Meshes of aligned fibers with diameter nano-2 (740 nm)

n.d. [378]

polylacticacids (PLLA); polycaprolactones (PCL); poly (lactic-co-glycolic) acids (PLGA); poly(esterurethane) urea (PEUUR); polyurethane (PU); polyethyleneoxide (PEO); chitosan (CS);
iron oxide nanoparticles (DT-NP); collagen type 1 (Col I). not determined (n.d.).

Table 2. In vitro assessment of teno-inductive properties of scaffolds on stem cells.

Cells Mechanical Properties of the Bio-Hybrid In
Vitro Major In-Vitro Outcome Ref.

BMSCs

After 21 days of culture
Acellular scaffold→ failure load = 61.5 N; stiffness

= 5.92 N/mm
Bio-hybrid scaffolds FGF (−)→ failure load = 68.2

N; stiffness = 5.53 N/mm
Bio-hybrid scaffolds FGF (+)→ failure load = 82.7

N; stiffness = 6.97 N/mm

Bio-hybrid scaffolds (FGF +/−)→ viable cells on the surface and in the depths of
the scaffolds with higher viability on scaffolds FGF +

↑mRNA expression Col I, Col III, fibronectin and biglycan and collagen ECM
content at day 14 and 21, respectively, in scaffold FGF (+) respect to FGF (−).

[325]

Human primary
BMSCs n.d.

Aligned/random scaffolds: No difference in cell adhesion, and fibroblast
morphology was observed onto both scaffold

Cells aligned parallel to the direction of the nanofiber orientation.
No difference has been detected for Tnmd gene expression on the aligned/random

scaffold while Col I and Col III was upregulated on aligned scaffold.

[328]
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Table 2. Cont.

Cells Mechanical Properties of the Bio-Hybrid In
Vitro Major In-Vitro Outcome Ref.

Rat BMSCs n.d.

Cells acquired spindle-like morphology on aligned fibers respect to random ones.
↓ cellular density by increasing fiber diameter size.

↑ cellular aspect ratio by increasing fiber diameter size and alignment
↓mRNA ColI a1, Tnmd and decorin by increasing fiber diameter and alignment
while ↑mRNA Scx by increasing fiber diameter and decreasing fiber alignment

[335]

Multipotent
fibroblastic

C3H10T1/2 cells
n.d.

↓ cell density and ↓mRNA decorin and Col I gene expression by increasing fiber
diameter size after 7 days culture while ↑mRNA Col I gene expression by

decreasing fiber diameter after 14 days culture
[336]

Human LF n.d.

Aligned/random nanofibers→ no difference in cell proliferation and adhesion
while ↑ collagen content in aligned nanofibers respect to random ones.

By applying 5% uniaxial strain for 24 h at a frequency of 12 cycles/min→ no
histological difference between aligned nanofibers under static and dynamic

conditions, ↑ collagen ECM in the aligned nanofibers under dynamic conditions.
Random nanofibers→ cells acquired a spindle-like morphology under only

dynamic conditions.

[337]

Mouse tail TSPCs n.d.

Aligned/random (+/− TSA)→↑ cell elongation and ↓ nuclear shape
Aligned/random (+/− TSA)→ no differences in cell proliferation and adhesion

Aligned-TSA→↑ tenogenesis protein (Col I, Col V, Tnmd and Epha4), ↑ ScxGFP
protein expression and mRNA expression of Scx, Mkx, Eya1, Eya2, Six2, HoxA11 and

Egr1, and ↑ HADC 3 and 4 and ↓ HDAC 1 compared to other groups,

[338]

Human iPSCs
from HFF (human
foreskin fibroblast)

n.d.

Aligned/random nanofibers: no differences in cell proliferation rate and adhesion.
Cells seeded onto aligned nanofibers present a fibroblastic phenotype while those

onto random nanofibers show a stellate-patterned morphology.
Aligned nanofibers: ↑mRNA of tendon-related genes (Scx, Mkx, Tnmd, HoxA11,

Epha4, Col Ia1) and mRNA of integrin a1, a2, a5, b1 and myosin II B.

[340]

AECs n.d.

Aligned/random→↓ DNA quantity and cell proliferation
Aligned/random→↑mRNA Snail and Vimentin, and ↑ α-SMA and ↓ Cytokeratin-8

protein expression
Aligned/random→↑mRNA Tnmd and Col I after 48 h culture.

[190]



Int. J. Mol. Sci. 2020, 21, 6726 35 of 78

Table 2. Cont.

Cells Mechanical Properties of the Bio-Hybrid In
Vitro Major In-Vitro Outcome Ref.

Human BMSCs n.d.

Cells were homogenously distributed and showed an elongated morphology on
the stacked scaffold compared to the braided ones.

Braided scaffolds: ↓ cell infiltration and ↓ cell distribution homogeneity.
Stacked scaffolds: ↑ cell proliferation and Col I ECM deposition with an enhanced

deposition in the case of PLLA scaffolds.
Both braided and stacked PCL and PLLA scaffolds upregulated the expression of

Scx with a strong enhancement on braided PLLA scaffolds at day 7 of culture.
Braided and stacked scaffolds: No differences were seen in the expression of

tenogenic transcription factor Mkx and ECM glycoprotein Tnc.
Stacked scaffolds downregulate the expression of Col Ia1 and Col IIIa1 compared to

the braided ones.

[367]

Human ADSCs

Aligned scaffolds showed significant increase in
Young’s modulus and yield stress along the axis of
fiber alignment compared to random one after 28

days of culture.

Aligned/random scaffolds→ no difference in cell proliferation, GAGs and Col I and
Col III content.

Both scaffolds expressed tendon related genes markers with ↑mRNA Tnmd and
Col3A1 in aligned scaffolds.

[368]

Human tendon
Progenitor Stem

Cells
n.d.

Aligned fibers→↑ tenogenic markers scleraxis, eya2, Col I, Col III, Col XIV, elastin,
integrin α1, α5, β1 and myosin II.

Random fibers: ↑mRNA Ocn and Alp gene expression compared to aligned fibers.
[369]

Human rotator
cuff fibroblast-like

cells

Aligned cellular→ Elastic modulus = 350 MPa;
Ultimate stress = 6 MPa; Yield strength = 6 MPa
Random cellular→ Elastic modulus = 120 MPa;
Ultimate stress = 1 MPa; Yield strength = 1 MPa

Aligned/random scaffolds: no difference in cell proliferation and adhesion.
Cells acquired an elongated shape on the aligned scaffolds while maintaining their

polygonal shape on the random ones.
Aligned scaffolds: ↑mRNA integrin α2 and Col I while similar mRNA gene

expression for α5, β1 and Col III respect to random fibers.
Similar matrix deposition in terms of Col I and Col III was seen with oriented

collagen matrix along the aligned fiber.

[370]
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Table 2. Cont.

Cells Mechanical Properties of the Bio-Hybrid In
Vitro Major In-Vitro Outcome Ref.

Human tenocytes
and human

ADSCs
n.d.

Human tenocytes→ cells elongated along the aligned fibers. All scaffolds types
(random, aligned woven fabrics) expressed Tnmd and Col I. ↑mRNA

tendon-related genes (Tnc, Col III, Col II and Tnmd) in woven fabrics compared to
aligned and random groups.

Human ADSCs→↑ proliferation rate, cell infiltration, and ↑mRNA of Scx, Col I,
Tnmd gene expression on woven fabrics compared to aligned and random groups.

Co-culture/tri-culture→↑mRNA expression Scx, Tnc, Tnmd, A-VEGFA and
ANGPT2 in the tri-culture system compared to other groups

Dynamic culture by applying a 4% strain at frequency of 0.5 Hz for 2 h per day
Dynamic/static culture→↑ Tnmd and Col protein and ↑ tendon related gene
expression under dynamic stretch with tri-culture system compared to static

condition.

[373]

Human ADSCs n.d.

Aligned PCL/DT-NP5 yarns under static and magnetic stimulation conditions→ no
differences in cell activity while ↑ in cell alignment and elongation along

the longitudinal direction of the fibers under magnetic stimulation. ↑mRNA Dcn,
Col Ia1, Col IIIa1, Tnc under both conditions while ↑mRNA Tnmd and Scx and ↓

mRNA osteogenic marker (RUNX2) only under magnetic stimulation.

[304]

Human
iPSC-MSCs n.d.

Three days under static condition then for 7 days under 3% strain at 0.25 Hz for
2 h/day.

PLLA/PCL scaffolds→↑ cell adhesion in PLLA compared to PCL. Cells were more
elongated on PLLA scaffolds with 8 SPI compared to other groups (PCL 8 SPI,

PLLA, and PCL 24 SPI).
PLLA/PCL scaffolds→ no difference in Scx and Tnmd mRNA expression while ↑ Col

I, Col III, RUNX2, Ocn mRNA expressions and ↑ in Col I and Tnmd protein
expressions in PLLA respect to PCL.

Static/dynamic conditions→↓ RUNX2 and Ocn mRNA expression under cyclic
condition compared to static one.

Different braiding angles→ cells showed elongated morphology on PLLA with 8
SPI while those seeded on PLLA with 24 SPI showed a rounder morphology. No

difference in SCX and TNMD between PLLA and PCL with 8 and 24 stitches, ↓ Col I,
Col III, RUNX2, and Ocn mRNA expression on PLLA with 8 SPI compared to 24 SPI

after 10 days culture under cyclic condition.

[374]
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Table 2. Cont.

Cells Mechanical Properties of the Bio-Hybrid In
Vitro Major In-Vitro Outcome Ref.

Human rotator
cuff fibroblast n.d.

The cells were more aligned and elongated in the fibers with larger fiber diameter
size.

Smaller fiber diameter size→↑ cell proliferation and ↑ in collagen and
proteoglycans synthesis.

Larger fiber diameter size→↑mRNA expression of Col I, Col III, Col V and Tnmd.

[375]

Human MSCs n.d.

1% strain at 1 Hz for 90 min twice a day
Aligned/random scaffolds→↑ cell proliferation on random scaffolds after 28 days of

dynamic culture with compared to other groups.
Aligned/random→ cells acquired an elongated morphology on aligned scaffolds

(static and dynamic conditions) and on random scaffolds under dynamic conditions
while those on random scaffolds remained cuboidal.

Static/dynamic culture→↑ Col I ECM content in aligned (static) and random
(dynamic) scaffolds while ↑ Col I and Col III ECM content on only aligned (dynamic)

Aligned scaffolds under static/dynamic culture→ no change in Col I and Tnmd
mRNA expression between groups; ↑ Col III, fibronectin, and Tenascin-C and ↓ Scx

mRNA expression under dynamic culture compared to static one after 28 days
culture. ↑ integrin α2, α5, β1 expression on aligned scaffolds under dynamic

condition.

[377]

Human rotator
fibroblast n.d.

Nano-/micro-fibers: ↑ cell adhesion, spreading and elongation by ↑ fiber diameter
size. No differences in cell viability and proliferation.

Nano-/micro-fibers: ↑ collagen content in nano-1 and nano-2 compared to micro
scaffolds while ↑ Col I and Col III in the micron scaffold compared to the nano ones.
↓mRNA expression α2 and ↑mRNA expression β1 and ↑mRNA expression RhoA

and Rac1 on the nanofibers compared to microfibers after 7 days culture
Aligned/random fibers: ↑ cell adhesion and alignment and ↓ cell proliferation onto

aligned fibers compared to random ones.

[378]

Bone-marrow derived Mesenchymal Stem Cells (BMSC); Amniotic Epithelial Stem Cells (AEC); Mesenchymal Stem Cells (MSC); Adipose-Derived Stem Cells (ADSC); induced Pluripotent
Stem Cells–Mesenchymal Stem Cells (iPSC–MSC); Tendon Stem/Progenitor Cells (TSPC); Ligament fibroblast (LF). not determined (n.d.).
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2.4.3. Tendon Biomimetic Scaffold Structure and Mechanical Properties

Taking into consideration the native tendon structure characterized by aligned collagen fibers,
electrospun scaffolds with aligned fibers seem to be an interesting target for mimicking tendon ECM
(Table 1). Full et al. produced PLGA/ColI/PU random and aligned fiber scaffolds using a static and
rotator mandrel collector at 300 rpm, respectively. Two different PLGA compositions were used:
85:15 and 50:50 for lactic acid/glycolic acid, respectively. The mechanical properties in terms of
Young’s modulus and tensile stress were higher in the aligned fibers with respect to random fibers
and especially for those fabricated with PLGA (50:50) ColI/PU [350]. Moffat et al. produced PLGA
scaffolds with aligned fibers using a rotating ground collector at a speed of 20 m/s. The elastic modulus
and the ultimate stress as well as the strain were three and 10 times higher than that of random
fibers [371]. Moreover, Russo et al. produced electrospun PLGA fleeces with randomly oriented
and highly aligned fibers using a cylindrical rotator drum at a rotational speed of 100 and 1000
rpm, respectively [190], while Zhang et al. [340] produced CS/polylacticacids (PLLA)/Gelatin/PEO
nanofibers with randomly oriented and aligned fibers using a ground collector and rotating drum at
1000 rpm [340], respectively. The produced PLGA and CS/PLLA/Gelatin/PEO fibers with aligned fibers
again showed better mechanical properties compared to the random ones [190,340]. Zhang et al. [338]
produced PLLA/PEO mats loaded with trichostatin A (TSA) with randomly oriented and aligned
fibers using a grounded and rotator drum with 1000 rpm speed, respectively. The ultrastructure
analysis of the produced mats showed that the insertion of TSA into the PLLA/PEO led to thinner fiber.
The mechanical properties of the aligned fiber groups appeared to be superior compared to the random
ones, since the tensile strength and Young’s modulus of the aligned fibers were about 5 and 10 times
higher than those of the random ones [338]. Moreover, Nitti et al. produced CS-PEO random and
aligned nanofibers using static and rotating drum collectors, respectively. The rotation of the collector
varied between 800 and 2500 rpm [339]. The produced aligned nanofibers showed an improvement in
the mechanical properties in terms of Young’s modulus, stress at break, and elongation at break by
increasing the rotational speed of the collector that allows obtaining highly aligned fibers with respect
to random nanofibers [339]. Yin et al. [370] produced PLLA aligned fibers using a rotator mandrel at
a rotational speed of 4000 rpm, and they demonstrated that the mechanical properties of the aligned
in terms of failure force, Young’s modulus, and stiffness were enhanced by 11, 36, and 50 times,
respectively, compared to random fibers [370]. Lee et al. [337] produced PU nanofibers with a diameter
of about 657 nm with aligned and randomly oriented fibers. Confirming the previous results, they
also demonstrated that fiber alignment improved the mechanical properties of the scaffolds in which
Young’s modulus and the ultimate strength were 5 and 3 times higher compared to the randomly
oriented fibers [337]. Some researchers have considered that the electrospun sheet matrix should not be
considered as a 3D environment, so it is necessary to modify the electrospinning set-up devices in order
to obtain an improved scaffold with 3D structure. For this reason, Orr et al. [366] fabricated aligned and
random PCL multilayer scaffolds by combining ceramic magnet and parallel copper electrode methods
using a reservoir containing distilled water. The assessment of mechanical properties revealed that fiber
alignment of the PCL multilayer scaffold enhanced the mechanical properties (elastic modulus, yield
strength, and yield strain) compared to the random PCL multilayer scaffolds [366]. Sensini et al. [371]
produced two different electrospun bundles with aligned fibers using two different composition ratios
75:25 and 50:50 for PLLA/Col I. The single fiber and the bundle diameter size were unaffected while
better mechanical properties were obtained with bundle PLLA/Col I (75:25) [371]. Moreover, Rothrauff

et al. [367] designed braided and stacked scaffolds made up of PCL and PLLA. Although the fiber
diameter size of the produced electrospun aligned polymer sheets was similar, higher Young’s modulus
and stiffness values were obtained with the stacked scaffolds, especially the PLLA ones [367]. Wu
et al. [373] fabricated 3D electrospun yarns made up of PCL mesh with aligned fibers with a final
diameter of 209 µm. When compared to the 2D aligned and random PCL mesh, 3D yarns exhibited
higher ultimate tensile strength and Young’s modulus [373]. Moreover, Tomàs et al. [304] proposed
the fabrication of PCL yarns with dodecanethiol nanoparticles (DT-NP) at different concentrations (0%,
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2.5%, and 5%). The resulting PCL/DT-NP meshes, after being collected onto the surface of a grounded
liquid bath, were pulled by a roller at a constant speed to form the threads. The resulting threads
showed an increase in their diameter by increasing DT-NP concentrations (44.9 µm vs. 184.9 µm
for PCL and PCL/DT-NP5). Twelve threads were twisted to form the different yarns in which their
diameter size was ranged from 313 to 346 µm. It was noticed that the incorporation of DT-NPs within
the PCL constructs had a positive impact on their mechanical properties since increasing DT-NPs
content (from 0% to 5%) increased in turn the Young’s modulus (from 12 to 22 MPa), strain at break
(from 3.4 to 4.2 mm·mm−1), and the stress (from 2.9 to 4.8 MPa) [373]. Czaplewski et al. [374] fabricated
braided submicron aligned fibrous scaffolds (BSMF) with a diameter of about 970 nm made up of a PCL
and PLLA blend with different PCL/PLLA ratios (100:0; 75:25; 50:50, and 25:75) and a varying number
of stitches per inch (8, 12, 16, 20, and 24). The mechanical characterization revealed that increasing
PLLA content influences negatively on the mechanical properties in terms of Young modulus, ultimate
strength, and yield strength. Moreover, it was noticed that braided scaffolds with 8 SPI (characterized
by a braiding angle of about 67◦) increase the Young’s modulus of the scaffolds compared to other
studied stitches per inch (SPI) values [374]. As mentioned before, the electrospinning technique allows
producing a fibrous matrix with a fiber diameter size in the nano- and micro-range. Few studies have
evaluated the effect of changing fiber microarchitecture on scaffold characterization, which could be of
a great concern in tendon tissue engineering. Erisken et al. [375] produced PLGA fibers with diameter
of 320 nm, 680 nm, and 1.80 µm by using different polymer concentrations to mimic tendon ECM
during the different stages of the healing process. In terms of mechanical characterization, they found
that while the tensile modulus increased by increasing the fiber diameter size, ductility and elongation
at break decreased [375]. In another study, Kim et al. [376] produced four PCL mats with different
diameter size in the range of 0.11–3.43 µm. They found after mechanical characterization that Young’s
modulus, ultimate tensile strength, and strain at break increased consequently by 4, 7, and 9 times when
increasing the fiber diameter size [376]. In another study, Cardwell et al. [336] fabricated different poly
(ester urethane) urea scaffolds with either random and aligned fibers possessing different diameter size
<1 µm, >1–2 µm<, and >2 µm. They found that smaller fiber diameter side exhibited a higher degree
of alignment compared to the larger ones [336]. Thus, the electrospun aligned fibers in the micrometer
range, due to their distribution along the longitudinal axis of the uniaxial tendon, possess better
mechanical properties compared to randomly oriented fibers and those in the nanometer range, making
the scaffold stiffer in the direction of applied force, allowing them to support the damaged tissues
during tendon regeneration.

2.4.4. Teno-Inductive Potential of Electrospun Produced Materials

Tendon biomimetic scaffold efficacy is proven by testing its teno-inductive potential on the seeded
cells, which can be modulated by the underlying substrate topography and fiber diameter. These
parameters may influence cell adhesion, proliferation, spreading, organization, and differentiation
toward the tenogenic lineage, and they may also control the deposition of ECM.

Different cell sources have been used to assess the teno-inductive potential of scaffold topography
(Table 2). Studies have assessed the effect of fiber alignment of electrospun scaffolds by producing
fibers with aligned and random orientation on cell teno-differentiation. In a study conducted by Moffat
et al. [370], they cultivated human rotator fibroblast-like cells onto PLGA scaffolds with random and
aligned fibers under static conditions. After 1-day culture, the cells started to elongate along the fibrous
matrix of aligned fibers and maintained the cell shape and organization up to 14 days of culture. After
this culture period, no differences were noted in cell proliferation and adhesion between aligned and
random fibers. Interestingly, the bio-hybrid PLGA aligned fiber–cell maintained their mechanical
properties in vitro compared to the random ones and allowed teno-differentiation characterized by
the upregulation of tendon-related markers and the deposition of Col I and Col III as ECM [370]. In
a similar study, Zhang et al. [340] compared the effect of fiber alignment of CS/PLLA/Gelatin/PEO on
human iPSC-MSCs without applying any mechanical stimuli [340]. Similar results in terms of cell
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proliferation, adhesion, and morphology as well as the upregulation of tendon-related gene markers
as Moffat et al. [370] on the aligned fibers were obtained in this study compared to the random ones,
confirming the importance of fiber alignment in cell guidance and teno-differentiation [340]. Leung et
al. [328] cultivated human primary BMSCs onto aligned and random fibers of CS-PCL scaffolds under
static conditions. Even if no differences in cell adhesion, fibroblast cell morphology, and Tnmd gene
expression were detected between random and aligned scaffolds, Col I and Col III were upregulated
only on the aligned fibers [328]. Moreover, Yin et al. [369] fabricated aligned and randomly oriented
PLLA scaffolds on which they evaluated human TPSCs potential [369] under static conditions. After 3
days of culture, they showed that the transcription factor genes Scleraxis and eya2, and the matrix gene
Col XIV, were expressed significantly in aligned fibers, while Ocn and Alp expressions were significantly
upregulated in the randomly oriented ones, implying that aligned fibers promote cell differentiation
toward the tenogenic lineage while those randomly oriented stimulate it to the osteo-lineage [369].
Russo et al. [190] assessed the effect of electrospun PLGA fiber alignment on AECs. In contrast to
the previous results obtained in terms of cell proliferation and adhesion, the fiber alignment seems
to affect cell activity, since the DNA quantity and cell proliferation rate decreased onto the aligned
fibers compared to the random ones. However, interestingly, after only 48 h of culture, the aligned
fibers were able to induce an early epithelial–mesenchymal transition (EMT) on AECs, revealing
the downregulation of epithelial markers (Cytokeratin-8) and upregulation of the mesenchymal ones
(Snail, Vimentin, and α-SMA). This AEC’s EMT was followed by their teno-differentiation, which
was detected after 48 h up to 28 days without using any tenogenic differentiation media. These
cells expressed mature tendon related genes (Tnmd and Col I) and Col I protein only on the aligned
fibers, which became, after 28 days of culture, expressed extracellularly, forming a sort of ECM [190].
Additionally, to the effect of fiber topography on AEC tenogenic differentiation, long term co-culture
has been conducted up to 28 days by using fetal tendon explants [184] with bio-hybrid AEC-PLGA
fleece. The results showed that AEC tenogenic differentiation accelerated to take half the time
compared to PLGA fleeces cultured only with AECs. AECs represent an important cell source to
evaluate the teno-inductive potential of electrospun aligned fibers since their epithelial origin allows
the verification of the mechanisms supporting epithelial cells (cuboidal in its morphology and negative
to Col I expression) differentiation toward mesenchymal cells of the tenogenic lineage (spindle-like
morphology) [190]. Based on previous observation of reduced expression of histone deacetylases
(HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers [367], Zhang et al. [338]
proposed a strategy to enhance the tenogenesis effect of aligned fibers by developing epigenetic
bioactive PLGA scaffolds with well-aligned fibers incorporated with Trichostatin A (TSA), an HDAC
inhibitor molecule. From the obtained results conducted under normal static culture, Zhang et al.
concluded that even if no difference has been detected in cell proliferation, cells seeded onto aligned
nanofibers incorporated with TSA showed higher elongated morphology with a higher expression of
ScxGFP protein (70% vs. 35% aligned nanofibers). Additionally, aligned nanofibers with TSA enhanced
the expression of tenogenic proteins (Col I, Col V, Tnmd, and Epha4), upregulated the expressions
of tendon-related gene markers (Scx, Mkx, Eya1, Eya2, Six2, HoxA11 and Egr1) and of HADC 3 and
4, while they downregulated HDAC 1 compared to other groups [338]. Moreover, Lee et al. [337]
investigated the effect of human ligament fibroblast on aligned and randomly distributed PU fibers
under 5% strain for 24 h at a frequency of 12 cycles/min. They observed that while no histological
differences were observed between both culture conditions (static and dynamic), an increase in collagen
ECM deposition was revealed in the aligned fibers subjected to cyclic culture conditions [337]. Moreover,
Subramony et al. [377] evaluated the combined effect of dynamic culture condition (1% strain at 1 Hz for
90 min for 2 days) and PLGA fiber alignment on human MSCs differentiation. They found that while
cells acquired an elongated morphology on aligned fibers under both culture conditions, cells seeded
onto randomly oriented fibers became elongated under only dynamic culture conditions. Col I and Col
III were upregulated in the aligned scaffolds subjected only to mechanical stimuli. An upregulation
in Col III, fibronectin, tenascin-C, and a downregulation in Scx has been shown in cells seeded onto
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the aligned fibers under dynamic culture conditions [377]. Wu et al. [373] evaluated the effect of
woven aligned fabric scaffolds on human tenocytes and human ADSCs alignment, proliferation, and
enhancement of their tenogenic phenotype compared to the random and aligned meshes [373]. When
cultured with human tenocytes (HT), all scaffold types expressed Tnmd and Col I proteins with
a significant increase in tendon-related gene markers in woven fabrics. When seeded with human
ADSCs, there was a significant increase in cell proliferation, infiltration, and tendon-related gene
expression of Scx, Col I, and Tnmd in the woven fabrics only [373]. Moreover, they performed co- and
tri-culture of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics,
and they found that all tendon-related markers (Scx, Tnmd, Tnc, Col I, and Col III) were upregulated
together with the vascular endothelial growth factor A (A-VEGFA) and angiopoietin 2 (ANGPT2) in
the tri-culture system compared to other groups. They also conditioned the tri-cultured constructs with
dynamic culture and demonstrated that dynamic stretch promoted collagen secretion and tenogenic
differentiation compared to the static condition [373].

Other authors have produced 3D scaffolds made up of multilayered aligned electrospun fibers
from which they fabricated braided and stacked scaffolds. Rothrauff et al. [367] evaluated the effect
of multilayered PCL–PLLA scaffolds of aligned electrospun nanofibers of two designs, stacked or
braided scaffold with human BMSCs under static conditions [367]. In this study, it was demonstrated
that both 3D scaffolds supported the expression of tenogenic markers with a greater effect noticed on
braided ones. Conversely, higher cell infiltration and distribution was observed in stacked scaffolds,
resulting in enhanced cell proliferation, collagen, and sulfated glycosaminoglycan contents [367]. In
another study, Orr et al. [368] evaluated the effect of multilayer PCL scaffolds of aligned and random
electrospun microfibers on human ADSCs, without any mechanical stimulation, where they did
not find any difference in cell proliferation, glycosaminoglycan, Col I, and Col III content between
the aligned and random groups. Moreover, both random and aligned fibers were able to express
the tendon-related genes with higher expression levels in the aligned fibers. Mechanically, the cellular
biohybrid aligned scaffold showed a significant increase in mechanical properties, since the Young’s
modulus and yield strength values after 28 days of culture were two times higher than those of
the acellular scaffolds [368]. Other studies were conducted to evaluate the effect of 3D yarn scaffolds
on cell activation. Czaplewski et al. [374] investigated the effect of fiber chemistry and braiding angle
of aligned braided submicron fibrous matrix (BSMF) on the tenogenic differentiation of hiPSC-MSCs
subjected to cyclic tensile stimulation (3 days under static condition then under 3% strain 25 Hz for
2 h/day for 7 days). Results showed that cells became fusiform in the PLLA scaffolds made up of 8
stitches per inch (SPI) compared to the 24 SPI. Moreover, while there was an upregulation of tendon-
and osteogenic-related genes markers (Col I, Col III, Runx2, and Ocn) on PLLA scaffolds under static
culture condition, cells cultured onto PLLA scaffolds under dynamic culture conditions downregulated
the expression of osteogenic markers (Runx2 and Ocn). The lowest braided angle (67◦ corresponds
to 8 SPI) favored cell elongation compared to 24 SPI (where cells were cuboidal) and downregulated
the expression of Col I, Col III, Runx2, and Ocn after 10 days of culture under cyclic condition. It seemed
that scaffolds braided with large angles (8 SPI) better supported iPSC-MSC tenogenic differentiation by
upregulating the tendon-related genes and downregulating those of osteogenic lineage under cyclic
culture condition compared to braided scaffolds with small angles [374]. In another study, Tomàs et
al. [304] produced PCL yarns with 5% iron oxide nanoparticle (DT-NP) concentrations and studied
their effect on human ADSCs under static and magnetic stimuli conditions [304]. These PCL yarns were
able to upregulate tendon-related genes (Tnmd, Dcn, Col I a1, Col III a1, Tnc, Scx) with a significant
increase in the expression of Scx and Tnmd under magnetic stimulation conditions. In addition, cells
exposed to magnetic stimulation downregulated osteogenic-related genes (Runx2) after 11 days of
culture. The magnetostimulation of hADSCs in the PCL/DT-NP5 tended to increase gene expression
that induced tenogenic commitment on hADSCs while it decreased the expression of genes related
with other lineages. They also demonstrated that the possible molecular mechanisms underlying
the regulation of fiber alignment on the stem cell differentiation of hADSCs toward the tenogenic
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lineage may be mediated by the Yes-associated protein/Trascriptional Coactivator with PDZ-binding
motif (YAP/TAZ) signaling pathways through which aligned fiber topography induced cell polarization
and cytoskeleton tension to trigger this effect [304]. Other groups have studied the effect of fiber
diameter on cell biological activities. In a study conducted by Erisken et al. [375], human rotator cuff

fibroblasts were cultured under static conditions onto PLGA scaffolds with different fiber size [375].
The cells exhibited more aligned and elongated morphology with high levels of tendon-related gene
markers (Col III, Col III, Col V, and Tnmd) on the larger fiber scaffolds while a high cell proliferation
rate and production of tendon-like matrix (Col I and GAGs) were detected on the smaller fiber scaffolds
after 28 days of culture [375]. In a similar study, Cardwell et al. [336] demonstrated that fiber diameter,
not alignment of PEUUR scaffolds, affected the differentiation of C3H10T1/2 toward the tenogenic
lineage [336]. They observed that cell density and proliferation decreased by increasing fiber diameter.
Moreover, after 14 days of culture, cells underwent tendon/ligament differentiation by upregulating
Col I and Scx markers on larger fibers, regardless of fiber alignment [336]. Similar results in terms of
cell density and proliferation were also obtained by a study conducted by Bashur et al. [335]. However,
in this study, it was noted that the expression of these markers (Tnmd, Col I, and Dcn) decreased with
decreasing fiber diameter while Scx gene expression increased by increasing fiber diameter after 7
days of culture [335]. Lee et al. [378] tried to model the various stages of repair post tendon injury
by preparing PLGA polymer meshes with randomly oriented fibers possessing different diameter
(nano-1 (390 nm) < nano-2 (740 nm) < micro (1420 nm)), and they produced only aligned fibers with
the nano-2 group to mimic the biological healing phase rather than the scar formation. It was observed
that cell growth and collagen synthesis were enhanced on the randomly oriented nanoscale fibers
compared to the micro-sized fibers. The organization of paxillin and actin on randomly oriented
fibers was enhanced on micro-sized compared to nano-sized fibers, while the expression and activity
of RhoA and Rac1, proteins from the Rho family of GTPases that were characteristic of the initial
proliferative phase of wound repair were greater on nanofibers. In contrast, early cell organization was
promoted by cell alignment accompanied by reduced cell growth and collagen production [378]. It can
be noticed that microfibers, which resemble the tissue remodeling stage and where collagen fibers
display a diameter and organization closer to those of healthy tendons, are preferable to maintain
the tenogenic phenotype of tenocytes rather than nanofibers that seemed to recapitulate the early stages
of tissue repair. Additionally, in vivo studies have been conducted with aligned and randomly oriented
electrospun scaffolds from which it has been confirmed the effect of using aligned fibers on enhancing
the tendon regeneration in rat Achilles tendon [338,340] and mouse skin models [369] (Table 3). Overall,
the results showed that fiber alignment and diameter topography affect cell behavior and could be
controlled and optimized to design a potential scaffold for tendon tissue engineering. In particular,
the discussed results underscore the complex relationship between the subcellular geometry and global
cell function. The activation of downstream signaling pathways depends on the cytoskeletal actin stress
fibers and focal adhesion of the cells in a specific 3D environment. This, in turn, affects cell functions
including adhesion, migration, morphology, proliferation, gene expression, and differentiation. In
addition, co-culturing the bio-hybrid scaffold with other cell types or cultivating it under cyclic
conditions allows the acceleration of further cell tenogenic differentiation and organization. However,
the differences in the results clearly show the effect of fiber alignment and diameter on regulating
cell teno-differentiation ability, which could be attributed to the differences in the physicochemical
properties of the used polymers as well as to the used cell sources that greatly affect cellular response
in vitro. Taken together, the electrospinning technique may represent a favorable technique to produce
fibrous matrices with appropriate structural and mechanical properties, making them useful for tendon
tissue engineering applications. It was confirmed that fiber alignment, diameter, and 3D structure
of scaffold (yarn, knitted, stacked, braided) enhance cell activity by promoting their differentiation
toward the tenogenic lineage while hindering other different lineages (i.e., osteogenic, cartilage).
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Table 3. In vivo performance of bio-hybrids constructs in tendon tissue engineering (↑ = increase; ↓ = decrease).

Animal Model, Tissue Site,
and

Duration of Implantation

Mechanical Properties of the Scaffold
Following Implantation Biological Outcomes Ref.

Rat Achilles Tendon model,
2 and 4 weeks

Aligned-TSA vs. Aligned vs. Random-TSA vs. Random
Stiffness = 29 vs. 25 vs. 20 vs. 19 MPa

Failure Force = 38 vs. 32 vs. 32 vs. 31 N
Stress at Failure = 6.6 vs. 5 vs. 5.5 vs. 4.2 MPa

Young’s Modulus = 51 vs. 33 vs. 31 vs. 32 MPa

• Aligned fibers: regulation of typical tendon structure with cell
alignment along the fibrous axis

• ↑matrix deposition and ↑mRNA Mkx, Tnmd, bgn, Fmod, Col I,
Col III, and Dcn on aligned fibers especially aligned-TSA vs.
other groups

• ↑ collagen fibril diameter in aligned-TSA vs. other groups

[336]

Rat Achilles Tendon model,
2 and 4 weeks

Aligned vs. random
Stiffness = 32.08 vs. 20.95 N/mm
Failure Force = 50.47 vs. 42.85 N

Stress at Failure = 5.91 vs. 4.90 MPa
Young’s Modulus = 20.24 vs. 14.40 MPa

Aligned nanofiber: ↑mRNA of tendon-related ECM gene markers
Col Ia1, Col Va1 and Bgn, Scx, HoxA11, Tnmd and Fmod and ↓
mRNA of Ocn and RUNX2. ↑ deposition of ECM (Col I and Dcn)
after 4 weeks implantation.

[340]

Mouse skeletal muscle, 1
and 6 weeks

Mouse skin, 1 week
n.d.

• Cytotoxicity model: linear cell distribution with an elongated
morphology and aligned collagen bundles formation on
the aligned fibers

• Aligned fibers: ↑ collagen I ECM deposition with
aligned structure.

[369]

not determined (n.d.).
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2.5. Growth Factors

2.5.1. A Lesson from the Role of Growth Factors In Vitro

Growth Factors (GFs) that are involved in tenogenesis and able to control progenitor cell biology
belong to a number of different families including transforming growth factors beta (TGF-β1, TGF-β2
and TGF-β3), bone morphogenetic proteins (BMPs: BMP-12, BMP-13 and BMP-14), Fibroblast Growth
Factor (FGF-2), vascular endothelial growth factor (VEGF), connective tissue growth factor (CTGF),
platelet-derived growth factor (PDGF), and insulin-like growth factor 1 (IGF-1) [379–382]. The majority
of data available to date on the teno-inductive roles of the different categories of GFs are derived from
evidence collected during developmental and regenerative tenogenesis.

GFs with roles in driving regenerative and reparative tenogenesis are synthesized and secreted by
a wide variety of cells. These include inflammatory cells, platelets, fibroblasts, epithelial cells, vascular
endothelial cells, and tendon progenitor cells. The GFs released in response to tissue damage bind to
external receptors on the cell membrane, leading to intracellular pathways involved in DNA synthesis
and transcriptional expression directly affecting multiple cellular processes including proliferation,
chemotaxis, matrix synthesis, and cell differentiation, all being able to influence the healing cascade.
In postnatal life, GFs begin to be activated from their storage inactive form, being orchestrated by
a dialogue occurring across different cell compartments that contribute to tissue homeostasis [3,51]. In
repair, tissue release of GFs is triggered, firstly, from the activated platelets straight after injury. This is
followed by GF-driven initiation of the inflammatory cascade, recruiting inflammatory cells to the site of
injury that, in turn, secrete additional GFs and amplify the inflammatory cascade. The stem/progenitor
tendon cells situated next to the injury area are activated and themselves produce GFs. Further,
mechanical loading placed on the injured tendon can further modulate GFs production and their
paracrine release [1,3,51,383]. This evidence seems to suggest that a physiological tendon-inductive
microenvironment requires multiple GFs over a specific temporal pattern and an optimized relative
ratio [3,379]. This complexity is likely the explanation for the lack to date of reproducible GFs
formulations for the induction of in vitro tenogenesis despite the consensus positions available for
osteogenesis and chondrogenesis [51,384]. However, several efforts have been made to validate
the in vitro delivery of GFs for tenogenesis, as demonstrated by the scientometric analysis (Figure 10).
Their efficacy will be evaluated below taking into account the differences in GF category, stem/progenitor
cells plasticity, stepwise tenogenic outcomes, and readout indices.
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2.5.2. TGF β

The transforming growth factor beta (TGF-β) pathway is the most recognized signaling pathway for
tendon development [380]. It is active in all stages of tendon healing, and its expression is upregulated
in differentiated tendon cells [115,382,384,385]. TGF-β induces extrinsic cell migration, regulates
proteinases and cell proliferation, and stimulates collagen production. Moreover, its expression
pathway in the human tendon is crucial in the tendon’s adaptation to mechanical loading [386]. In
mammals, three different TGF-β isoforms, (TGF-β1, -2, and-3) of the 25 kDa homodimer are expressed,
and in mice, the Tgfβ2−/−, Tgfβ3−/− double knockout genes give rise to a distinct phenotype resulting
in the loss of almost all tendons in the limbs, trunk, tail, and head [118]. TGF-β1 is a potent inducer of
the tendon transcription factor Scleraxis (Scx) [114] and Mohawk (Mkx) expression [118]. In particular,
during the development of tendons, it has been shown that the TGFβ-Scx pathway plays a critical
role in the initial differentiation of tendons, followed by the TGFβ-Mkx pathway playing an essential
role at the tendon maturation stage [120]. In vitro experiments demonstrating the TGF-β1 role on
in enhancing tenogenic marker expression have been performed using tendon stem/progenitor cells
(TSPC), mesenchymal stem cells (MSC), bone marrow-derived mesenchymal stem cells (BMSC),
as well as in embryonic stem cells (ESC), [114,387,388]. Zhang B et al. [342] showed that TGF-β1
treatment induced the differentiation of rabbit BMSC to tenocytes seeded in a three-dimensional (3D)
culture system based on a silicone chamber and collagen sponge scaffold. TGF-β1 supplementation
on BMSC seeded on collagen sponge constructs for 3 days increased the cell viability and mRNA
and protein expression levels of tendon-related marker genes, including Col I, Col III, Tnc, Scx, and
Tnmd. Meanwhile, TGF-β1 inhibited the mRNA expression of PPARγ adipogenic marker and Runx2
osteoblast-specific marker differentiation. Furthermore, by using the BMSC–collagen sponge construct
treated with TGF-β1 in a rat Achilles tendon in situ repair experiment, it was shown that enhanced
structural and functional tendon regeneration was achieved [342].

In human adipose-derived stem cells (ASCs) culture, TGF-β1 supplementation in the presence of
ascorbic acid (AA) to the culture medium was able to increase Scx genetic expression after 7 days of
culture following by an increase of a collagen type I expression [389]. These results were in agreement
with those obtained by Cheng et al. in human anterior cruciate ligament-derived stem cells (LSC)
cultured with TGF β1 where collagen type I and type III, tenascin-c, fibronectin, and a-smooth muscle
actin were significantly upregulated after treatment. However, simultaneous TGF-β1 with FGF-2
treatment increased the production of collagenous and non-collagenous extracellular matrix proteins,
supporting the idea that this cell type is able to generate a different response depending on the cytokine
input [390]. In canine adipose-derived MSC cells (ADSCs), TGF-β1 administration induced cell
differentiation toward tenogenic lineage when in the presence of IGF1 in a high-density culture and
in 3D co-culture with primary tenocytes. Cells treated with TGF-β1 and IGF1 expressed high levels
of Scx, and Col I, Col III, Dnc, and Tnmd expression proteins after 7 days of culture. After 14 days,
cells showed an expression of tendon-related markers to levels comparable with tenocytes. Treatment
enhanced extensive formations of intercellular contacts and produced a well-organized extracellular
matrix through the activation of the MAPK kinase pathway signaling members, adaptor proteins,
Shc, and ERK1/2 [391]. Recently, it has been demonstrated that TGF-β, physiologically secreted from
amniotic epithelial cells (AEC) and spontaneously accumulated during cell expansion, by inducing
the epithelial–mesenchymal transition (EMT) process, allows human and ovine AEC cells to loss
their epithelial morphology and to acquire a mesenchymal phenotype [191]. Treatment with a TGF-β
signaling inhibitor (SB-505124) induces the complete reversion of in ovine AEC that experienced EMT,
thus confirming the involvement of TGF-β1/Smad pathway in the process [191]. The production
of TGF-β1 and its induction of the EMT process could represent the first event in the promotion of
AECs differentiation toward the tenogenic lineage in a stepwise in vitro manner. It has also been
demonstrated that oAECs have an in vitro ability to differentiate into tenocytes in allo and xeno
co-culture with tenocyte explants and when exposed to teno-inductive scaffold topology [184,188,190].
A stepwise protocol using TGF-β1 to initiate tenogenic differentiation, followed by a combination of
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TGF-β/connective tissue growth factor (CTGF) to further maintain the teno-lineage, was also recently
reported to better promote tenogenic differentiation in BMSCs [226]. It was found that in BMSCs,
treatment with TGF-β1 alone firstly induced an in vitro elongated shape morphology and significantly
increased Scx, Col I, Tnc, and Thbs4 within 3 days of treatment. However, only when in the presence of
CTGF and TGF-β1 was elevated Tnmd mRNA and protein expression maintained at day 7 of BMSCs
culture. The efficacy of this stepwise inductive in vitro approach by using TGF-β1 and TGF-β1/CTGF
sequentially was further evaluated in a patellar tendon injury model establishing its effectiveness for
the induction of tenogenic differentiation. Yin et al. [226] demonstrated that the TGF-β1 signaling
pathway, through Smad2/3 activation, is essential for tendon differentiation in BMSCs and that it was
dominant over chondrogenesis. Indeed, even if the expression of Sox9 increased at day 3, its expression
decreased gradually during the optimized stepwise tenogenic induction protocol, and the mature
chondrocyte marker Col II was undetectable in inducted BMSCs. TGF-β1 supplementations were also
used to maintain the tenogenic differentiative status of equine tenocyte isolated from superficial digital
flexor tendon (SDFT) and cultured in vitro by employing the 3D hanging drop technique and cultured
as scaffold-free microtissue spheroids (3D) in low serum medium containing ascorbic acid and insulin.
This was made evident by significant increases in the expression levels of pro-tenogenic markers Col II
a1, Col III a1, Scx and Tnmd, as well as by enhanced levels of collagen type I and tenomodulin proteins.
After TGF-β1 treatments, equine tenocytes showed a typical spindle-like morphology and when
embedded in collagen gels, they became highly aligned with respect to the orientation of the collagen
structure following their migration out from the microtissue spheroids [392].

Despite the volume of information on the use of TGF-β1 isoforms in inducing in vitro tenogenesis,
few data are available on the other two isoforms, TGF-β2 and TGF-β3. Of note, Liu et al. [393]
have recently demonstrated that treatment with endogenous microRNAs miR-378a, with its TGF-β2
binding target, impaired tendon healing by suppressing collagen and extracellular matrix production
in miR-378a knock-in transgenic mice. They also showed that in vitro tenogenic differentiation was
suppressed from miR-378a in TDSCs isolated by transgenic mice [393]. These results seem to support
the TGF-β2 role in tendon differentiation and development and are in agreement with other reports in
which it was demonstrated that in vitro treatment with this TGF-β2 isoform induced tenogenic Col I
and Scx expression in mouse C3H10T1/2 stem cells [114]. Consistently, Havis et al. [115] showed that
the same typology of cell exposed to TGFβ-2 or TGFβ-3 upregulated Scx and Col I a1 gene expression,
and in contrast, TGF-β ligands significantly decreased the relative levels of the cartilage marker
Sox9. Moreover, by investigating the molecular mechanism involved, this study demonstrated that
the TGF-β2 ligand has the ability to direct mouse mesenchymal stem cells toward the tendon lineage
(Scx) at the expense of cartilage lineage (Sox9) via SMAD2/3 pathway activation [115]. Tendon-related
markers, Scx, Col I, and Tenascin-c (Tnc) were induced by exposing human BMSCs, ASCs, and TCs to
TGF-β3 in a two-step differentiation protocol [394]. However, despite this evidence confirming an
early tendon differentiation, a downregulation in mRNA expression of decorin (Dcn), a protein with
a crucial role in the collagen fibers maturation, has been documented in all cell types [394]. This led to
the suggestion of a mutually inhibitory interaction between TGF-β family proteins and decorin during
the process of collagen fiber maturation by demonstrating that an initial TGF-β3 dependent priming
step (0–3 days) is necessary to induce in vitro TCs differentiation followed by a second step of TGF-β3-
independent matrix deposition (3–10 days) [394,395]. A tendon-inductive in vitro role for TGF-β3 in
combination with tendon-derived ECM (tECM) extracts has been further confirmed on human-derived
mesenchymal stem cells (hASCs) plated on tissue culture or seeded on PCL-aligned scaffolds by
recording increased Scx and Tnc expression as well as a greater production of Col I protein [206].
TGF-β3-mediated teno-inductive effects have also been verified with equine embryo-derived stem
cells [396] and on hMSC and hBMNC cultured in fixed-length fibrin gels. The TGF-β3 hMSC and
hBMNC-treated cells spontaneously synthesized narrow-diameter collagen fibrils and exhibited
fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those
that occur during embryonic tendon development [397]. Even if the TGF-βs administration seems
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to be a promising inductive influence on in vitro tenogenesis, further in vivo studies for validation
are required. Of note, TGF-β dysregulation has been related to tendinopathy and overuse (excessive
physical activity) and is considered a major predisposing factor for the development of pathological
condition [386]. In addition, many clinical trials seem to support the idea that prolonged TGF-β1
stimulation may be responsible for reduced ECM remodeling, leading to scar formation [384]. On
the contrary, TGF-β3 administration to tenocytes minimized the extrinsic scarring, decreased tendon
adhesion, and promoted tendon healing by downregulating the expression of Smad3 and upregulating
the expression of Smad7 [398].

Beside the large availability of experimental research data on TGFβ roles in tenogenesis, further
investigations are still necessary to better understand the complex mechanisms of TGF-β role and
related pathways before considering their place in in vitro tendon-inductive protocols as well as to
move toward their clinical application.

2.5.3. BMPs

Bone morphogenic proteins (BMPs), BMP-12, -13, and -14 (also known as GDF-7, -6, and -5,
respectively) are members of the TGF-β superfamily, and they have individually been shown to
play important roles in chemotaxis, proliferation, matrix synthesis, and cell differentiation [167].
During tendon healing, BMPs are elevated at early stages and decrease gradually over time [399].
However, BMPs belong to the pleiotropic TGF-β superfamily and have diverse effects on cells. It
has been reported that BMP-2 drives osteogenic differentiation, assigning it an important role in
enthesis, meaning tendon to bone healing. BMP-2 was even able to induce new bone formation within
the tendon, which is not desired in intratendinous healing [382]. However, Hoffmann et al. [400]
demonstrated that the overexpression of constitutively active Smad8 molecules in mouse recombinant
BMP2-expressing MSCs (C3H10T1/2-BMP2 cells) was able to suppress in vitro cellular development
into osteo lineages and to induce tenogenic differentiation by enhancing Scx protein expression
and simultaneously downregulating osteocalcin and other osteogenic-related markers [400]. These
in vitro results, further supported by an in vivo Achilles tendon model, suggested that the Smad8
molecule inhibits the osteogenic pathway induced by BMP2 and promotes the tendon/ligament
differentiation route [400]. The BMP-derived effect and relative mechanisms in modulating tenogenic
differentiation were demonstrated in several preclinical settings [401,402] and reproduced in vitro on
different stem cells sources. Furthermore, in vitro BMP-12 supplementation was able to promote equine
BMSCs mesenchymal lineage differentiation by the induction of tendon-related markers including
tenomodulin and decorin, as well as osteogenic ones including alkaline phosphatase and von Kossa
staining [403]. BMP-12 treatment has been evaluated as teno-inductive on BMSCs and ADMSCs where
the upregulation of tendon markers including Scx, Tnmd, Col I, Tnc, and Dcn, was recorded and
confirmed in vivo (horse, dog, and rat) [382]. The BMP12 teno-inductive role was demonstrated in
Rhesus BMSCs where transfection with BMP-12 was sufficient to induce differentiation into tenocytes
by enhancing Col I and Scx, but not Col III mRNA expression [200]. Analogously, BMP-13 seems to
be involved in promoting in vitro tenogenic differentiation on BMSCs incorporated in an engineered
tendon matrix further confirmed by their effect on neotendon formation after implantation in an
experimentally induced tendon injury model [404,405]. It was recently established that growth media
supplemented with BMP-12, BMP-13 and ascorbic acid could induce pluripotent stem cells (hESC) to
undergo in vitro tenogenic differentiation under low tension O2 (2% O2) through a stable transcription
of tendon-linked and tissue specific gene upregulation combined with the deposition of a tendon-like
matrix and elongated and cell-to-cell synapsing [167]. A forward step in hESC tenogenesis will facilitate
the generation of enhanced in vitro studies. The teno-inductive influence of BMP-14 has also been
evaluated mainly on tissue-derived progenitor cells (TSPCs). It has no effect on TSPCs proliferation
but leads to a progressive loss in stemness by elevating the expression of Dcn, Scx and osteonectin,
but reducing Tnc, Col I, and Col II [387]. However, the effect of BMP-14 seems to be highly stem
cell-dependent. In multipotent adult adipose-derived rat MSCs, treatment with different concentrations
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of BMP-14 (0–1000 ng/mL) increased proliferation and induced more complete tenogenic differentiation
with an upregulation of tenogenic gene markers (Scx, Tnmd, and Tnc) and tendon-specific (collagen type
I, decorin, and aggrecan) markers codifying for ECM protein components [406]. Ciardulli et al. [196]
reported that 100 ng/mL of BMP14 promoted a time-dependent expression of tenogenic markers
(Col I, Col III, Dcn, Scx-a, Tnc, and Tnmd) by BMSCs and WJMSCs. Govoni et al. [202], studied
the teno-inductive influence of hBMP-14 (also called GDF-5) in an alternate adult MSC source.
In particular, hBMP-14 stimulation of hBMSC maintained on a synthetic three-dimensional (3D)
microenvironment underwent an early commitment toward the tenogenic lineage as consequence
of a combination biochemical and physical stimulation. In detail, under a multiphase 3D construct
consisting of a braided hyaluronate elastic band merged with poly-lactic-co-glycolic acid growth
factors (GFs)-loaded microcarriers, hBMP-14 was regularly delivered to hBMSCs stimulated with cyclic
strain. The cooperative biochemical and physical stimuli induced a significantly increased expression
of tenogenic markers, such as Col I and Col III, Dcn, Ssc, and Tnc after 3 days of dynamic culture [198].
The BMPs molecular signaling pathway involved in tendon differentiation is still unknown. BMPs can
transduce the signal through the Smad pathway or through the mitogen-activated protein kinase MAPK
pathway. Some research studied the BMPs pathway through changes in Smad-1/5/8 levels [407,408];
still, few studies have focused on the underlying molecular mechanism of tenogenesis. However,
a recent study demonstrated that BMP-14 promoted tenogenic differentiation in hBMSCs by activating
cytoskeleton reorganization signaling (stress fiber formation), e.g., keratin filament, activin A, cell
adhesion, and extracellular matrix related signaling [409], demonstrating the involvement of alternative
mechanisms of induction of in vitro tenogenic differentiation. In conclusion, despite the rigorous
evidence collected to date on the in vitro teno-inductive role of BMP-12, -13, and -14 on the different
typologies of tendon-related and adult MSCs, in vivo studies validating a physiological role and
potential clinical impact of this GFs superfamily remain to be performed.

2.5.4. CTGF

Connective tissue growth factor (CTGF) is involved in skeletal development and
differentiation [410]. CTGF induced fibroblastic differentiation in hBMSC, increasing the expression
of Col I and Tnc and reducing the capacity to undergo non-fibroblastic differentiation [384]. CTGF
is able to induce mineralization in human periodontal ligament stem cells, but it is able to increase
fibroblastic-related gene expression when combined with TGF-β1 [411]. Based on the in vitro evidence,
CTGF seems to exert a dual differentiation effect toward fibroblastic or osteoblastic lineages modulated
by the microenvironmental conditions [384].

More recently, CTGF was considered to be able to promote the in vitro tendon differentiation
of mouse ASCs in a dose- and time-dependent manner. CTGF increased tendon-related genes and
proteins such as Scx, Tnmd, and Col Ia. Its influence, mediated by MAPK kinase activation, induced
ERK1/2 and FAK phosphorylation within 5 min and 15 min, respectively. The FAK/ERK1/2 signaling
role in CTGF-induced tenogenesis was also demonstrated by inhibiting ASCs’ tenogenic differentiation
and proliferation, blocking both the pathways by selective inhibitors SCH772984 and PF573228,
respectively [412]. Of note, the use of antagonists has been associated with a parallel upregulation
of chondrogenic (Acan) and osteogenic-related genes (Runx2). This teno-inductive CTGF-mediated
pathway was confirmed in vivo with rat tendon CD146+ stem/progenitor cells by generating an siRNA
knockdown of focal adhesion kinase (FAK) and extracellular signal-regulated kinases ERK1/2 [399].
Little information is available to date on the role of CTGF in tendon somatic cells. TSPCs exposed to
CTGF and ascorbic acid in vitro increased ECM deposition by generating a cell sheet that can be used as
an engineered tendon tissue for transplantation [214]. Furthermore, a CTGF transection construct was
capable of inducing tenogenic differentiation of rat TSPCs in vitro, upregulating the expression of Scx,
Tnmd, Col I, and Tnc. CTGF promoted its effect on TPSC via the Smad1/5/8 signaling pathway. The role
of CTGF has also been confirmed in vivo. Knockdown of CTGF expression diminished tenocyte
differentiation [413]. This study provided the evidence for the existence of a direct interaction between
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CTGF and BMP-12 involving the CR domain of CTGF. To date, it remains unclear how CTGF regulated
tenogenic differentiation and whether its effect is linked to other GFs signaling and, in particular, to
TGF-β family signaling pathways. Further investigation of CTGF and its potential crosstalk with
TGF-βwill likely provide an in-depth understanding of its roles in tendon regeneration [384].

2.5.5. FGFs

Basic FGF (bFGF) is a member of the heparin-binding growth factor family and is known to be
a potent stimulator of angiogenesis and cellular migration [382]. In vitro bFGF supplementation
promoted the maintenance of differentiated cells despite the lower proliferation of hTSPCs in
a TSPC–tenocyte co-culture [414]. Gonclavez et al. [389] reported that bFGF in combination with
ascorbic acid exerted a teno-inductive in vitro effect on human amniotic fluid stem cells (hAFSCs) and
adipose-derived stem cells hASCs. In both the cells, typologies increased the expression tendon-related
markers (Scx, Tnc, Dcn, Col I a1, and Col III a1), even if hAFSCs appeared to be more responsive to
bFGF stimulus [389]. Independently of stem cell source, the bFGF effect was strictly dose-dependent
in vitro. Human BMSC exposed to low dosages (3 ng/mL) of FGF-2 displayed a biphasic response
where initial proliferation was followed by differentiation through the upregulation of Col I, Col III,
and Fnc. On the contrary, neither differentiation nor proliferation influence was induced by a high
dose (30 ng/mL) of FGF-2 [415]. The tenogenic role of bFGF remains to be confirmed in vivo where
contrasting evidence has been reported. Two in vivo studies using BMSCs lentiviral transfected with
bFGF demonstrated the absence of any healing influence when cells were transplanted in a rat Achilles
tendon defect model [416,417]. On the other hand, a direct bFGF administration through a hydrogel
implantation apparently increased the ultimate strength and higher histological scores in a rat rotator
cuff injury experimental model. This preclinical setting demonstrated that bFGF may have a role
in driving tenogenic progenitor cells recruitment and activation by increasing at the healing sites
the number of MSCs upregulating Scx [418]. On the contrary, FGF-4 use did not increase Scx expression
in mouse limbs in both early and late developmental stages with no negative effects on Scx and ColIa1
gene expression in mouse C3H10T1/2 cells [384]. Similar conclusions were obtained by another study
where a slight effect of FGF-4 on the differentiation of TSPCs isolated from the axial and limb in a series
of developmental stages were recorded [419].

2.5.6. IGF-1, VEGF, and PDGF

IGF-1 is involved in multiple processes in normal body growth and healing. It mediates all
stages of wound healing, especially the inflammatory and the proliferative phases. IGF1 is known
to play a critical role in the growth and adaptation of various musculoskeletal tissues (including
skeletal muscle, bone, and cartilage), but less is known about tendons [382]. IGF-1 mainly seems
to stimulate the proliferation and migration of fibroblasts and other cells at the injury site and to
increase the production of collagens and other ECM components in these cells [420]. However,
the in vivo evidence collected to date did not demonstrate any tenogenic role of IGF-1 in mediating
the host–stem cells dialogue during healing. Indeed, adenoviral BMSCs transfected with IGF-1 did not
enhance stem cell ability in stimulating transplanted tendon to recover its biomechanical property as
well as to improve new ECM deposition [421]. However, the in vitro evidence remains limited and
non-homogeneous in order to make any conclusion on the tenogenic role of IGF-1. For instance, Liu
et al., reported that a combined treatment of IGF-1 and BMP-2 on rat TSPCs significantly increased
adipogenic differentiation through a prostaglandin E (PGE) 2-mediated pathway [422] while Holladay
et al. [387] reported that in vitro IGF-1 treatment alone promoted the proliferation and maintenance of
TSC phenotypes, leading to a slight increase in Scx, no influence on Col I, and a downregulation of
Col II expression [387]. The basal expression of the angiogenic factor, VEGF, is low in healthy tendon
while it is reactivated during tendon healing [50,52,188] and upregulated in tendinopathy [48,423–425].
Despite VEGF having an effect on stromal cells, it is a highly specific growth factor for endothelial
cells [426]. Analogously, it stimulates angiogenesis during tendon healing. Activation occurs early after
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tendon injury and persists during the whole inflammatory phase [50,52,188] followed by its reduction
for modulating blood vessels organization during the proliferative and remodeling phases [427,428].
VEGF effects on in vitro tenogenic differentiation were evaluated on human tenocytes cultured
with different concentrations of growth factor. VEGF was able to enhance tenocyte proliferation as
well as to increase Scx and Col I expression by downregulating Col III [429]. More consistent are
experiments performed to investigate the tenogenic in vitro influence of VEGF. However, most of these
experiments have been performed using VEGF in combination with other growth factors [201,384], and
the relative results will be discussed in the “Comparative Studies with Growth Factors” Section 2.5.7
below. Platelet-derived growth factor (PDGF-BB) is a potent mitogen for cells of mesenchymal origin,
including fibroblasts, smooth muscle cells, and glial cells [430]. Several reports seem to confirm that
PDGF plays an important role in tendon tissue homeostasis. Indeed, PDGF was essential to stimulate
collagen, non-collagen protein production, and DNA synthesis in different types of rabbit tendons
(intrasynovial intermediate and proximal segments of deep flexor tendons, and extrasynovial peroneus)
during short-term explant cultures acting in a dose-dependent manner [431]. Different studies take
advantage of PDGF supplementation for enhancing in vitro tenocyte activity, for inducing phenotype
conversion of different stem cells toward tenocyte-tissue lineage, and for augmenting tendon tissue
responses to biomaterials [432]. In this context, PDGF-BB supplementation or its incorporation in
biomimetic scaffolds was able to stimulate the proliferation of rat tenocyte [433] and to induce tenogenic
differentiation in ADSC [432].

2.5.7. Comparative Studies with Growth Factors

The definition of an optimal protocol for in vitro tenogenic differentiation remains to be determined.
Difficulties emerge in drawing together an efficient in vitro approach when we consider the range of
different culture conditions, time points, and experimental setups proposed to date in the absence
of meaningful and robust conclusions. In this context, the in vitro role of GFs is further complicated
by the evidence that tenogenesis requires a combination of GFs with controlled concentrations and
durations of exposure. However, some comparative experiments as well as in vitro trials of GFs
co-supplementation merit consideration.

Comparative studies of GFs teno-inductive capacity seem to suggest a central role of TGFβ
superfamily GFs members. hADSCs and hAFSC underwent comparative analysis of the in vitro
influence of EGF, bFGF, PDGF-BB, and TGF-β1 [37]. The expression profiles of tendon-related genes
(Col I, Col III, Dcn, Tnc, and Scx) revealed that TGF-β1 and EGF were the more efficient GFs in
inducing an early (at day 7) upregulation of Scx (10 times over the other GFs) and Tnc, respectively.
The influence of GFs changed in the later culture intervals. EGF controlled Col III expression at day 14,
while TGF-β1 and PDGF-BB upregulated Col I (10 times more than the other growth) at day 21. Of
note, the study demonstrated even that the expression profiles of tendon-related genes are clearly stem
cell source-dependent, thus suggesting a different ability in human AFSCs and ADSCs in undertaking
in vitro tenogenic lineage commitment [37]. Furthermore, TGF-β1 treatment was recently identified as
a potent tenogenic phenotype convertor in rat BMSCs where its supplementation was able to promote
the greatest upregulation of tenogenic-related genes and proteins in comparison to BMP-12, CTGF,
and their combinations [226]. In addition, TGF-β1 in combination with BMPs appeared to be essential
to preserve Scx-GFP expression levels in primary tenocytes after several days of culture. [282].

A further confirmation that TGFβ superfamily member (TGF-β3) may be early tendon inducer
(inducing Scx overexpression) was demonstrated by testing the influence of different combinations of
GFs (BMP-12, b-FGF, TGF-β3, CTGF, IGF-1) on human ADSCs, BMSCs, and TC during a two-step
differentiation protocol in the presence of ascorbic acid [394]. Of note, a late inhibitory role of
TGF-β3 was demonstrated through the downregulation of the tendon markers Dcn. On the contrary,
BMP-12, b-FGF, and AA were active in inducing Dcn upregulation. Furthermore, the results confirmed
a conserved role of TGF-β3 that was able to promote an early teno-inductive effect and a late inhibitory
influence on collagen fiber maturation on all cell typologies. Moreover, BMP-12 as well as CTGF and
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IGF-1 seem to be subordinated to TGF-β3 in the induction of tendon-specific transcription factors
with a late role in modulating the production of tendon-specific extracellular matrix molecules. TCs
were the most responsive cell population to GFs stimulation. Although TC displayed basal values of
Col I a1, Tnc, and Dcn expression similar to those recorded in ASCs and BMSCs, their response to
a combined GFs stimulation was faster and of the greatest amplitude. TC primed with TGF-β3 showed
an earlier overexpression of Scx and Mkx (first 3 days) followed by a marked upregulation of Dcn, Tnc,
and Mkx [394]. The findings obtained in this study showed a crucial role for TGF-β3 as an inducer of
tenogenic differentiation. However, its opposing effect in the late phase of tenogenesis as an inhibitor
of fiber maturation suggests the need of a two-step protocol with the other GF to achieve effective
tenogenic differentiation.

In another study, TGF-β3 and BMP12 tenogenic combinatory effects were demonstrated in
equine ADSCs cultured in monolayer or in 3D on decellularized tendon matrix scaffolds preloaded
with the GFs [434]. Mechanistic insights on TGFβ GF superfamily pathways were investigated by
another comparative study where the tenogenic differentiation of mouse limb MSCs were induced
using FGF-4, TGF-β3, TGF-β2, and PD18. A greater tendon-inductive influence was achieved by
activating TGF-β2/3 signaling [115] that, additionally, played a role in suppressing cartilage marker
Sox9 expression. However, no differences in the effects of TGF-β2 versus TGF-β3 nor synergetic effects
were observed.

Gene response profiles of mice TSPCs seem to confirm that the tendon-inductive influence
of TGF-β2 does not require any mechanical loading in addition to FGF-4. TGF-β2 upregulated
Scx expression independently of developmental stages of origin, whereas mechanical loading
affected late-stage TSPCs. When this former effect was compared for the two GFs, a persistent
stimulatory tendon-inductive influence was confirmed for TGF-β2, whereas FGF-4 appeared to be
anti-tenogenic [419].

In addition, the TGF-β tendon-inductive influence could require an inductive surrounding
microenvironment. Indeed, while TGF-β3 or TGF-β3/BMP-12 upregulated Col IIa1, Col IIIa1, Tnc,
Scx, and Mohawk in equine MSC in a monolayer culture, in 3D conditions (seeded on tendon matrix),
they overexpressed Dcn and osteopontin by downregulating Smad8. Scaffolds preloaded with TGF-β3
or with TGF-β3/BMP12 promoted a tenocyte-like phenotype and improved cell alignment. This
study showed that growth factor-induced tenogenic differentiation was also markedly altered by
topographical constraints of decellularized tendon tissue by suggesting the idea that TGF-β3 may
play a key role as mediator for tenogenic induction, while BMP-12 served as a modulator [434].
On the contrary, a tendon-inductive role for BMP-12 and BMP-12+IGF-1 has been proposed in
a further study [435] carried out in equine BMCS supplemented alone or in combination with FGF-2,
TGF-β1, IGF-1 (BMP-12+IGF-1, TGF-β1+IGF-1, and/or BMP-12+FGF-2). The concept of the authors
was substantiated by BMP-12 increasing the expression of tendon-related genes Col III and Scx
over the control cells at day 10 (cultured in 3D over a collagen hydrogel) compared to other GFs
formulations (5, and 3-fold, respectively, over the levels induced by TGF-β1 and TGF-β1+IGF-1). Of
note, BMP-12-induced Scx expression was significantly decreased by FGF-2 co-supplementation. In
addition, BMP-12+IGF-1 significantly increased Col III expression over all groups (except BMP-12,
BMP-12+FGF-2, and CTR) while BMP-12 and BMP-12+IGF-1 significantly stimulated Dcn [435].

The combined tenogenic differentiation action of the BMP-14, TGF-β3, and VEGF formulation
was demonstrated on rabbit BMSCs [201]. In this study, the teno-inductive influence was evaluated
in both 2D and 3D (fibrin-based constructs) cultures at 7 and 14 days by analyzing cell metabolism
and collagen content, the gene expression of tenogenic markers, and the histological cell distribution
and collagen deposition within 3D constructs. The results demonstrated that this formulation was
the most effective in enhancing BMSC expression of Col Ia1, Col IIIa1, Tnc and Tnmd in both 2D and
3D cultures higher in BMSCS [201].
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2.6. Co-Culture

The co-culture technique has been widely used in tissue engineering of cartilage, bone, kidney,
liver, lung, heart, and nerve to direct stem or progenitor cells differentiation [436]. The scientific
production about co-culture in the field of in vitro tendon differentiation is still in development as
the scientometric analysis has not yet revealed prominent available papers (Figure 11).
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Co-culture aims at reproducing in vitro the molecular tissue microenvironment that stem cells may
experience after transplantation. This cultural approach in theory may reproduce in vitro the complex
stem cell host tissue paracrine dialogue undertaken during tissue development and regeneration by
providing the tissue specific bioactive stimuli. The co-culture with fetal tissue may represent an in vitro
system closer to that addressing tissue development, while the co-culture with TDSCs or adult tissues
are probably more clearly referable to tissue repairing and regeneration.

From a methodological point of view, two types of co-culture may be performed: a direct and
indirect incubation. Direct co-culture systems consist of two or more distinct cell types mixed and
cultured together where cells interact with each other using the combination of paracrine, cell–ECM
adhesion, and gap junction-mediated bioactive molecule signaling. In indirect co-culture systems, two
or more distinct types of cells share the same environment without any physical contact. An indirect
co-culture reproduces the environments of native tissue through the release of soluble factors in order
to reproduce in vitro the dialogue between two different cell types [436].

Evidence in the literature showed the efficiency of co-culture techniques with fetal tendon explant
with respect to fetal tenocytes and adult tissue or tenocytes. In fact, fetal explant co-culture may
represent a good in vitro model to mimic tendon development. Fetal tendon is a very plastic tissue that
during adulthood undergoes profound transformations. A study on sheep performed by Russo et al. [5]
showed the modifications that occurred during tendon aging. For instance, fetal endotenon was more
developed than in adult and cell phenotype shift during tendon maturation. In fact, in the fetal tendons,
the cells were large with a rounded shape and were located on a layer of more compacted cells that
expressed osteocalcin, VEGF, and nerve growth factor (NGF). During tendon development VEGF, NGF,
blood vessels, and nerve fibers decreased. Moreover, contrary to adult specimens, cells in mid and late
fetuses endotenon showed pluripotent stem cells markers. In adult tissue Col I, Col III, Scx B, Tnmd,
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Thbs4, and osteocalcin underwent dramatic reductions. In addition, TGF-β1 expression underwent
a similar decrease [5].

According to this evidence, it can be supposed that signals from fetal tendons are different and
more effective with respect to adult ones or tendon-derived stem cells alone. The hypothesis providing
that fetal tendon explant can drive teno-differentiation more efficiently than fetal tenocyte or adult
explant or tenocyte was demonstrated by Barboni et al. [184]. In particular, the transwell system of
fetal explants and ovine Amniotic Epithelial Stem cells (oAECs) led these cells to differentiate toward
the tenogenic lineage by a stepwise differentiation process. The exposition of oAECs to fetal tendon
explants for 28 days results in a higher increase of tendon-related genes such as Scxb, Tnmd, Col
I, Thbs4, increased protein Col I, and connexin 32 and 43, with respect to the oAECs co-cultured
with adult tendon or tenocytes. Moreover, oAECs acquired a tenogenic phenotype as they organized
themselves in 3D tendon-like structures [184]. Tendon differentiation occurred with a stepwise process
confirmed by the fact that oAEC expressed mesenchymal markers after co-culture, such as α-SMA,
which they did not possess when initially harvested [174,184,185,191,192].

The co-culture with tendon fetal explants is able to accelerate the tenogenic commitment of oAECs
when seeded on a PLGA electrospun scaffold. In fact, oAEC on a high aligned PLGA scaffold displayed
an early commitment toward tenocyte without any further stimuli, but in a co-culture system with fetal
tendon, explant Tnmd and Col I gene expressions were significantly higher, as well as Col I protein
deposition and orientation. Moreover, in this research, the stepwise differentiation process of oAEC
was also evident through the upregulation of mesenchymal markers, such as Snail, Vimentin, and
α-Sma and the downregulation of epithelial marker cytokeratin-8 [190].

Instead of tissue explants, sometimes, TDSCs are used in a co-culture system to induce tendon
differentiation in stem cells, as they are tendon-derived stem cells and express tenogenic markers [21].

The choice to use TDSCs instead of the tissue explant as stimuli to drive stem cells’ tendon
commitment may be due to the fact that native tissue is not often available, and a co-culture with
cells could be more manageable than ones with tissue. Even if cell-to-cell interaction is different
from tissue–cell interaction, a co-culture of TDSCs and stem cells could be useful to investigate
the relationship between these two different cell types as a possible in vitro model to study tendon
healing and regeneration.

Some researchers proved the positive outcome of co-culture between TDSCs and fetal or adult stem
cells. The study of Muttini et al. [188] showed that oAECs are able to undergo tenogenic differentiation
also in co-culture with tenocytes collected from adult equine tendons. The most interesting outcome was
that the differentiation occurred infra-species (ovine/equine) as oAECs acquired tenogenic phenotype
and genotype displaying Scx, Col I, and Col III gene expression as shown in Barboni et al. [184].
Pre-differentiated oAECs were also tested in vivo. After an in situ injection of differentiated oAECs in
horses with acute tendon lesion, histological and immunohistochemical examinations in the explanted
tendons demonstrated the low immunogenicity of oAECs as well as their regenerative potential in
producing ovine collagen type I amongst the equine collagen fibers [188].

Li et al. [193] used both direct and indirect co-culture to induce tenogenic differentiation in human
amnion-derived mesenchymal stem cells (hAMSCs). They cultivated hAMSCs with human anterior
cruciate ligament fibroblasts (hACLFs) in a monolayer co-culture and in a transwell co-culture with
and without growth factors stimulation (bFGF and TGF-β1). The final outcome demonstrated that
hAMSCs in a transwell system stimulated with growth factors displayed a higher density of Col I, Col
III, fibronectin, and Tnc, as well as mRNA expression of tenogenic markers Col I, Col III, fibronectin,
and Tnc [193].

Wu et al. [437] demonstrated the advantage of the direct co-culture of rat TDSCs with BMSCs
at a 1:1 ratio. At the end of the experiment, MSCs significantly upregulated tenogenic gene markers
expression (Tnmd, Scx, Tnc, and Dcn), collagen matrix production, and enhanced also tendon injury
healing in vivo [437]. Rat BMSCs cultured in a transwell system with tenocytes, proliferated after 3
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days, and showed an upregulation of tendon/ligament-related genes Col I, Col III, Tnc, and Scx after
14 days of culture [438].

Schneider et al. [391] showed that canine MSCs in high-density direct co-culture with canine
tenocytes are able to undergo tenogenic differentiation with a combination of growth factors IGF1 and
TGFβ1 and through cultivation with the spent media from primary tenocytes. Immunoblotting and
electron microscopy analyses on MSCs demonstrated the upregulation of Scx, Col I, Col III, Dcn, Tnmd,
and b1-Integrin gene expressions as well as those of Shc and Erk1/2 belonging to the mitogen-activated
protein kinase (MAPK) pathway [391].

Canseco et al. [439] experimented tendon differentiation in a direct co-culture system with pig
MSCs and autologous cells derived from anterior cruciate ligament (ACL). MSCs and ACL were
co-cultured in different ratios; however, significant results were detected in the 50/50 ratio. In fact, in
this case, MSCs displayed the highest Col I and Tnc expression and the highest Col I/Col III ratio [440].

Additionally, the tenogenic potential of human ASCs were tested under a co-culture system.
The direct co-culture of hTDSCs with hADMSCs at 1:3 ratios was reported to promote the expression
of tenogenic genes such as Tnc and Scx [440].

An indirect co-culture system with tenocytes was able to induce the differentiation of hADMSCs
into tendons-like cells increasing the expression of Scxb, Thsb4, and Tnmd genes and protein [441].

Human menstrual blood stromal stem cells (MenSCs) successfully differentiated after 3 weeks
of indirect co-culture with Achilles tendon cells (ATCs) into tenogenic cells. This technique induced
the production of the extracellular matrix and led to the expression of the specific Achilles tendon
markers in MenSCs, such as Thsb4, Tnc, and Scx [442].

Both studies of Yu et al. [441] and Zheng et al. [442] above cited reproduced the physiological
microenvironment not only with the co-culture system but also with the modulation of the oxygen
tension. In fact, tendon is a poor vascularized tissue, and the oxygen consumption is lower than
other body districts, so tenocytes possibly live in a very low oxygen environment [3,237]. In these
experiments, co-culture was performed in normoxia (20% O2) and hypoxia (2% O2). The interesting
common result in both conducted researches is that even if co-culture alone was able to commit stem
cells toward tenogenic lineage, the combination with hypoxia was able to enhance the expression of
tenogenic markers.

Co-culture with adult tendon explant may reproduce an environment mimicking tendon
regeneration after injuries and can be used to study the crosstalk between stem cells and tissue.
The advantage of using an ex vivo explant instead of tendon-derived cells is that the tissue preserves
the cell’s native ECM niche, recreating a more realistic physiological environment in vitro fundamental
to study the cells–ECM interaction [443].

Evidence showed that co-culture with adult tendon explant can drive mesenchymal stem cells
toward tenogenic commitment. In particular, equine BMSCs in a transwell co-culture system with
tendon tissue fragments expressed tendon-specific markers such as Dcn, Tnmd, Tnc, and Col I, and
they also retained a tenocyte-like phenotype during monolayer culture [444].

Moreover, an indirect co-culture with human tendon explant and hASCs was used to obtain
information about the bidirectional crosstalk between stem cells and the native tendon niche.
The paracrine communication enhanced collagenolytic activity of MMPs in co-cultures at day
3, suggesting that ECM remodeling is triggered early in culture. Moreover, hASCs displayed
the deposition of Col III and Tnc after 7 days and acquired more elongated structures in co-cultures [445].

The co-culture system can be used as a model to study the tendon-healing process and provide
tendon differentiation also when tendon-derived stem cells or tendon explants are not provided.

An interesting study used the direct and indirect co-culture techniques as an in vitro model to
understand the paracrine effect in the tendon-healing process. Lange-Consiglio et al. [186] investigated
the immunomodulatory effect of equine amniotic membrane-derived MSCs (AMCs) both in direct
and indirect co-culture systems with equine peripheral blood mononuclear cells (PBMCs). The results
showed that AMCs inhibit the proliferation of PBMCs after allogeneic stimulation in both culture
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systems. They assumed that secreted factors released in the conditioned medium (CM) were responsible
for the anti-proliferative effect, as no cell contact was required. Moreover, the injection of AMC-CM
in spontaneous tendon injuries in horses showed no adverse effects such as fibrotic, metaplastic, or
mineralization. In addition, the re-injury rate was lower in comparison with untreated cases after 2
years [186].

Wu et al. [446] provided an example of co-culture implied to induce tendon differentiation without
tendon explants or derived cells. In particular, hADSCs co-cultured directly with hUVEC on aligned
PLLA fibrous scaffolds with tendon differentiation medium, containing DMEM/F12 medium, 2% FBS,
20 ng/mL TGFβ3, plus endothelial growth medium, expressed higher tenogenic markers with respect
to when cultured alone. In fact, Tnmd and Col I protein was robustly expressed, and the Tnc gene was
upregulated [446].

Co-culture may represent a good in vitro model to understand the mechanisms involved in tendon
differentiation, as it is able to provide a stepwise differentiation process when fetal tissues are used.
Moreover, it could be a useful technique to replicate the first steps in tendon healing and to study
the bidirectional communication occurring between stem cells, using tendon-derived stem cells and
the native tendon niche with the implication of adult tissue.

3. Conclusions

In vitro teno-differentiation techniques represent a fundamental step prior to in vivo tendon
disorder treatment with cell therapy or tissue engineering approaches. Tissue engineering refers to
a multidisciplinary field that aims at inducing tissue repair or regeneration. Therefore, it involves
the use of a combination of key factors, such as cells, scaffolds, biochemical inputs, and mechanical
inputs to produce a functional tissue-like construct. Nowadays, a combination of two or more than
one techniques seems to be the best way to induce tendon differentiation in stem cells [447].

Cells represent the building blocks of the engineered tissue. Undifferentiated, pre-differentiated, or
differentiated stem cells can be used in tissue engineering. Several studies displayed the involvement of
various types of stem cells (embryonic, fetal, and adult stem cells) from different sources with promising
results. Multiple studies focused on a single cell type, but co-culture with fetal tendons could be
a step forward, since it has been found to enhance differentiation, providing a stepwise differentiation
process resulting in an increase in tendon specific markers [184]. Scaffolds supply mechanical stability
and provide a 3D support for cell growth and differentiation. The electrospinning technique has been
shown to be able to generate 3D scaffolds with highly organized nanofibers, similar to collagen fibers
alignment in native tendon, improving the structural organization of the newly formed tissue-like
construct during cell differentiation. Mechanical inputs with different loading features, provided by
bioreactors, can dynamically affect the cell behavior within the scaffold, mimicking the physiological
environment of the tendon. On the other hand, biologically active molecules (such as growth factors)
or hypoxia can be used in synergy with the other factors to drive the process of cells maturation
and differentiation.

Taken together, all these elements contribute to the formation of a tissue-engineered substitute to
be used as an in vitro model or to be applied in tissue replacement techniques in vivo.

Several studies in the literature are focusing recently on a combined approach as a novel method
for tendon tissue engineering, demonstrating how the cooperative effect of different factors improves
the properties of the engineered tissue, compared to those obtained using a single factor. For instance,
Testa et al. [448] cultivated C3H10T1/2 fibroblast cell line on a PEGylated–fibrinogen biomimetic
matrix, exposing cells both to a biochemical stimulus, represented by TGF-β, and a mechanical
input by applying uniaxial stretching. In vitro analyses demonstrated that the proposed combined
approach led to a highly organized neo-extracellular matrix, with Col I fibers parallel to the stretching
direction, reflecting the enhanced elastic modulus and endurance of the matrix [448]. Moreover,
Rinoldi et al. [449] fabricated an electrospun nanofibrous 3D scaffold coated with a thin layer of
mesenchymal stem cells-laden hydrogel. BMP-12 was added in the culture media, and the cell-laden
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scaffold was subjected to mechanical stimulation using a custom-built bioreactor. The cooperative effect
of biochemical and mechanical stimulation showed enhanced cell viability, alignment, proliferation,
and tenogenic differentiation [449]. The same approach was used by Govoni et al. [198] by fabricating
a multiphase 3D construct composed of a hyaluronate elastic band merged with a fibrin hydrogel
supplemented with human BMSCs and poly-lactic-co-glycolic acid microcarriers loaded with human
GDF-5. The synergy between biochemical and mechanical inputs led to an increased expression of
tenogenic markers, such as Col I, Col III, Dcn, Scx, and Tnc [198].

Collectively, we can conclude that in vitro techniques are fundamental to study tendon
development, healing, and regeneration. Only with a validated and successful in vitro model
will we will have a clear prospect of tendon biology and pathology in order to translate the knowledge
in vivo to treat tendon disorders.
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