

The *Hirudo Medicinalis* Microbiome Is a Source of New Antimicrobial Peptides

Ekaterina Grafskaia ^{1,*}, Elizaveta Pavlova ^{1,2}, Vladislav V. Babenko ¹, Ivan Latsis ¹, Maja Malakhova ¹, Victoria Lavrenova ^{1,3}, Pavel Bashkirov ¹, Dmitrii Belousov ⁴, Dmitry Klinov ¹ and Vassili Lazarev ^{1,2,*}

- ¹ Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; grafskayacath@gmail.com (E.G.); lizapavlova6@gmail.com (E.P.); daniorerio34@gmail.com (V. B.); lacis.ivan@gmail.com (I.L.); maja_m@mail.ru (M.M.); lavrv1995@gmail.com (V.L.); pavel.bashkirov@niifhm.ru (P.B.); klinov.dmitry@mail.ru (D.K.)
- ² Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region 141701, Russia; lizapavlova6@gmail.com
- ³ Department of biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; lavrv1995@gmail.com
- ⁴ Sechenov First Moscow State Medical University Sechenov University, Moscow 119991, Russia; belik2011@mail.ru
- * Correspondence: grafskayacath@gmail.com (E.G.), lazarev@rcpcm.org (V.L.)

Received: 3 September 2020; Accepted: 25 September 2020; Published: 27 September 2020

Figure S1. Predicted secondary structures of AMPs by the I–TASSER–MR server. The secondary structure region that adopts an α –helical conformation is indicated in red.

Figure S2. Effect of AMPs on the survival of McCoy cells. Cells were treated for 24 h with peptides at a final concentration equal to $4 \times$ MIC. After staining with calcein AM and ethidium homodimer–1, samples were analysed by fluorescence microscopy. The peptide melittin was used as a positive control. The negative control corresponds to the McCoy cells incubated without peptide (DMEM). The size of each individual frame is 485 μ m× 366 μ m.

Figure S3. Viability of AMP–treated McCoy cells measured by LHD assay. Cells were treated for 24 h with peptides at a final concentration equal to 4× MIC. Melittin was used as a negative control. The positive control corresponds to untreated cells (Control). The values are represented as the mean \pm SD (n = 3). Statistically significant differences between the control and experimental groups were determined by the non–parametric Kruskal–Wallis test, **p* < 0.05, ****p* < 0.005.

Figure S4. Effect of AMPs on the survival of bacterial cells after peptide treatment. *B. subtilis* (**top row**) and *E. coli* (**bottom row**) were incubated with peptides at a final concentration equal to 2× MIC at 37 °C for 1 h. After

coli (**bottom row**) were incubated with peptides at a final concentration equal to 2× MIC at 37 °C for 1 h. After staining with PI, samples were analyzed by fluorescence microscopy. The peptide melittin was used as a positive control. The negative control corresponds to the bacteria incubated without peptide (MHB). The size of each individual frame is 222 μ m× 222 μ m.

Figure S5. Effect of AMPs on the survival of bacterial cells after peptide treatment. *B. subtilis* (**A**) and *E. coli* (**B**) were incubated with peptides at a final concentration equal to $2 \times \text{MIC}$ at $37 \text{ }^{\circ}\text{C}$ for 1 h. After staining with PI, samples were analysed by fluorescence microscopy. The peptide melittin was used as a positive control. The negative control corresponds to the bacteria incubated without peptide (MHB). The column indicates the mean (±SD) fluorescence intensity for *B. subtilis* and *E. coli* strained with PI and treated with peptides and control cells. Statistically significant differences between the control and experimental groups were determined by the non–parametric Kruskal–Wallis test, *p < 0.05.

Figure S6. AMPs affect bacterial membrane integrity. Scanning electron microscopy (SEM) images of bacterial strains treated with peptides pept_352 and pept_1303. *B. subtilis* and *E. coli* were treated with peptides at a final concentration equal to $1/2 \times$ MIC and $1 \times$ MIC for 8 h, and *S. haemolyticus* was treated with peptides at a final concentration equal to $1/2 \times$ MIC and $1 \times$ MIC for 24 h. Scale bars: 2 µm.

Table S1. Data of AMP secondary structures based on the deconvolution analysis of CD spectra.

Peptide	Conditions	Percentag	Percentage of each secondary structure					
		Helix	Antiparallel	Parallel	Turn	Disordered		
pept_1303	aqueous solution	0.4±0.2	29.0±0.7	0.0±0.0	15.2±0.4	55.3±0.9		
	buffer	0.8±0.1	30.3±0.3	0.0±0.0	15.0±0.1	53.9±0.1		

	buffer + POPC liposomes	0.8±0.1	28.2±4.3	0.0±0.0	15.3±0.7	55.6±3.7
	aqueous solution	0.2±0.1	25.8±0.3	0.0±0.0	18.4±0.4	55.6±0.4
pept_148	buffer	0.9±0.1	21.5±2.3	0.0±0.0	19.1±0.8	58.6±1.7
	buffer + POPC liposomes	1.1±0.1	22.0±2.7	0.0±0.0	18.8±0.8	58.2±2.0
	aqueous solution	0.0±0.0	26.0±2.1	0.0±0.0	18.3±0.1	55.7±2.2
pept_970	buffer	0.0±0.0	23.6±0.9	0.0±0.0	17.7±0.4	58.5±1.8
	buffer + POPC liposomes	0.8±0.1	23.7±2.3	0.0±0.0	17.5±0.1	58.0±2.2
	aqueous solution	0.0±0.0	20.9±0.7	0.0±0.0	18.0±0.3	61.0±3.6
pept 1545	buffer	0.0±0.0	26.0±0.2	0.0±0.0	17.8±0.4	56.3±0.4
1 1 -	buffer + POPC liposomes	0.0±0.0	25.7±0.6	0.0±0.0	17.7±0.2	56.3±0.4
	aqueous solution	2.6±0.2	25.2±3.5	0.0±0.0	16.4±1.0	55.9±2.8
pept_352	buffer	12.6±2.7	25.1±2.3	4.6±0.1	13.5±0.1	44.6±0.4
	buffer + POPC liposomes	17.1±0.5	24.2±0.2	5.0±0.1	12.5±0.1	41.2±0.4
pept_84	aqueous solution	0.0±0.0	26.7±0.5	0.0±0.0	17.8±0.1	55.5±0.4
	buffer	0.0±0.0	28.3±0.3	0.0±0.0	17.8±0.1	54.0±0.3
	buffer + PC liposomes	0.0±0.0	28.6±0.5	0.0±0.0	17.9±0.1	53.5±0.4
Melittin	aqueous solution	3.3±0.1	29.0±1.2	0.0±0.0	16.5±0.2	51.3±1.1
	buffer	4.3±0.3	28.1±0.8	0.0±0.0	16.3±0.2	51.3±0.6
	buffer + PC liposomes	11.5±0.8	21.5±4.9	6.8±0.9	14.4±0.6	45.9±2.7

Peptide	Amino acid sequence	Charge	Protein-binding potential (Boman index), kcal/mol	Hydrophobic ratio, %
pept_1303	IGRHFKRRNSIWGICWF	+4	2.14	47
pept_148	VLIRGLIHMLRGG	+2	0.05	53
pept_970	FVKILAKLVNYAKN	+3	0.04	57
pept_1545	FLIGKAIKRKFCLRSVWNA	+5	0.98	57
pept_352	KKGKSFKQLHIIVHLVKSWLRTILTHI	+6	0.75	44
pept_84	IVKRFFRISYKLQSLKIIKGKRTFT	+8	1.86	40