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Abstract: Browning of white adipocytes has been proposed as a powerful strategy to overcome
metabolic complications, since brown adipocytes are more catabolic, expending energy as a heat
form. However, the biological pathways involved in the browning process are still unclear.
Aquaglyceroporins are a sub-class of aquaporin water channels that also permeate glycerol and
are involved in body energy homeostasis. In the adipose tissue, aquaporin-7 (AQP7) is the most
representative isoform, being crucial for white adipocyte fully differentiation and glycerol metabolism.
The altered expression of AQP7 is involved in the onset of obesity and metabolic disorders.
Herein, we investigated if aquaglyceroporins are implicated in beige adipocyte differentiation,
similar to white cells. Thus, we optimized a protocol of murine 3T3-L1 preadipocytes browning that
displayed increased beige and decreased white adipose tissue features at both gene and protein levels
and evaluated aquaporin expression patterns along the differentiation process together with cellular
lipid content. Our results revealed that AQP7 and aquaporin-9 (AQP9) expression was downregulated
throughout beige adipocyte differentiation compared to white differentiation, which may be related
to the beige physiological role of heat production from oxidative metabolism, contrasting with the
anabolic/catabolic lipid metabolism requiring glycerol gateways occurring in white adipose cells.
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1. Introduction

Adipose tissue has a central role in the regulation of energy homeostasis through its metabolic and
endocrine functions, and alterations in its physiological functions associated with a sedentary life and
saturated fat-based diets have been related with the development of obesity [1,2]. However, not the
whole adipose tissue has the same structure and functions. White adipose tissue (WAT) is an anabolic
tissue involved in energy storage in the triacylglycerol form, contrasting with brown adipose tissue
(BAT) that is very catabolic and involved in body thermogenesis [3]. Since the accumulation of excess
WAT has deleterious consequences for metabolic health and the activation of BAT confers beneficial
effects on adiposity, browning the white adipose tissue has been described as a potential strategy to
target and control obesity.
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Considering that the amount of metabolically active BAT is particularly low in human adults and
consequently in obese and diabetic patients who require immediate therapy, new strategies to increase
the capacity for adaptive thermogenesis are paramount. Recent findings showed that, in human adults,
BAT might consist of not only classic brown adipocytes, cells that originate from myogenic lineage,
but also inducible brown adipocytes (also called beige, white-in-brown, or brite adipocytes), which are
phenotypically distinct from both white and brown adipocytes but have origin from mesenchymal
precursors, such as white adipocytes, and can differentiate from them [4,5]. Browning the white
adipocytes gives origin to a third type of adipocyte, beige adipocytes, more frequently found in
subcutaneous WAT. Similar to brown adipocytes, beige adipocytes have multiple lipid droplets and
UCP1-rich mitochondria and can acquire thermogenic features. On the other hand, comparable to white
adipocytes, they can trigger the storage phenotype, depending on the surrounding environment [6].

Stimulating the development of beige adipocytes in WAT (so called “browning”) might reduce
adverse effects of WAT and can help to improve metabolic health [7]. Despite their different origins,
beige and brown adipocytes show increased expression of UCP1 and decreased expression of leptin
through adrenergic stimulation compared to white adipocytes [8]. BAT activation has also been related
to adrenoreceptor stimulation in response to cold temperatures which is translated in increased levels
of UPC1 and in browning of white adipocytes [9,10]. Nowadays, it is generally accepted that exercise
also triggers browning [11]. Altogether, this data suggests that browning can protect against obesity
and metabolic-related complications. Nevertheless, there is still a lack of knowledge of the mechanisms
involved in the browning process that lead to differentiation of beige adipocytes.

Aquaporins are integral membrane proteins that function as channels, permeating water and small
solutes across biological membranes driven by osmotic or solute gradients [12,13]. Currently there
are thirteen isoforms described in humans (AQP0-AQP12) that are widely distributed among
the body and differentially expressed in different tissues, playing an important role in a variety
of physiological roles [14]. This family of proteins has been distributed by three subgroups
according to their selectivity and primary structure: Classical/orthodox aquaporins (AQP0, AQP1,
AQP2, AQP4, AQP5, AQP6, and AQPS8) considered primarily selective to water, aquaglyceroporins
(AQP3, AQP7, AQP9, and AQP10) that also permeate glycerol, urea, and other small noncharged
solutes, and nonorthodox/S-aquaporins (AQP11 and AQP12) comprising intracellular isoforms whose
selectivity is still under investigation [15-17]. Recently, a few isoforms have also been reported to
transport hydrogen peroxide and were termed peroxiporins (AQP3, AQP5, AQPS, and AQP9) [18-22].

The aquaglyceroporins, as facilitators of glycerol membrane permeation, are tightly involved in
glycerol metabolism and homeostasis, being crucial for energy production in different organs (liver,
adipose tissue, and muscle) and with implications in obesity and metabolic-related complications,
such as type-2 diabetes and insulin resistance [23-27]. Thus, we hypothesized that aquaglyceroporins
are important interveners in beige adipocytes genesis. Moreover, our group previously reported
an essential role for AQP5 and AQP7 in white adipocytes differentiation. AQP7 increases gradually
along with the progression of the mature white adipocyte phenotype whereas AQP5 seems to be
essential for the differentiation to occur [28,29].

In this study, we used the well-characterized murine 3T3-L1 preadipocyte cell line to optimize
a good and feasible protocol of beige adipocyte differentiation in comparison with white adipocyte
differentiation, while evaluating the expression of biomarkers of beige/brown (UCP1, CD137, TBX15,
TBX1, TIMM44, and NRG4) and white (LPL and GLUT4) differentiation. Once achieved, the beige
adipocyte phenotype, the expression level of AQP3, AQP7, AQP9, and AQP5 together with cellular
triacylglycerol content was investigated throughout the differentiation process until cells were fully
differentiated. Moreover, aquaporin expression pattern was correlated with biomarkers of beige
differentiation during browning.
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2. Results

2.1. Induction of Beige Adipocyte Phenotype in 3T3-L1 Preadipocytes

To achieve the beige adipocyte phenotype, three induction cocktails for browning and one for
white cells differentiation were tested in 3T3-L1 preadipocytes (Figure 1). 3T3-L1 cells were induced
to differentiate by treatments with triiodothyronine (T3) (protocol 1 and 3), L-rhamnose (protocol
2), and/or salicylate (protocol 3) in addition to the reagents used in the control protocol (insulin,
IBMX, rosiglitazone, and dexamethasone) that targets the white adipocyte phenotype (protocol 4).
Subsequently, the more feasible protocol of “browning” was ascertained by evaluating gene expression
of several brown, beige, and white adipocyte markers.
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Figure 1. Beige and white adipocyte markers expression and their modulation by four
differentiation-inducing cocktails in 3T3-L1 cells. (A) Relative expression of UCP1, TIMM44, NRG4,
ADIPO, and LPL in 3T3-L1 fibroblasts that were induced to differentiate into beige (1-3; black
bars) (BA) and white (4; white bars) (WA) adipocytes. Gene expression values are relative to ARP.
(B) Representative blots and relative UCP1 and GLUT4 protein expression in 3T3-L1 fibroblasts that
were induced to differentiate into beige (1-3; black bars) and white (4; white bars) adipocytes in
relation to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). (C) Lipid droplets characterization
by triacyclglycerols staining with Oil Red O expression in 3T3-L1 fibroblasts that were induced to
differentiate into beige and white adipocytes. Scale bar = 20 um. Data represent mean + SEM of three
independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Our data reveal that the mitochondrial uncoupling protein 1 (UCP1) responsible for dissipation of
the proton gradient generated by oxidative phosphorylation producing heat, is higher in browning
protocols (1-3; black bars), compared to control (4; white bar). In addition, protocol 1 is seen to
induce significantly higher UCP1 gene expression. The mitochondrial marker TIMM44 is also seen
to be expressed at higher levels in protocol 1, suggesting higher mitochondrial mass or more active
mitochondria in beige cells. The beige marker NRG4 [30] is significantly increased in cells differentiated
using protocol 1, compared to protocols 2-3. The evaluation of ADIPO expression showed that this
cytokine, that is mainly produced by adipocytes, is also upregulated by the protocol 1 treatment.
On the other hand, LPL, a membrane enzyme essential for the hydrolysis of triacylglyceride and
lipoprotein-associated fatty acids, is expressed in much lower amounts in protocol 1 than in the other
protocols, confirming distinct beige features (Figure 1A).

At the protein level, UCP1 data are in accordance with the gene expression, where protocol 1
seems to be the one that induces higher production of this protein. GLUT4, the insulin-dependent
glucose transporter that is highly expressed in white adipocytes during the feeding state, showed to be
less expressed by any browning protocol than by protocol 4 (Figure 1B). In addition, staining 3T3-L1
cells at day 7 of differentiation with Oil Red O disclosed that all protocols were successful for adipocyte
differentiation regardless the treatment (Figure 1C) since all treatments resulted in triacylglycerol-rich
lipid droplets. However, protocols 1 and 2 promoted the development of smaller lipid droplets and
in lower number. Our data suggests protocol 1 as the most efficient in inducing a beige phenotype
compared to the control white phenotype (protocol 4).

2.2. Aquaglyceroporins are Differentially Expressed in Beige and White Adipocytes

After choosing protocol 1 as the best browning protocol to produce beige adipocytes, other few
beige markers were also evaluated by qPCR (Figure 2A). Although no significant differences were
observed for TBX1 expression when using different protocols, we found CD137 and TBX15 genes to be
expressed at higher levels in beige (BA) than white adipocytes (WA) (Figure 2A), in accordance with
the above results and validating the browning process. Then, we investigated the aquaglyceroporins
AQP3, AQP7, and AQP9 and the orthodox AQP5 gene expression levels in cells resulting from beige
and white differentiation.

The four investigated isoforms are differentially expressed in beige and white adipocytes.
AQP5 and AQP7 are the most representative aquaporins in beige cells and are expressed in similar
levels, followed by AQP9 and AQP3 in lower levels (Figure 2B; black bars). In white cells, AQP7 is the
most expressed isoform, followed by AQP5, AQP9, and AQP3 (Figure 2B; white bar). However, at the
protein level, only AQP9 expression was detected in beige adipocytes and its abundance was lower
than in white adipocytes (Figure 2C). AQP9 protein expression is in accordance with its gene expression
level and is significantly lower in beige than in white cells. Interestingly, AQP7 protein was not
detected in white and in beige as expected. Therefore, we proceeded to antibodies validation against
AQP3, AQP5, AQP7, and AQP9 in several murine tissues, such as heart, BAT, testis, liver, pancreas, and
WAT (Figure 2D). As depicted, all antibodies detected AQPs in the different tissues, and in addition,
aquaglyceroporins were detected with different levels of glycosylation (Figure 2D), a condition that
has already been reported for several isoforms [31].
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Figure 2. AQP7 and AQP9 differential expression in beige and white adipocytes. (A) Relative expression
of several beige adipocyte markers (CD137, TBX15, and TBX1) and (B) aquaporins (AQP5, AQP3, AQP7,
and AQP9) in 3T3-L1 fibroblasts induced to differentiate into beige (BA; black bars) and white (WA;
white bars) adipocytes. Gene expression values are relative to ARP and to Eef2. (C) Representative
blots and relative AQP9 protein expression in 3T3-L1 fibroblasts that were induced to differentiate into
beige (BA; black bars) and white (WA; white bars) adipocytes in relation to GAPDH. A single band of
33 kDa was detected in cultured cells. (D) Antibodies validation against AQP5, AQP3, AQP7, and
AQP9 in murine tissues: Heart, BAT, testis, pancreas, and WAT. Data represent mean + SEM of three
independent experiments. * p < 0.05, ** p < 0.01; *** p < 0.001, beige vs. white adipocytes.

2.3. Beige Adipose Cell Differentiation Is a Late Event

Since the induction cocktails for differentiation in beige and white adipocytes are very similar,
both consisting in insulin, rosiglitazone, IBMX, and dexamethasone, with the increment of T3 for
beige differentiation, we evaluated several beige markers and aquaporin gene expression along the
differentiation process, specifically at day 0, 4, and 7 (Figure 3).
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Figure 3. Beige phenotype achievement along differentiation. (A) Relative expression of UCP1,
(B) TIMM44, (C) NRG4, TBX15, CD137, (D) AQP3, AQP7, and AQP9 and (E) AQP5, in 3T3-L1
fibroblasts induced to differentiate into beige (BA; black bars) and white (WA; white bars) adipocytes at
day 0, 4, and 7 of differentiation. Gene expression values are relative to ARP and Eef2 and to day 0.
(F) Triacylglycerols accumulation in 3T3-L1 fibroblasts induced to differentiate into beige (BA; black
bars) and white (WA; white bars) adipocytes at day 0, 4, and 7 of differentiation. Data represent mean
+ SEM of three independent experiments. * p < 0.05, ** p < 0.01, differentiation time point vs. previous

time point.

Beige cells showed a significant increase of the thermogenic marker UCP1 at day 7 of differentiation
(Figure 3A). Similarly, the mitochondrial mass marker TIMM44 showed the same dynamics (Figure 3B).
NRG4, TBX15, and CD137, were evaluated as beige adipocyte markers and were also shown to be
drastically increased at day 7 (Figure 3C). When evaluating aquaporins expression during differentiation,
both AQP7 and AQP9 are found upregulated, but while AQP7 increases gradually, AQP9 transcript
increases abruptly at day 7 (Figure 3D). AQP3 and AQPS5 seem to be constitutively expressed during
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the process (Figure 3D,E). The quantification of intracellular triacylglycerols in beige cells showed
an evident increase in TAG content until day 4 (Figure 3F).

The same analysis was performed for cells induced to differentiate in white adipocytes.
As expected, beige markers are less expressed in white cells. While AQP3 and AQP5 expression are
not affected by differentiation and show similar expression levels in WA and BA, AQP7 and AQP9
expression level dramatically increases during differentiation showing higher levels of transcript in
WA (Figure 3), as previously reported [28].

3. Discussion

In the last decades, increasing BAT has emerged as a potential solution for obesity and type-2
diabetes [32,33]. In humans, the amount of BAT is low and it reduces drastically in the first
years of age [34]. Browning the white adipocytes by inducing cells to acquire a phenotype more
like brown cells, was recently reported [35], and the advantage of the thermogenic features of
these cells has become an experimental strategy to burn excess of WAT-stored triacylglycerols,
opening new perspectives for obesity, and excess fat-related complications therapies. AQPs, namely
aquaglyceroporins, are transmembrane channels very well documented as important players in energy
homeostasis control. In fact, although all aquaglyceroporins (AQP3, 7, 9, and 10) are expressed in
human adipose tissue, AQP7 expression increases along with white adipocyte differentiation and has
been reported to be involved in obesity [26-28,36,37]. Beige adipocytes, differentiated from white cells,
are part of a recent strategy for obesity therapy because of their thermogenic features instead of storage
ones [11,35]. Therefore, after evaluating several browning protocols, we used the one that best fits
to trigger the beige adipocyte phenotype to investigate AQP3, AQP5, AQP7, and AQP9 differential
expression in beige and white adipocytes differentiated from murine 3T3-L1 preadipocytes.

Insulin, dexamethasone, rosiglitazone, and IBMX are commonly used to differentiate 3T3-L1
preadipocytes in white adipocytic cells. Although rosiglitazone has been reported to have browning
effects during the adipocyte by activating MAPK and PI3K signalling pathways [38], it has also been
extensively reported as an enhancer of white adipocyte full differentiation since it triggers peroxisome
proliferator activator receptor gamma (PPARYy) overexpression, the master regulator of both BAT and
WAT adipogenesis [39,40]. Adding factors that target 3-adrenergic stimulation, such as L-rhamnose,
T3, irisin, fibroblast growth factor 21, or follistatin to the previous cocktail have been described
to induce fat browning [32,41-44]. Protocol 1 which consisted in T3 treatment, in addition to the
basal cocktail for white adipocyte differentiation, showed to be the most successful in inducing
beige phenotype mainly because this thyroid hormone potentiates the effects of the (3-adrenergic
receptors in glucose metabolism and increases the thermogenic capacity of adipose tissue to enhance
energy expenditure [45]. Our data revealed an upregulation of brown/beige-related markers such as
UCP1, TIMM44, NRG4, TBX15, CD137, and ADIPO gene expression in cells treated with protocol 1
compared to control, while LPL gene expression was decreased. At the protein level, UCP1 results
are in agreement with the found at the transcript level, whereas GLUT4 showed lower expression
in browning protocol than control. Previous experiments performed in immortalized cell lines from
different adipose tissue depots described higher levels of GLUT4 transcript in BAT-derived cell lines
compared to WAT-derived cell lines [46]; however, no descriptions on GLUT4 levels in beige adipocytes
compared to white adipocytes have been reported. In addition, preadipocytes induced to differentiate
in beige cells revealed less triacylglycerol accumulation. T3 is one of the hormones produced in thyroid
that influences BAT gene expression [45]. It promotes mitogenesis, induces the expression of UCP1
increasing thermogenesis activity and activates brown metabolism [47]. Similarly to BAT, T3 has also
been implicated in the induction of the browning process in humans [48].

From our knowledge, this is the first study reporting aquaporins expression in beige adipocytes
and comparing their level of expression with white adipocytes. The four screened isoforms (orthodox
AQP5 and aquaglyceroporins AQP3, AQP7, and AQP9) are differentially expressed in the two types
of cells. The gene expression analysis showed that AQP5 and AQP7 are the most representative
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aquaporins in beige cells, followed by AQP9 and AQP3 in lower amounts, while in white cells,
AQP7 is the most expressed isoform, followed by AQP5, AQP9, and AQP3, in accordance to previous
data [28]. However, at the protein level, only AQP9 was detected in beige adipocytes and with
lower transcript level than in white cells. The possible effect of differentiation cocktail components,
such as T3, on a specific AQP protein synthesis and stability and subsequent downregulation cannot
be disregarded.

Along the beige differentiation, a stronger beige-engagement was detected in the last
days, from 4 to 7, where UCP1, TIMM44, NRG4, TBX15, and CD137 were drastically increased.
Aquaporins gene expression analysis along differentiation shows that AQP7 and AQP9 are upregulated
while AQP3 and AQP5 seem to be constitutively expressed during the process. Intracellular
triacylglycerols quantification showed a slight increase in TAG content in beige cells compared
to white cells.

Overall, our study identifies downregulation of the global aquaglyceroporins expression induced
by browning, probably because beige cells are more committed to oxidize and burn fat to produce heat
than storing or hydrolyzing lipids and exporting glycerol through an aquaglyceroporin gateway driven
by energy unbalance. Our results support the thermogenic characteristics of these interchangeable
cells, highlighting the browning strategy as a potential tool for obesity therapeutics.

4. Materials and Methods

4.1. 3T3-L1 Cell Culture and Treatments

3T3-L1 preadipocytes (CCL 92.1; American Type Culture Collection, Manassas, VA) were induced
to differentiate into beige and white adipocytes. 3T3-L1 fibroblasts were grown in 6-well plates until
reaching confluence in 10% activated calf serum (CS) (Gibco, Tavarnuzze, Italy) high glucose DMEM
(Biowest, Nuaill¢, France) with 100 U/mL of penicillin/streptomycin at 37 °C and 8% CO,. For beige
differentiation, three protocols were tested in order to select the most suitable. For the first protocol
(protocol 1), adapted from [41], beige differentiation was induced by adding 0.25 uM dexamethasone
(Sigma-Aldrich, St. Louis, MO, USA), 0.5 mM 3-isobutil-1-metilxantina (IBMX) (Sigma-Aldrich,
St. Louis, MO, USA), 10 pg/mL insulin (Roche, Basel, Switzerland), and 50 nM triiodothyronine (T3)
(Sigma-Aldrich, St. Louis, MO, USA) in 10% (v/v) fetal bovine serum (FBS) (Gibco) high glucose DMEM
(complete medium-CM) for two days, then, 5 pg/mL insulin, 1 uM rosiglitazone, 50 nM T3, and 0.5 mM
IBMX in CM for four days, and finally, 1 pM rosiglitazone, 50 nM T3, and 0.5 mM IBMX in CM for
two days. Cells were treated with 10 uM isoproterenol for 4 h before harvest. For the second protocol
(protocol 2), adapted from [42], beige differentiation was induced by 0.25 uM dexamethasone, 0.5 mM
IBMX, 10 pg/mL insulin, and 100 uM L-rhamnose (Sigma-Aldrich, St. Louis, MO, USA) in CM for seven
days. For the third protocol (protocol 3), adapted from [49], cells were treated with 0.5 uM rosiglitazone,
0.5 mM IBMX, 2 ug/mL dexamethasone, 125 uM salicylate, 5 ng/mL insulin, and 1 pM T3 in CM for
two days. Then, cells were treated with 5 pg/mL insulin, 1 uM T3, and 0.5 uM rosiglitazone in CM for
two days, and, 5 ug/mL insulin, 1 uM T3, and 1 uM rosiglitazone in CM for three days. Before harvest,
cells were treated with 10 uM IBMX for 4 h to induce cAMP. White differentiation (protocol 4) was
induced by adding 1 pg/mL insulin, 0.25 uM dexamethasone, 1 uM rosiglitazone, and 0.5 mM IBMX
in CM for three days [50]. Afterwards, 1 pg/mL insulin in CM for two days, and finally, cells were
incubated with CM for three days. For beige differentiation protocol validation, cells were harvested
at day 7 of differentiation, whereas for differentiation studies, cells were harvested at day 0, 4, and 7
of differentiation.

4.2. RNA Extraction, Reverse-Transcription, and Quantitative PCR

Total RNA was extracted from 3T3-L1 cells with PureLink™ RNA mini kit columns following
the manufacturer’s instructions (Invitrogen, Waltham, MA, USA). RNA was quantified using the
Nanodrop™ 2000/2000c spectrometer (Thermo Scientific, Waltham, MA, USA) and the ND1000 software
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(Thermo Scientific, Waltham, MA, USA). Reverse-transcription was performed by mixing 1 ug RNA
with 1 pL. 10 mM deoxynucleotide mix and 1 pL. 50 uM oligodTs. Samples were heated to 65 °C for
5 min using the 2720™ Thermal Cycler (Applied Biosystems, Foster City, CA, USA) and SuperScript™
solution, prepared by mixing 2 pL of 40 U/uL RNAseOUT™ solution, 4 puL of 5X First-Strand buffer
and 1 uL of 200 U/uL SuperScript™ II reverse transcriptase (Invitrogen, Waltham, MA, USA). The
obtained cDNA was stored at —20 °C until used. For qPCR analyses, the reaction mix was prepared
by mixing 5 uL of SYBR® Green PCR master mix, 0.6 puL of 10 uM primer mix and 0.4 pL of Milli-Q
H,O, or by mixing 5.5 uL of Tagman® Universal master mix with UNG and 0.5 uL of Tagman
probe and primers mix per each sample containing 4 uL of cDNA. Sequence for designed primers
(Sigma-Aldrich, St. Louis, MO, USA) are listed in Table 1. Tagman probes and primers used are
the following: AQP3 (#Mm01208559_m1), AQP5 (#Mm00437578_m1), AQP7 (#Mm00431839_m10),
AQP9 (#Mm00508094_m1), and Eef2 (MmO00833287_g1) (Applied Biosystems, Waltham, MA). qPCR
negative controls were loaded to identify cross-contamination. qPCR was performed using the ABI
Prism 7900 HT qPCR machine (Applied Biosystems) and the SDS software (Applied Biosystems).
Gene expression measurements were normalized to ARP (for designed primers) or Eef2 (for Tagman
primers) cDNA using the 2744¢t method.

Table 1. Gene-specific primer sequences used for real-time-quantitative PCR.

Gene Symbol

Full Gene Name

Forward/Reverse Primer Sequence

Tumor necrosis factor receptor

F: 5’-CGTGCAGAACTCCTGTGATAAC-3’

Cb1s7 superfamily member 9 R: 5-GTCCACCTATGCTGGAGAAGG-3’
. F: 5-CTGTGGGACGAGTTCAATCAG-3’
TBX 1 T-box transcription factor 1 R: 5 -TTGTCATCTACGGGCACAAAG-3
. F: 5-CTCCGTTGAAGCCTTGATCGG-3'
TBX15 T-box transcription factor 15 R 5-AGACGCCAGGTCAGTGTGA-3’
— Uncounling rotein 1 F: 5-AGGCTTCCAGTACCATTAGGT-3/
coupiing prote R: 5-CTGAGTGAGGCAAAGCTGATTT-3
TIMMdd Translocase of inner mitochondrial F: 5’-CTAGGCAGCGGAATCCAATTT-3
membrane 44 R: 5-GCAAGCCTGACAAAAACCCTTT-3/
. F: 5-CACGCTGCGAAGAGGTTTTTC-3
NRG4 Neuregulin 4 R: 5-CGCGATGGTAAGAGTGAGGA-3/
LPL L ein i F: 5-GGGAGTTTGGCTCCAGAGTTT-3'
'poprotein fipase R: ¥-TGTGTCTTCAGGGGTCCTTAG-3
. . F: 5-CGGCAGCACTGGCAAGTT-3
ADIPO Adiponectin R: 5-CCGTGATGTGGTAAGAGAAGTAGTAGA-3’
ARP Acidic-ribosomal protein F: 5-AAGCGCGTCCTGGCATTGTCT-3

R: 5-CCGCAGGGGCAGCAGTGGT-3

4.3. Protein Extraction and Western Blotting

Total 3T3-L1 homogenates were washed with cold PBS, scraped in lysis buffer (20 mM Tris-HCl
(pH?7.5), 150 mM NaCl, 1mM EDTA, 1mM EGTA, 1% (v/v) NP-40, and 1% (w/v) sodium deoxycholate)
supplemented with protease inhibitor cocktail and homogenized with a syringe. Homogenates were
centrifuged at 13200 rpm for 30 min at 4 °C and protein lysates were quantified with Pierce™
BCA protein assay kit (Thermo Scientifics, Waltham, MA) and 20/40 ug of total proteins for target
proteins, and 5 pg for internal control were mixed with 4x Laemmli buffer and then boiled 5 min
at 95 °C. SDS-polyacrylamide gel electrophoresis was performed and proteins were transferred to
PVDF membranes (MERCK Millipore, Darmstadt, Germany). Then, membranes were blocked with
5% (w/v) nonfat dry milk and incubated overnight at 4 °C with antibodies against GLUT4 (1/1000;
produced in the lab by Dr. Conchi Mora [51]), UCP1 (1/1000; Abcam, Cambridge, UK), AQP3 (1/200),
AQP5 (1/200), AQP7 (1/200), AQP9 (1/200) (antibodies against AQPs-Santa Cruz Biotechnologies,
Dallas, Texas), and GAPDH (1/1000; Cell Signaling, Danvers, MA). All antibodies were diluted in 3%
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(w/v) bovine serum albumin, 0.02% (w/v) sodium azide in TBS-T. On the following day, membranes
were incubated for 1 h with HRP-conjugated anti-mouse, anti-rabbit, or anti-goat secondary antibodies
(Jackson ImmunoResearch, Cambridgeshire, UK) diluted 1/10,000 in 5% (w/v) nonfat dry milk in
TBS-T. Finally, membranes were incubated with the ECL western blotting detection reagent enhanced
chemiluminescence solution to detect specific proteins (GE Healthcare Amersham, Buckinghamshire,
UK). The autoradiograms were quantified using Image]J software.

Validation of anti-AQPs antibodies was performed by immunoblotting using murine tissues (heart,
BAT, testis, pancreas, and WAT). Murine tissues were harvested and placed in PBS plus Complete
Protease Inhibitor (Roche, Basel, Switzerland) on ice, homogenized for 20 strokes in a drill press,
then spun at 1000x g for 10 min at 4 °C. The protocol was conducted according to the European
Guidelines for the Care and Use of Laboratory Animals (Directive 86/609) and approved by the
University of Barcelona Committee on Animal Care.

4.4. Oil Red O Staining

Oil Red O staining was used to stain neutral lipid inside the cells. For this, preadipocytes/adipocytes
were washed twice with PBS and then fixed with 3% paraformaldehyde (PFA) for 15 min at room
temperature. The PFA was removed and cells washed with 60% isopropanol. The cells were then
incubated with working solution (60% 8.5 mM Oil Red O; 40% H,O Milli-Q) previously filtered,
for 10 min at 37 °C. Working solution was removed and cells washed three times with H,O Milli-Q.
Cells were observed and images were registered in bright field. Images were captured using a Motic
digital camera and Motic software (Motic, Canada).

4.5. Triacylglycerols Quantification

Triacylglycerols quantification was done in total lysates using the Biosystems Triglyceride assay
kit. Preadipocytes/adipocytes were lysed using a homogenization buffer (0.25 M Sucrose; 2 mM EGTA;
20 mM HEPES; pH7 4) with protease inhibitors (1 pg/mL Pepstatin; 1 pg/mL Leupeptin; 0.5 mM PMSF;
10 pg/mL Aprotinin). A standard curve from 0 to 200 mg/dL was generated loading serial dilutions of
the 200 mg/dL triglycerides standard solution (included in the kit) into the ELISA plate and 10 puL of
the lysate were used in the quantification. Then, 200 uL of reactive solution were added to each well
and plates were incubated for 5 min at 37 °C. After incubation, plates were read at 500 nm.

4.6. Statistical Analysis

Data are showed as mean + SEM. For statistical studies, the t-student test and one-way analysis of
variance (ANOVA) with Tukey’s honest significant difference post-hoc test were used. p < 0.05 was
considered significant. Data were analyzed using the GraphPad Prism 6 software.
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Abbreviations

AQP Aquaporin

BAT Brown adipose tissue

TAG Triacylglycerol

UCP1 Uncoupling protein 1

WAT White adipose tissue
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