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Abstract: The involvement of cancer stem-like cells (CSC) in the tumor pathogenesis has profound
implications for cancer therapy and chemoprevention. Lunasin is a bioactive peptide from soybean
and other vegetal sources with proven protective activities against cancer and other chronic diseases.
The present study focused on the cytotoxic effect of peptide lunasin in colorectal cancer HCT-116
cells, both the bulk tumor and the CSC subpopulations. Lunasin inhibited the proliferation and
the tumorsphere-forming capacity of HCT-116 cells. Flow cytometry results demonstrated that the
inhibitory effects were related to apoptosis induction and cell cycle-arrest at G1 phase. Moreover,
lunasin caused an increase in the sub-GO/G1 phase of bulk tumor cells, linked to the apoptotic events
found. Immunoblotting analysis further showed that lunasin induced apoptosis through activation of
caspase-3 and cleavage of PARP, and could modulate cell cycle progress through the cyclin-dependent
kinase inhibitor p21. Together, these results provide new evidence on the chemopreventive activity of
peptide lunasin on colorectal cancer by modulating both the parental and the tumorsphere-derived
subsets of HCT-116 cells.
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1. Introduction

Current statistics on colorectal cancer (CRC) have ranked this disease as the third most commonly
diagnosed malignancy and the fourth leading cause of cancer death in the world [1]. In recent
years, a great deal of research has been focused on CRC pathogenesis. Meanwhile, the existence of
tumor-initiating cells or cancer stem-like cells (CSC) in this solid tumor has been established [2–4].
According to the CSC theory, a minor population of tumor cells is responsible for the driving of
tumorigenesis [5]. These stem cells, like those in adult tissue, undergo unlimited proliferation
and asymmetrically division into more differentiated cells leading to the neoplastic growth and
maintenance [6]. In addition, it has been suggested that this CSC subpopulation might be potentially
responsible for the tumor invasion, metastasis, recurrence, and resistance to therapy [7,8]. Therefore,
the potential of preventive strategies needs to be evaluated not only against CRC cells, representing
the bulk of the tumor mass (non-CSC), but also against colon CSC.
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Accumulating evidence and epidemiological studies have revealed an inverse correlation between
soybean consumption and the risk of CRC development [9,10], that can be in part due to the
chemopreventive effects of the bioactive compounds described in this legume. Several soybean
components including isoflavones [11], saponins [12], and bioactive proteins and peptides, such as
lectins and protease inhibitors [13,14] have been shown to exert protective activities against the growth
of CRC cells. Identified in soybean, lunasin is a bioactive peptide which chemopreventive properties
have been recently reviewed [15]. It has been demonstrated that lunasin is able to cause cytotoxicity in
four different human CRC cell lines, HCT-116, HT-29, KM12L4, and RKO, and their oxaliplatin-resistant
variants [16]. Studies on the mechanisms of action involved in this antiproliferative activity have
been mostly carried out in HT-29 and KM12L4 cells, in which Dia and de Mejia demonstrated
lunasin´s effects on apoptosis-induction, cell cycle progression, and modulation of CRC-related
biomarkers [16–18]. Moreover, García-Nebot and others reported the protective role played by lunasin
in differentiated Caco-2 cells, as a model of human enterocytes, exposed to oxidizing agents through
promoting cell viability and counteracting the rise in reactive oxygen species levels [19]. This notably
antioxidant protection at intestinal level is also a noteworthy aspect, pointing lunasin as a promising
chemopreventive agent against CRC.

The emergence of the CSC model has profound implications on cancer chemoprevention and
the search of natural components targeting these cells has been markedly prompted [20]. Some
dietary compounds and phytochemicals have been shown to potentially interact toward the pathways
involved in the renewal and proliferation of CSC [21–23]. Despite the fact that food proteins and
peptides have received increasing attention for their efficacy preventing the different stages of cancer,
including initiation, promotion, and progression [24,25], their protective role against CSC has been
scarcely studied. Accordingly, this study aimed to evaluate the cytotoxicity of peptide lunasin in
human CRC HCT-116 cells by evaluating its inhibitory capacity on cell viability and CSC-related
tumorsphere forming activity, as well as its effects on apoptosis induction, cell cycle progression, and
carcinogenesis-related protein biomarkers.

2. Results and Discussion

2.1. Inhibitory Effect of Lunasin on Cell Viability and Tumorsphere Formation

In this study, the human HCT-116 cell line was grown in monolayer as parental CRC cells
(Figure 1A) and used for the enrichment of tumor-derived colon-spheres (Figure 1B). We first examined
the growth of adherent HCT-116 cells exposed to lunasin. HCT-116 cells were treated with serial
concentrations of synthetic lunasin (5–160 µM) for 72 h and the number of viable cells was assessed
by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. As shown in
Figure 1C, lunasin showed cell proliferation inhibitory properties with increasing effects at higher
doses. Hence, treatment with 10 µM lunasin was able to induce a significant reduction on cellular
growth (12.9%, p < 0.01) compared to control cells. The cytotoxic effect increased up to the highest
concentration used (64.1%, p < 0.001). The IC50 value, expressed as the peptide concentration needed
to inhibit 50% of cell number, was 107.5 ± 1.9 µM. It had been previously demonstrated that lunasin is
able to induce cytotoxicity in colon cancer HCT-116, HT-29, KM12L4, and RKO cells, with IC50 values
of 26.3, 61.7, 13.0, and 21.6 µM, respectively, while it was no toxic for colon fibroblasts CCD-33Co [16].
While these authors used purified lunasin (~90%) from defatted soybean flour, in our study we have
assessed the effects of synthetic lunasin. The higher IC50 value found in our study might be due to
differences in the secondary and tertiary structures between plant-purified lunasin and the synthetic
peptide. Additionally, other compounds present in the natural preparation could be responsible for
the observed change in the inhibitory potency. In this regard, synthetic lunasin has been shown to
suppress the growth of breast cancer MDA-MB-231 cells with a reported IC50 value of 181.0 µM [26].
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Figure 1. Cell culture and cytotoxic effect of lunasin on colorectal cancer (CRC) cells. Representative
images of (A) HCT-116 cells in adherent conditions and (B) enrichment culture of tumor-derived
colon-spheres formed from the parental HCT-116 cell line under anchorage-independent conditions.
(C) HCT-116 cells were treated with lunasin (5–160 µM) for 72 h, and cell viability was determined by
the MTT assay. (D) Colon tumorspheres were treated with lunasin (5–160 µM) for 10 days, stained
with crystal violet solution and counted. Results, expressed as percentage of control cells, are means
± standard deviation (SD) of the replicates of experiments carried out. ** (p < 0.01), *** (p < 0.001)
significantly different from control.

Since colon-sphere subpopulations were demonstrated to exert a key role in the CRC pathogenesis,
the culture of tumor-derived spheroids has been widely used for the evaluation of chemotherapy
drugs and chemopreventive agents [3]. The sphere formation assay is extensively applied as in vitro
method for the derivation and characterization of stem-like cancer cells with intrinsic self-renewal
and tumorigenic properties [27]. To evaluate whether lunasin might prevent the formation of
CRC-derived colon-spheres, we performed the colony formation assay as we did previously [28],
following some modifications to model the enrichment of tumor-derived spheroids in culture. Hence,
colon-tumorspheres were enriched from adherent HCT-116 cells, cultured as non-adherent spheres
under anchorage-independent conditions, and treated with lunasin for 10 days (Figure 1B). As
shown in Figure 1D, lunasin at the lowest range assessed (5–10 µM) was not able to suppress
tumorsphere-forming capacity. Likewise, Pabona and others had reported that while isoflavone
genistein (40 nM) reduced the number of mammosphere-forming units in malignant breast cancer
MCF-7 cells, peptide lunasin (2µM) was not able to recapitulate this inhibitory protection [29]. However,
as represented in Figure 1D, the peptide in the range of 20–160 µM, exerted a significant inhibitory effect
(p < 0.001). Evidence supports that colon-spheres formed by culture in ultra-low attachment conditions
in supplemented-serum-free medium presented more stem-like cell properties [30]. Following this
culture, spheroid formation of DLD-1 and SW480 CRC cells with protein and mRNA expression
of CSC markers including CD133, CD44, ALDHA1, Oct-4 and Nanog, was recently inhibited by
(−)-epigallocatechin-3-gallate [31]. However, the characterization of these markers was not performed
in the present study. The calculated IC50 value for HCT-116-derived spheres in our study was
161.0 ± 2.4 µM, indicating that colony-forming cells are less sensitive to peptide lunasin than parental
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HCT-116 cells (107.5 ± 1.9 µM). These results are in agreement with the reported higher resistance of
CSC to other anti-cancer therapies [7,32]. Similarly, Yang and others have shown that docosahexaenoic
acid (DHA) exerts higher antiproliferative potency on adherent CRC SW620 cells than on their
tumorspheres-derived CSC subpopulation [33]. Nevertheless, in the study of McConnell and others,
it was found that peptide lunasin presented a higher anti-proliferative activity against non-small
cell lung cancer cells when they were assessed under anchorage-independent growth conditions,
compared to anchorage-dependent conditions [34]. In this line, detailed studies on soybean lunasin
effects against melanoma CSC have been recently published [35,36]. These authors found that lunasin
specifically targeted the cancer-initiating subset of melanoma cancer cells, suppressing not only their
oncosphere formation capacity but also the expression of the CSC-markers aldehyde dehydrogenase
and Nanog, while also inducing the expression of melanocyte-associated differentiation markers
tyrosinase and microphthalmia-associated transcription factor. Interestingly, the functional domain
arginine-glycine-aspartic acid (RGD) of lunasin sequence was found to be crucial in the interaction
with integrins, cell internalization, inhibition of histone acetylation and anticancer-stem activity [36].
Therefore, lunasin´s modulatory chemoprevention might notably depend on the lunasin´s preparation
and origin, as well as on the culture conditions and the cell line used. Inhibitory effects of lunasin over
colon-spheres derived from other CRC cell lines apart from HCT-116 cells might be different and thus
should be evaluated in future studies with different types of CRC.

2.2. Apoptosis Analysis of Lunasin-Treated CRC Cells

Tumor cell populations expand in number through several molecular processes such as the
capability of evading programmed cell death by presenting an elevated apoptotic threshold [37]. In
order to determine whether the inhibitory effect of lunasin on HCT-116 cells was through interacting
with the apoptotic pathways, adherent and colon-spheres-derived cells were incubated with lunasin,
and apoptosis detection was assessed by flow cytometry-based Annexin V/propidium iodide (PI)
assay. Annexin V has high affinity for membrane phospholipid phosphatidylserine translocated
to the outer cellular environment as one of the earliest processes during apoptosis. Phospholipid
phosphatidylserine is exposed before the loss of membrane integrity, which can be revealed in later
stages of cell apoptosis or necrosis by the viability dye PI. Based on the lunasin´s inhibitory effects on
HCT-116 cell viability and colon-sphere forming-frequency, the range of 20–80 µM for this peptide was
then chosen as the optimal treatment concentration for subsequent experiments.

Figure 2 presents the apoptotic state of adherent HCT-116 cells under control and lunasin-treated
conditions for 72 h. The apoptotic populations of cells treated with the peptide were significantly
increased (Figure 2A). Lunasin at 20, 40 and 80 µM induced 1.3, 1.7 and 1.8-fold increase of total
apoptotic cells, respectively, compared to control. In the case of lunasin at 40 and 80 µM, cells both in
the early and late apoptotic stages were significantly enhanced. The apoptosis-involved inhibitory role
of lunasin against HCT-116 cells was further addressed by the immunoblotting study of the molecular
proteins PARP and caspase-3. PARP is responsible for the regulation of many cellular functions, such
as key events supporting cell viability and DNA repair [38]. PARP degradation has been shown to
facilitate cellular disassembly, and serve as a marker of cells undergoing apoptosis, with this protein
being the main cleavage target on the activity of the apoptotic trigger caspase-3 [39]. As shown in
Figure 2B, lunasin activated the cleavage of caspase-3 and, consequently, the protein level of full-length
PARP was decreased in lunasin-treated cells. This might be accompanied to increased expression of
cleaved PARP, a hallmark of apoptosis, as we found previously [40]. In this line, Dia and de Mejia
found that lunasin was able to activate the apoptotic mitochondrial pathway in HT-29 and KM12L4
cells, as evidenced by the modulation of Bcl-2/Bax family of proteins, nuclear clusterin, cytochrome
c, and caspases-activity [16,17]. Similar apoptosis-related properties have been reported for this
peptide against the growth of leukemia L1210 cells [41], and breast cancer MCF-7 and MDA-MB-231
cells [29,42].
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Figure 2. Effect of lunasin on the apoptosis state of HCT-116 cells. Cells were treated with lunasin
at the indicated concentrations (20, 40, and 80 µM) for 72 h, and harvested for apoptosis analysis
and Western immunoblotting. (A) Flow cytometry-based Annexin V/PI double labeling of apoptotic
cells. Total apoptotic cells were identified as Annexin V-positive cells (apoptosis state), being Annexin
V-positive/PI-negative and Annexin V-positive/PI-positive cells identified as early apoptotic and late
apoptotic cells, respectively. Results, presented as the increased number in apoptotic cell populations
compared to control cells, are means ± standard deviation (SD) of the replicates of experiments carried
out. * (p < 0.05), ** (p < 0.01), *** (p < 0.001) significantly different from control. (B) Expression of full
length PARP and cleaved caspase-3 proteins determined by Western Blot. The numbers underneath
the blots represent band intensity that was normalized to β-actin and measured by Image J software
(means of duplicates, and standard deviations within ± 15% of the means were not shown). β-actin
was served as an equal loading control for cytosolic fraction.

We next aimed to determine whether the apoptosis-inducing property was also involved in the
suppression of the spheroid-forming capacity of HCT-116 cells. Colon-spheres were treated with
lunasin for 7 days and apoptosis detection was examined as shown in Figure 3. Results from the flow
cytometry study after staining with Annexin-V/PI showed that lunasin led to induction in the cellular
apoptotic state (Figure 3A,B). The raise in the number of apoptotic cells was not significantly promoted
at lunasin 20 µM. However, lunasin both at 40 and 80 µM exerted a 2.0-fold apoptosis-induction
effect, mostly in the late apoptotic cellular subset, independently of the dose. As shown in Figure 3C,
the implication of the mechanism responsible for the inhibitory effect of lunasin peptide against
the expansion of the HCT-116-derived colon-spheres was further demonstrated by immunoblotting.
Again, cleaved caspase-3 activity was induced by lunasin treatment, with this activation being
companied by a decrease of PARP protein levels. Our results suggested a dose-dependent trend in
the down-regulated levels of PARP protein after lunasin treatment. However, this was not the case
for cleaved caspase-3, which is more related to the inhibitory effects shown in the MTT assay and,
mostly, over the spheroid-forming capacity where peptide lunasin displayed a ca. 30–40% inhibitory
effect for the dose range of 20–160 µM. Therefore, in the present study, it has been suggested that
lunasin has similar effects in the apoptosis-induction of both populations of CRC HCT-116 cells. In
this sense, other food/natural compounds and phytochemicals have demonstrated to exert similar
inhibitory effects through apoptosis induction against the expansion of the CSC subpopulation not
only in CRC [33,43,44], but also in pancreatic and prostate cancer cells [45,46].
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Figure 3. Effect of lunasin on the apoptosis state of colon tumorspheres. Cells were treated
with lunasin at the indicated concentrations for 7 days, and harvested for apoptosis analyses and
Western immunoblotting. (A) Flow cytometry-based Annexin V/PI double labeling of apoptotic cells.
(B) Total apoptotic cells were identified as Annexin V-positive cells (apoptosis state), being Annexin
V-positive/PI-negative and Annexin V-positive/PI-positive cells identified as early apoptotic and late
apoptotic cells, respectively. Results, presented as the increased number in apoptotic cell populations
compared to control cells, are means ± standard deviation (SD) of the replicates of experiments carried
out. * (p < 0.05) significantly different from control. (C) Expression of full length PARP and cleaved
caspase-3 proteins determined by Western Blot. The numbers underneath the blots represent band
intensity that was normalized to β-actin and measured by Image J software (means of duplicates, and
standard deviations within ± 15% of the means were not shown). β-actin was served as an equal
loading control for cytosolic fraction.

2.3. Effect of Lunasin on Cell Cycle Progression of CRC Cells

To provide further insights into the growth inhibitory effects exerted by lunasin in HCT-116
cells, analyses on cell cycle distribution were performed on both adherent cells and colon-spheres
after treatment with lunasin for 72 h and 7 days, respectively. Deregulation of cell cycle control and
potential to replicate without limit are one of the hallmarks of cancer, with all these events being highly
regulated by internal checkpoints that ensure the proper cellular division [35]. As shown in Figure 4A,
control adherent HCT-116 cells were found to significantly increase their G1 phase (66.5 ± 1.7%) after
lunasin´s treatment (20 µM lunasin, G1: 70.2 ± 0.3%, p < 0.05; 40 µM lunasin, 70.5 ± 0.7%, P < 0.05;
80 µM lunasin, 72.0 ± 1.2%, p < 0.01). Interestingly, as represented in Figure 4B, lunasin-treated
cells also resulted in a marked accumulation of the sub-G0/G1 cell population, compared to control
cells. Cells at the sub-G0/G1 fraction contain less amount of DNA than G1 cells, suggesting DNA
degradation potentially caused by apoptotic events [47]. This effect had also been demonstrated for
peptide lunasin in leukemia L1210 cells [41] and is in agreement with our results on apoptosis-induction
in HCT-116 cells (Figure 2). On the other hand, our findings differ with other studies showing the
capability of this peptide to arrest cell cycle at S-phase in breast cancer MDA-MB-231 cells [42], and
at G2-phase in leukemia L1210 cells [41] and CRC HT-29 and KM12L4 cells [16,17]. However, other
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RGD-motif-containing peptides have been also reported to result in a G0/G1-phase arrest in cancer
cells [48]. Noteworthy, different cancer cells might respond differently to lunasin peptide accordingly
to their diverse tumor phenotype. Moreover, regarding to the colon tumorspheres (Figure 5A), lunasin
at 80 µM also led to an enhancement of G1-arrest (74.0 ± 0.6%, p < 0.001), accompanied with a
reduction in the S-cellular subset (14.3 ± 0.9%, p < 0.05), compared to control cells (G1: 69.4 ± 0.6%;
S: 16.4 ± 0.9%). This effect might be related to the antiproliferative and pro-apoptotic activities above
indicated. However, 20–40 µM-treated colon-spheres showed a similar trend but in a weaker manner,
lacking statistical significance in this dose range.

Figure 4. Effect of lunasin on cell cycle progression of HCT-116 cells. Cells were treated with lunasin at
the indicated concentrations for 72 h, and harvested for cell cycle analysis and Western immunoblotting.
(A) Cell cycle distribution was assessed by flow cytometry using PI staining. Results, presented as
percentage of cells in G1, S, and G2 phases, are means ± standard deviation (SD) of the replicates of
experiments carried out. * (p < 0.05), ** (p < 0.01) significantly different from control. (B) Representative
images of lunasin-induced increase in the sub-GO/G1 cell population (black arrow). (C) Expression of
p21Waf1/Cip1 protein determined by Western Blot. The numbers underneath the blots represent band
intensity that was normalized to β-actin and measured by Image J software (means of duplicates, and
standard deviations within ± 15% of the means were not shown). β-actin was served as an equal
loading control for cytosolic fraction.
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Figure 5. Effect of lunasin on cell cycle progression of colon tumorspheres. Cells were treated with
lunasin at the indicated concentrations for 7 days, and harvested for cell cycle analyses and Western
immunoblotting. (A) Cell cycle distribution was assessed by flow cytometry using PI staining. Results,
presented as percentage of cells in G1, S, and G2 phases, are means ± standard deviation (SD) of the
replicates of experiments carried out. * (p < 0.05), *** (p < 0.001) significantly different from control.
(B) Expression of p21Waf1/Cip1 protein determined by Western Blot. The numbers underneath the
blots represent band intensity that was normalized to β-actin and measured by Image J software
(means of duplicates, and standard deviations within ± 15% of the means were not shown). β-actin
was served as an equal loading control for cytosolic fraction.

To further explain lunasin´s effect on cell cycle progression, evaluation of the expression of the
cyclin-dependent kinase (CDK) inhibitors p21Waf1/Cip1 and p27Kip1 was performed by Western Blot.
Treatment of CRC cells with lunasin showed no effect on the level of p27 (data not shown), while it
slightly increased the molecular expression of p21 protein up to 140% and 120% in adherent HCT-116
cells (Figure 4C) and colon-spheres CSC (Figure 5B), respectively. A consistent role of lunasin over
these molecules cannot be thus extracted from our results. CDK-inhibitors p21 and p27 are two
important cell cycle regulators at the G1-phase known to be usually co-regulated, although they have
shown paradoxical roles in the literature [49]. In non-small cell lung H661 cancer cells, expressing a
mutated form of p53 and thus low non-inducible levels of p21, McConnell and co-workers recently
found that peptide lunasin also blocked cell cycle at the G1/S-phase through CDK-inhibitor p27 as
well as by disrupted phosphorylation of the retinoblastoma protein [34]. Regarding studies on CRC,
Dia and de Mejia reported lunasin´s capability to induce the expression of the CDK-inhibitor p21 in
HT-29 and KM12L4 cells, and linked this effect with a decreased cell proliferation, cell cycle arrest, and
up-regulation of the pro-apoptotic markers caspase-3 and nuclear clusterin isoform [16,17]. In these
studies, CDK-inhibitor p27 induction was also demonstrated in KM12L4 cells [16] although it was not
evaluated in the HT-29 cell line [17].

In order to provide more evidence on the cancer-preventive role of bioactive peptide lunasin,
specifically against the CRC malignancy, some studies have been carried out. In the highly metastatic
KM12L4 cell line, Dia and de Mejia demonstrated that lunasin is able to internalize into the cell and sit
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within the nucleus, to modify the expression of human extracellular matrix and cell adhesion genes by
binding to α5β1 integrin, and also to inhibit the FAK/ERK/NF-κB signaling pathway [16,18]. Indeed,
peptides containing the RGD-motif can bind integrins and block their signaling pathways involved
in cell adhesion, invasion and extracellular matrix components, mechanisms by which lunasin has
recently shown inhibitory and anti-metastatic effects in some cancer models [15,50]. Studies have
found that lunasin inhibits non small cell lung cancer cell proliferation acting as antagonist of αv
integrin and histone acetylation modulatory agent [32,51]. Similarly, lunasin inhibited the migration
and invasion properties of breast cancer cells via integrin-mediated FAK/Akt/ERK and nuclear factor
(NF)-κβ pathways, and suppression of matrix metalloproteinases 2 and 9 [52]. The in vivo effect
of this peptide was suggested in the CRC liver metastasis mice model by Dia and de Mejia [53],
although disagreements between intraperitoneally- and orally-administered findings made it hard
to establish a definitive lunasin´s role on preventing the CRC liver metastasis. Regarding the in vivo
efficacy of lunasin against CSC, lunasin impaired the tumor growth initiated by CSC in a melanoma
xenograft mouse model [35] and also suppressed the ability of these cancer-initiating cells to invade
and proliferate in the lung of an experimental model of melanoma metastasis using B16-F10 cells [36].

3. Materials and Methods

3.1. Materials

Peptide lunasin was synthesized by Chengdu KaiJie Biopharm Co., Ltd. (Chengdu, China).
Its purity (>95%) was confirmed by liquid chromatography (HPLC) coupled to mass spectrometry
(HPLC-MS).

3.2. Cell Lines

The human CRC cell line HCT-116 was obtained from American Type Cell Collection
(ATCC, Manassas, VA, USA), and maintained in RPMI medium (ATCC) supplemented with 5%
heat inactivated fetal bovine serum (FBS; Mediatech, Herndon, VA, USA), 100 units/mL penicillin,
and 0.1 mg/mL streptomycin (Sigma-Aldrich, St. Louis, MO, USA). Cells were grown in a
humidified incubator containing 5% CO2 and 95% air at 37 ◦C, kept sub-confluent, and medium
was changed every other day. All cells were assayed within 5–25 passages. Enrichment culture of
tumor-derived colon-spheres was performed by incubating parental HCT-116 cells in serum-free
medium (SFM) composed of DMEM/F-12 medium supplemented with 2% B-27 supplement, 20 ng/mL
recombinant human epidermal growth factor, 10 ng/mL fibroblast growth factor-basic (Life Technologies,
Grand Island, NY, USA), 100 units/mL penicillin, 0.1 mg/mL streptomycin, and 10 µg/mL insulin
(Sigma-Aldrich) in ultra low-attachment plates (Corning, Lowell, MA, USA) at 37 ◦C. Plated under
these anchorage-independent conditions in supplemented-SFM, tumor cells form floating spheres
reported to represent the growth of CSC [27,31,54].

3.3. Cell Proliferation Assay

HCT-116 cells were seeded in 96-well plates (1.1 × 104 cells/mL). After 24 h incubation, cells were
treated with different concentrations of lunasin ranging from 5 to 160 µM. After 72 h treatment, cell
viability was determined by the MTT assay. Treatment medium was replaced by 200 µL of fresh
medium containing 0.5 mg/mL MTT (Sigma-Aldrich). After 1 h incubation at 37 ◦C, MTT-containing
medium was removed and the reduced formazan dye was solubilized by adding 100 µL of dimethyl
sulfoxide to each well. After gently mixing, the absorbance was read at 570 nm using a microplate
reader (Elx800TM, BioTek Instrument, Winooski, VT, USA). The results were expressed as percentage of
the control, considered as 100%. Experiments were carried out in triplicate with at least three replicates
per concentration.
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3.4. Tumorsphere Formation Assay

To examine the effect of lunasin on the formation of tumorspheres derived from CRC HCT-116
cells, cells were grown in SFM and plated as single cells in ultra low-attachment 24-well plates
(6 × 103 cells/mL). Right after seeding, cells were treated with different concentrations of lunasin
ranging from 5 to 160 µM and incubated at 37 ◦C for 10 days. After that time, tumorspheres were
formed and transferred to 6-well dishes in differentiating medium (RPMI supplemented with 5%
FBS and 1% antibiotics). Under these conditions, tumorspheres were adhered after 24 h incubation.
Then, cells were stained with crystal violet solution (0.2% crystal violet in 2% ethanol) for 20 min at
room temperature, photographed and counted. Results were presented as percentage of tumorspheres
forming cells compared to control, considered as 100%. Analyses were performed in triplicate with at
least three replicates per concentration.

3.5. Detection of Apoptosis

Apoptotic cells were quantified by Annexin V/PI double staining using an apoptotic detection
kit (BioVision, Mountain View, CA, USA) according to manufacturer’s instruction, followed by flow
cytometry. HCT-116 cells (4 × 104 cells/mL) and colon tumorspheres (3 × 103 cells/mL) were seeded
onto 6-well plates and treated (20–80 µM lunasin) as described above. After 72 h treatment, HCT-116
cells were collected as described by Qiu and others [55]. In the case of colon tumorspheres, after
7 days treatment, floating cells in medium were collected in ice-cold flow cytometry tubes. After
centrifugation (2000 × g, 2 min), single-cell suspensions were generated by incubation with 0.5 mL
trypsin (0.25% trypsin-ethylenediaminetetraacetic acid, EDTA, Sigma-Aldrich) and 1 mL medium
for 5 min at 37 ◦C, and gentle pippeting. Afterwards, in both cell cultures, cell suspensions were
centrifuged (2000 × g, 2 min) and washed twice with 0.5 mL ice-cold phosphate buffer saline (PBS).
Then, cells were suspended in 0.3 mL binding buffer containing Annexin V and PI, and incubated
for 15 min at room temperature in the dark. Total apoptotic cells were identified using a BD LSR II
cell analyzer (BD Biosciences, San Jose, CA, USA) as Annexin V-positive cells (apoptosis state), being
further identified based on PI staining as early apopototic cells (Annexin V-positive/PI-negative) or late
apoptotic-necrotic cells (Annexin V-positive/PI-positive). At least 10,000 events were recorded to assess
the percentage of apoptotic cells. Analyses were performed in duplicate with at least three replicates
per concentration, and results were presented as the increased number in apoptotic cell populations,
compared to control cells.

3.6. Cell Cycle Analyses

HCT-116 cells and colon tumorspheres were treated as described for the apoptosis detection assay.
After 72 h treatment, HCT-116 cells were collected as described by Qiu and others [55]. In the case of
colon tumorspheres, after 7 days treatment, cells were collected as described for apoptosis detection
assay with some modifications. Briefly, floating tumorspheres in medium were collected, centrifuged,
and single-cell suspensions were generated, washed with ice-cold PBS, and then fixed in 1 mL of 70%
ethanol and kept at −20 ◦C overnight. After centrifugation (2000× g, 2 min), cells were washed with
0.5 mL PBS, and incubated with 0.3 mL PBS solution containing RNAse (10%; Sigma-Aldrich) and PI
(1%; BioVision) for 25 min at room temperature in the dark. Cell cycle distribution was analyzed with
at least 8000 events recorded using a BD LSR II cell analyzer (BD Biosciences), and data were processed
using ModFit LT software. Analyses were performed in duplicate with at least three replicates per
concentration, and results were presented as percentage of cells in G1, S, and G2-phases.

3.7. Immunoblotting

HCT-116 cells (3.5 × 104 cells/mL) were seeded in 10 cm cell culture dishes. Colon tumorspheres
were seeded exactly same as described for apoptosis assay. After 72 h treatment (20–80 µM lunasin),
HCT-116 cells were collected and whole-cell lysates were prepared as previously described [53]. In the
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case of colon tumorspheres, after 7 days-treatment (20–80 µM lunasin), cells were collected following
the same procedure with some modifications. Briefly, floating tumorspheres in medium were collected,
centrifuged, and washed with ice-cold PBS. Then, cells were incubated on ice for 30 min in RIPA lysis
buffer containing a protease inhibitor cocktail (Boston BioProducts, Ashland, MA, USA), and processed
as previously described [56]. Supernatants were collected and protein content was quantified by the
bicinchoninic acid method (Pierce, Rockford, IL, USA), using bovine serum albumin as standard protein.
Equal amount of proteins (50–70 µg) were resolved over 12% SDS-polyacrylamide gel electrophoresis
and transferred to nitrocellulose membranes. After blocking, membranes were incubated with different
monoclonal primary antibodies overnight at 4 ◦C, according to manufacturer’s instructions. Primary
antibodies for cleaved caspase-3 (Asp175), full-length PARP, p21Waf1/Cip1, and p27Kip1 were from Cell
Signaling Technology (Beverly, MA, USA). β-actin was used as a loading control of cytosolic fraction,
and its antibody was from Sigma-Aldrich. After 1 h incubation with the appropriate secondary
antibodies (goat anti-mouse IgG, and goat anti-rabbit IgG IRDye (LI-COR Biosciences, Lincoln, NE,
USA)), proteins of interest were visualized using enhanced chemiluminescence (Boston Bioproducts),
processed with Image J Software and analyzed as we previously described [40].

3.8. Statistical Analysis

Data were evaluated using one-way ANOVA followed by Bonferroni post hoc test and expressed
as the mean ± standard variation (SD) of the different experiments carried out. GraphPad Prism
5.0 software (San Diego, CA, USA) was used to perform statistical analyses. Differences with a
p value < 0.05 (*), p value < 0.01 (**) or p value < 0.001 (***) were considered significant.

4. Conclusions

In the present study, our cellular model allowed us to approach the study of peptide lunasin
towards the ideal evaluation of cancer-preventive agents by targeting both the parental and the stem-like
tumorigenic populations. The protective mechanisms on lunasin-treated cells can be postulated in
terms of inhibition of cell growth and tumorsphere-forming activity, induction of apoptosis, and
regulation of cell cycle progression. The recent CSC hypothesis has supposed a challenge on the search
of chemotherapeutic agents that efficiently target fast diving cancer cells as well as CSC responsible for
the growth and maintenance of the tumorigenic bulk mass. To the best of our knowledge, this is the
first study that suggests a protective role of lunasin against the formation of colon-spheres derived
from CRC cells, specifically the HCT-116 cell line. The potential of bioactive peptides against the CSC
subpopulation deserves additional studies characterizing CSC markers in more cellular models. Before
concluding on lunasin´s effects over CSC, the promising results of this work clearly need to be further
addressed to elucidate the molecular basis of the tumorsphere-inhibitory activity, to study its potential
on stem-related markers and signaling pathways, such as Wnt/β-catenin, Hedgehog and Notch, and to
confirm this role by using in vivo models of CSC self-renewal.
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Abbreviations

ATCC American Type Cell Collection
CDK Cyclin-dependent kinase
CRC Colorectal cancer
CSC Cancer stem-like cells
DHA Docosahexaenoic acid
EDTA Ethylenediaminitetraacetic acid
FBS Fetal bovine serum
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
PBS Phosphate buffer saline
PI Propidium iodide
SFM Serum-free medium

References

1. Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in
colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [CrossRef] [PubMed]

2. O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumor
growth in immunodeficient mice. Nature 2007, 445, 106–110. [CrossRef] [PubMed]

3. Anderson, E.C.; Hessman, C.; Levin, T.G.; Monroe, M.M.; Wong, M.H. The role of colorectal cancer stem cells
in metastatic disease and therapeutic response. Cancer 2011, 3, 319–339. [CrossRef] [PubMed]

4. Munro, M.J.; Wickremesekera, S.K.; Peng, L.; Tan, S.T.; Itinteang, T. Cancer stem cells in colorectal cancer:
A review. J. Clin. Pathol. 2018, 71, 110–116. [CrossRef]

5. Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 2001,
414, 105–111. [CrossRef]

6. Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumors: Accumulating evidence and unresolved
questions. Nat. Rev. Cancer 2008, 8, 755–768. [CrossRef]

7. Zhou, B.B.S.; Zhang, H.Y.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumor-initiating cells:
Challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 2009, 8, 806–823.
[CrossRef]

8. Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med. 2011, 17, 313–319. [CrossRef]
9. Spector, D.; Anthony, M.; Alexander, D.; Arab, L. Soy consumption and colorectal cancer. Nutr. Cancer 2003,

47, 1–12. [CrossRef]
10. Yang, G.; Shu, X.O.; Li, H.L.; Chow, W.H.; Cai, H.; Zhang, X.L.; Gao, Y.T.; Zheng, W. Prospective cohort study

of soy food intake and colorectal cancer risk in women. Am. J. Clin. Nutr. 2009, 89, 577–583. [CrossRef]
11. Kim, Y.S.; Farrar, W.; Colburn, N.H.; Milner, J.A. Cancer stem cells: Potential target for bioactive food

components. J. Nutr. Biochem. 2012, 23, 691–698. [CrossRef] [PubMed]
12. Tsai, C.Y.; Chen, Y.H.; Chien, Y.W.; Huang, W.H.; Lin, S.H. Effect of soy saponin on the growth of human

colon cancer cells. World J. Gastroenterol. 2010, 16, 3371–3376. [CrossRef] [PubMed]
13. De Mejia, E.G.; Bradford, T.; Hasler, C. The anticarcinogenic potential of soybean lectin and lunasin. Nutr. Rev.

2003, 61, 239–246. [CrossRef] [PubMed]
14. Clemente, A.; Moreno, F.J.; Marín-Manzano, M.C.; Jiménez, E.; Domoney, C. The cytotoxic effect of

Bowman-Birk isoinhibitors, IBB1 and IBBD2, from soybean (Glycine max) on HT29 human colorectal cancer
cells is related to their intrinsic ability to inhibit serine proteases. Mol. Nutr. Food Res. 2010, 54, 396–405.
[CrossRef] [PubMed]

15. Fernández-Tomé, S.; Hernández-Ledesma, B. Current state of art after twenty years of the discovery of
bioactive peptide lunasin. Food Res. Int. 2019, 116, 71–78. [CrossRef]

16. Dia, V.P.; de Mejia, E.G. Lunasin induces apoptosis and modifies the expression of genes associated with
extracellular matrix and cell adhesion in human metastatic colon cancer cells. Mol. Nutr. Food Res. 2011, 55,
623–634. [CrossRef]

17. Dia, V.P.; de Mejia, E.G. Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway
activation and induction of nuclear clusterin expression. Cancer Lett. 2010, 295, 44–53. [CrossRef]

http://dx.doi.org/10.1136/gutjnl-2015-310912
http://www.ncbi.nlm.nih.gov/pubmed/26818619
http://dx.doi.org/10.1038/nature05372
http://www.ncbi.nlm.nih.gov/pubmed/17122772
http://dx.doi.org/10.3390/cancers3010319
http://www.ncbi.nlm.nih.gov/pubmed/21318087
http://dx.doi.org/10.1136/jclinpath-2017-204739
http://dx.doi.org/10.1038/35102167
http://dx.doi.org/10.1038/nrc2499
http://dx.doi.org/10.1038/nrd2137
http://dx.doi.org/10.1038/nm.2304
http://dx.doi.org/10.1207/s15327914nc4701_1
http://dx.doi.org/10.3945/ajcn.2008.26742
http://dx.doi.org/10.1016/j.jnutbio.2012.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22704055
http://dx.doi.org/10.3748/wjg.v16.i27.3371
http://www.ncbi.nlm.nih.gov/pubmed/20632438
http://dx.doi.org/10.1301/nr.2003.jul.239-246
http://www.ncbi.nlm.nih.gov/pubmed/12918876
http://dx.doi.org/10.1002/mnfr.200900122
http://www.ncbi.nlm.nih.gov/pubmed/19885848
http://dx.doi.org/10.1016/j.foodres.2018.12.029
http://dx.doi.org/10.1002/mnfr.201000419
http://dx.doi.org/10.1016/j.canlet.2010.02.010


Int. J. Mol. Sci. 2020, 21, 537 13 of 14

18. Dia, V.P.; de Mejia, E.G. Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer
metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κB signaling. Cancer Lett. 2011, 313, 167–180.
[CrossRef]

19. García-Nebot, M.J.; Recio, I.; Hernández-Ledesma, B. Antioxidant activity and protective effects of peptide
lunasin against oxidative stress in intestinal Caco-2 cells. Food Chem. Toxicol. 2014, 65, 155–161. [CrossRef]

20. Kawasaki, B.T.; Hurt, E.M.; Mistree, T.; Farrar, W.L. Targeting cancer stem cells with phytochemicals.
Mol. Interv. 2008, 8, 174–184. [CrossRef]

21. Li, Y.; Wicha, M.S.; Schwartz, S.J.; Sun, D. Implications of cancer stem cell theory for cancer chemoprevention
by natural dietary compounds. J. Nutr. Biochem. 2011, 22, 799–806. [CrossRef] [PubMed]

22. Kim, G.N.; Song, J.H.; Kim, E.S.; Choi, H.T.; Jang, H.D. Isoflavone content and apoptotic effect in HT-29
cancer cells of a soy germ extract. Food Chem. 2012, 130, 404–407. [CrossRef]

23. Oh, J.; Hlatky, L.; Jeong, Y.S.; Kim, D. Therapeutic effectiveness of anticancer phytochemicals on cancer stem
cells. Toxins 2016, 8, 199. [CrossRef] [PubMed]

24. De Mejia, E.G.; Dia, V.P. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and
metastasis of cancer cells. Cancer Metastasis Rev. 2010, 29, 511–528. [CrossRef] [PubMed]

25. Hernández-Ledesma, B.; Hsieh, C.-C. Chemopreventive role of food-derived proteins and peptides: A review.
Crit. Rev. Food Sci. 2017, 57, 2358–2376. [CrossRef] [PubMed]

26. Hernández-Ledesma, B.; Hsieh, C.-C.; de Lumen, B.O. Relationship between lunasin’s sequence and its
inhibitory activity of histones H3 and H4 acetylation. Mol. Nutr. Food Res. 2011, 55, 989–998. [CrossRef]
[PubMed]

27. Kanwar, S.S.; Yu, Y.J.; Nautiyal, J.; Patel, B.B.; Majumdar, A.P.N. The Wnt/beta-catenin pathway regulates
growth and maintenance of colonospheres. Mol. Cancer 2010, 9, 212. [CrossRef]

28. Qiu, P.; Guan, H.; Dong, P.; Guo, S.; Zheng, J.; Li, S.; Chen, Y.; Ho, C.-T.; Pan, M.-H.; McClements, D.J.; et al.
The inhibitory effects of 5-hydroxy-3, 6, 7, 8, 3′, 4′-hexamethoxyflavone on human colon cancer cells. Mol.
Nutr. Food Res. 2011, 55, 1523–1532. [CrossRef]

29. Pabona, J.M.P.; Dave, B.; Su, Y.; Montales, M.T.E.; de Lumen, B.O.; de Mejia, E.G.; Rahal, O.M.; Simmen, R.C.M.
The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor
suppressor PTEN: Similarities and distinct actions from soy isoflavone genistein. Genes Nutr. 2013, 8, 79–90.
[CrossRef]

30. Yu, Y.; Nangia-Makker, P.; Farhana, L.; Rajendra, G.S.; Levi, E.; Majumdar, A.P. miR-21 and miR-145
cooperation in regulation of colon cancer stem cells. Mol. Cancer 2015, 14, 98. [CrossRef]

31. Chen, Y.; Wang, X.-Q.; Zhang, Q.; Zhu, J.-Y.; Li, Y.; Xie, C.-F.; Li, X.-T.; Wu, J.-S.; Geng, S.-S.; Zhong, C.-Y.; et al.
(-)-epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway.
Nutrients 2017, 9, 572. [CrossRef] [PubMed]

32. Kim, T.I. Chemopreventive drugs: Mechanisms via inhibition of cancer stem cells in colorectal cancer. World
J. Gastroenterol. 2014, 20, 3835–3846. [CrossRef]

33. Yang, T.; Fang, S.; Zhang, H.X.; Xu, L.X.; Zhang, Z.Q.; Yuan, K.T.; Xue, C.L.; Yu, H.L.; Zhang, S.; Li, Y.F.; et al.
N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro.
J. Nutr. Biochem. 2013, 24, 744–753. [CrossRef] [PubMed]

34. McConnell, E.J.; Devapatla, B.; Yaddanapudi, K.; Davis, K.R. The soybean-derived peptide lunasin inhibits
non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein.
Oncotarget 2015, 6, 4649–4662. [CrossRef] [PubMed]

35. Shidal, C.; Al-Rayyan, N.; Yaddanapudi, K.; Davis, K.R. Lunasin is a novel therapeutic agent for targeting
melanoma cancer stem cells. Oncotarget 2016, 7, 84128–84141. [CrossRef] [PubMed]

36. Shidal, C.; Inaba, J.-I.; Yaddanapudi, K.; Davis, K.R. The soy-derived peptide Lunasin inhibits potential of
melanoma initiating cells. Oncotarget 2017, 8, 25525–25541. [CrossRef] [PubMed]

37. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
38. Satoh, M.S.; Lindahl, T. Role of poly (ADP-ribose) formation in DNA repair. Nature 1992, 356, 356–358.

[CrossRef]
39. Oliver, F.J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M.C.; de Murcia, G.; Menissier-de Murcia, J. Importance of

poly(ADP-ribose) polymerase and its cleavage in apoptosis—Lesson from an uncleavable mutant. J. Biol.
Chem. 1998, 273, 33533–33539. [CrossRef]

http://dx.doi.org/10.1016/j.canlet.2011.09.002
http://dx.doi.org/10.1016/j.fct.2013.12.021
http://dx.doi.org/10.1124/mi.8.4.9
http://dx.doi.org/10.1016/j.jnutbio.2010.11.001
http://www.ncbi.nlm.nih.gov/pubmed/21295962
http://dx.doi.org/10.1016/j.foodchem.2011.07.063
http://dx.doi.org/10.3390/toxins8070199
http://www.ncbi.nlm.nih.gov/pubmed/27376325
http://dx.doi.org/10.1007/s10555-010-9241-4
http://www.ncbi.nlm.nih.gov/pubmed/20714786
http://dx.doi.org/10.1080/10408398.2015.1057632
http://www.ncbi.nlm.nih.gov/pubmed/26565142
http://dx.doi.org/10.1002/mnfr.201000632
http://www.ncbi.nlm.nih.gov/pubmed/21618425
http://dx.doi.org/10.1186/1476-4598-9-212
http://dx.doi.org/10.1002/mnfr.201100070
http://dx.doi.org/10.1007/s12263-012-0307-5
http://dx.doi.org/10.1186/s12943-015-0372-7
http://dx.doi.org/10.3390/nu9060572
http://www.ncbi.nlm.nih.gov/pubmed/28587207
http://dx.doi.org/10.3748/wjg.v20.i14.3835
http://dx.doi.org/10.1016/j.jnutbio.2012.03.023
http://www.ncbi.nlm.nih.gov/pubmed/22854319
http://dx.doi.org/10.18632/oncotarget.3080
http://www.ncbi.nlm.nih.gov/pubmed/25609198
http://dx.doi.org/10.18632/oncotarget.11554
http://www.ncbi.nlm.nih.gov/pubmed/27566591
http://dx.doi.org/10.18632/oncotarget.16066
http://www.ncbi.nlm.nih.gov/pubmed/28424421
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1038/356356a0
http://dx.doi.org/10.1074/jbc.273.50.33533


Int. J. Mol. Sci. 2020, 21, 537 14 of 14

40. Charoensinphon, N.; Qiu, P.; Dong, P.; Zheng, J.; Ngauv, P.; Cao, Y.; Li, S.; Ho, C.-T.; Xiao, H.
5-demethyltangeretin inhibits human non-small lung cancer cell growth by inducing G2/M cell cycle
arrest and apoptosis. Mol. Nutr. Food Res. 2013, 57, 2103–2111. [CrossRef]

41. De Mejia, E.G.; Wang, W.; Dia, V.P. Lunasin, with an arginine-glycine-aspartic acid motif, causes apoptosis to
L1210 leukemia cells by activation of caspase-3. Mol. Nutr. Food Res. 2010, 54, 406–414. [CrossRef] [PubMed]

42. Hsieh, C.-C.; Hernández-Ledesma, B.; de Lumen, B.O. Cell proliferation inhibitory and apoptosis-inducing
properties of anacardic acid and lunasin in human breast cancer MDA-MB-231 cells. Food Chem. 2011, 125,
630–636. [CrossRef]

43. Lin, L.; Liu, Y.; Li, H.; Li, P.K.; Fuchs, J.; Shibata, H.; Iwabuchi, Y.; Lin, J. Targeting colon cancer stem cells
using a new curcumin analogue, GO-Y030. Br. J. Cancer 2011, 105, 212–220. [CrossRef] [PubMed]

44. Massey, A.R.; Reddivari, L.; Vanamala, J. The dermal layer of sweet sorghum (Shorgum bicolor) stalk, a
byproduct of biofuel production and source of unique 3-deoxyanthocyanidins, has more antiproliferative
and proapoptotic activity than the pith in p53 variants of HCT116 and colon cancer stem cells. J. Agric. Food
Chem. 2014, 62, 3150–3159. [PubMed]

45. Ottinger, S.; Klöppel, A.; Rausch, V.; Liu, L.; Kallifatidis, G.; Gross, W.; Gebhard, M.M.; Brümmer, F.; Herr, I.
Targeting of pancreatic and prostatic cancer stem cell characteristics by Crambe crambe marine sponge extract.
Int. J. Cancer 2012, 130, 1671–1681. [CrossRef] [PubMed]

46. Soner, B.C.; Aktug, H.; Acikgoz, E.; Duzagac, F.; Guven, U.; Ayla, S.; Cal, G.; Oktem, G. Induced growth
inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol. Int. J.
Mol. Med. 2014, 34, 1249–1256. [CrossRef]

47. Nagata, S.; Nagase, H.; Kawane, K.; Mukae, N.; Fukuyama, H. Degradation of chromosomal DNA during
apoptosis. Cell Death Differ. 2003, 10, 108–116. [CrossRef]

48. Yang, W.; Meng, L.; Wang, H.; Chen, R.; Wang, R.; Ma, X.; Xu, G.; Zhou, J.; Wang, Y.; Lu, Y.; et al. Inhibition of
proliferative and invasive capacities of breast cancer cells by arginine-glycine-aspartic acid peptide in vitro.
Oncol. Rep. 2006, 15, 113–117. [CrossRef]

49. Abukhdeir, A.M.; Park, B.H. p21 and p27: Roles in carcinogenesis and drug resistance. Expert Rev. Mol. Med.
2009, 10, e19. [CrossRef]

50. Vuyyuri, S.B.; Shidal, C.; David, K.R. Development of the plant-derived peptide lunasin as an anticancer
agent. Curr. Opin. Pharmacol. 2018, 41, 27–33. [CrossRef]

51. Inaba, J.; McConnell, E.J.; Davis, K.R. Lunasin sensitivity in non-small lung cancer cells is linked to suppression
of integrin signaling and changes in histone acetylation. Int. J. Mol. Sci. 2014, 15, 23705–23724. [CrossRef]
[PubMed]

52. Jiang, Q.; Pan, Y.; Cheng, Y.; Li, H.; Liu, D. Lunasin suppresses the migration and invasion of breast cancer
cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncol.
Rep. 2016, 36, 253–262. [CrossRef] [PubMed]

53. Dia, V.P.; de Mejia, E.G. Potential of lunasin orally-administered in comparison to intraperitoneal injection to
inhibit colon cancer metastasis in vivo. J. Cancer Ther. 2013, 4, 34–43. [CrossRef]

54. O’Brien, C.A.; Kreso, A.; Ryan, P.; Hermans, K.G.; Gibson, L.; Wang, Y.D.; Tsatsanis, A.; Gallinger, S.; Dick, J.E.
ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer
Cell 2012, 21, 777–792. [CrossRef]

55. Qiu, P.; Dong, P.; Guan, H.; Li, S.; Ho, C.T.; Pan, M.H.; McClements, D.J.; Xiao, H. Inhibitory effects of
5-hydroxy polymethoxyflavones on colon cancer cells. Mol. Nutr. Food Res. 2010, 54, S244–S252. [CrossRef]

56. Xiao, H.; Yang, C.S.; Li, S.; Jin, H.; Ho, C.T.; Patel, T. Monodemethylated polymethoxyflavones from sweet
orange (Citrus sinensis) peel inhibit growth of human lung cancer cells by apoptosis. Mol. Nutr. Food Res.
2009, 53, 398–406. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/mnfr.201300136
http://dx.doi.org/10.1002/mnfr.200900073
http://www.ncbi.nlm.nih.gov/pubmed/19937853
http://dx.doi.org/10.1016/j.foodchem.2010.09.051
http://dx.doi.org/10.1038/bjc.2011.200
http://www.ncbi.nlm.nih.gov/pubmed/21694723
http://www.ncbi.nlm.nih.gov/pubmed/24655033
http://dx.doi.org/10.1002/ijc.26168
http://www.ncbi.nlm.nih.gov/pubmed/21544815
http://dx.doi.org/10.3892/ijmm.2014.1930
http://dx.doi.org/10.1038/sj.cdd.4401161
http://dx.doi.org/10.3892/or.15.1.113
http://dx.doi.org/10.1017/S1462399408000744
http://dx.doi.org/10.1016/j.coph.2018.04.006
http://dx.doi.org/10.3390/ijms151223705
http://www.ncbi.nlm.nih.gov/pubmed/25530619
http://dx.doi.org/10.3892/or.2016.4798
http://www.ncbi.nlm.nih.gov/pubmed/27175819
http://dx.doi.org/10.4236/jct.2013.46A2005
http://dx.doi.org/10.1016/j.ccr.2012.04.036
http://dx.doi.org/10.1002/mnfr.200900605
http://dx.doi.org/10.1002/mnfr.200800057
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Inhibitory Effect of Lunasin on Cell Viability and Tumorsphere Formation 
	Apoptosis Analysis of Lunasin-Treated CRC Cells 
	Effect of Lunasin on Cell Cycle Progression of CRC Cells 

	Materials and Methods 
	Materials 
	Cell Lines 
	Cell Proliferation Assay 
	Tumorsphere Formation Assay 
	Detection of Apoptosis 
	Cell Cycle Analyses 
	Immunoblotting 
	Statistical Analysis 

	Conclusions 
	References

