

Supplementary Materials

Synthesis, CYP24A1-Dependent Metabolism and Antiproliferative Potential against Colorectal Cancer Cells of 1,25-dihydroxyvitamin D₂ Derivatives Modified in the Side-Chain and in the A-Ring

Magdalena Milczarek^{1,*}, Michał Chodyński², Anita Pietraszek², Martyna Stachowicz-Suhs¹, Kaori Yasuda³, Toshiyuki Sakaki³, Joanna Wietrzyk¹ and Andrzej Kutner⁴

- ¹ Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla, 53-114 Wrocław, Poland; magdalena.milczarek@hirszfeld.pl, martyna.stachowicz@hirszfeld.pl, joanna.wietrzyk@hirszfeld.pl
- ² Chemistry Department, Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland; m.chodynski@ifarm.eu, a.pietraszek@ifarm.eu
- ³ Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan 939-0398, kyasuda@pu-toyama.ac.jp, tsakaki@pu-toyama.ac.jp
- ⁴ Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; akutner@chem.uw.edu.pl
- * Correspondence: magdalena.milczarek@hirszfeld.pl; Tel.: +48-71-337-1172, ext. 171 (M.M.)

Figure S1. HPLC profiles of VDDs, PRI-5105 and PRI-5106, before and after incubation with hCYP24A1. The peaks marked with arrows indicate putative metabolites. ΔA indicates the absorbance difference at 265 nm. The upper chromatograms represent reaction mixture profiles following incubation with hCYP24A1 for 15 min. The lower chromatograms were obtained at the starting point.

Figure S2. Chemical structures of VDDs of 1,25D2. (a) Single-point modified VDDs: PRI-1906, PRI-1907 (side-chain modified VDDs of 1,25D2); (b) Double-point modified VDDs: PRI-5201 and PRI-5202 (19-*nor* modification of PRI-1906 and PRI-1907, respectively).

Figure S3. The ratio of the EMT markers (E- to N-cadherin) and the enzymes that catalyze the hydroxylation of vitamin D metabolites into its active or inactive form (CYP27B1 to CYP24A1, respectively) in HT-29 and HCT116 CRC cell lines. The basal expression of proteins was evaluated by western blot, then densitometric analysis of bands of protein of interest as a ratio to β -actin was performed. Data presented as mean with SD and with data of individual samples for 3 independent experiments.