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Abstract: Exosomes are nano-sized membranous vesicles produced by nearly all types of cells.
Since exosome-like vesicles are produced in an evolutionarily conserved manner for information
and function transfer from the originating cells to recipient cells, an increasing number of studies
have focused on their application as therapeutic agents, drug delivery vehicles, and diagnostic
targets. Analysis of the in vivo distribution of exosomes is a prerequisite for the development of
exosome-based therapeutics and drug delivery vehicles with accurate prediction of therapeutic dose
and potential side effects. Various attempts to evaluate the biodistribution of exosomes obtained
from different sources have been reported. In this review, we examined the current trends and the
advantages and disadvantages of the methods used to determine the biodistribution of exosomes by
molecular imaging. We also reviewed 29 publications to compare the methods employed to isolate,
analyze, and label exosomes as well as to determine the biodistribution of labeled exosomes.
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1. Introduction

According to studies conducted over the last half century, nearly all cells on earth produce
exosomes or exosome-like particles consisting of a lipid bilayer membrane [1]. The shedding of
exosomes is an evolutionarily well-conserved phenomenon found in all biological kingdoms [1]. The
discovery of exosomes occurred in the 1940s and platelet-derived particles in normal plasma were
first reported in 1946 [2] followed by a re-description as platelet dust in 1967 [3]. However, exosomes
received little attention for several decades because they were regarded as cellular garbage bins [4]. In
the mid-2000s, important discoveries regarding exosomes changed this trend. In 2007, the transfer of
genetic materials such as mRNAs and miRNAs in exosomes was reported [5]. Research on exosomes
has been increased explosively since then, with more than 3000 papers published annually in 2018
and 2019 (Figure 1) [1,2,4–22]. Exosomes, ranging 100–200 nm, from stem cells were reported to
mediate the paracrine therapeutic effects of stem cells [6]. Exosomes are important mediators of signal
transfer in both multicellular and unicellular organisms. They are also important signaling mediators
across species [14,23]. In addition to basic research, medical and healthcare industrial applications of
exosomes for the development of therapeutics, drug delivery vehicles, and liquid biopsies are rapidly
progressing [24–26].
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Figure 1. Trends of publications and major discoveries regarding exosomes. The number of 
publications was retrieved with a PubMed search using the keywords exosomes, exosome, 
extracellular vesicles, extracellular vesicle, and platelet-derived particles on 17 October 2019. 
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have been characterized according to their biogenesis: (1) exosomes are produced through the most 
complex process; specifically, inward budding of the cellular membrane results in the formation of 
early endosomes. Another inward budding of the early endosomal membrane results in 
multivesicular bodies (MVBs). Finally, fusion of MVBs with the plasma membrane sheds exosomes 
toward the extracellular space. The diameter of exosomes ranges from 30 to 200 nm; (2) microvesicles 
are produced from simple outward budding of the plasma membrane. The size of microvesicles are 
known to be from 100 or 200 to 1000 nm; and (3) apoptotic bodies are produced as a result of apoptotic 
cell death [27]. The apoptotic bodies are the largest type of EVs with size from 500 to 2000 nm in 
diameter. 

Since apoptotic bodies are byproducts of cell death, numerous attempts to develop EV-based 
therapeutics have focused on exosomes and microvesicles. Especially, exosomes are widely accepted 
as next generation therapeutics due to the extensive investigation of potential applications [28,29]. As 
mentioned, the size ranges of exosomes and microvesicles overlap and it is difficult to differentially 
isolate these EVs according to their size [30–32]. Recently, an alternative term, small extracellular 
vesicles (sEVs), was proposed to refer to EVs with diameters smaller than 200 nm [21]. In this review, 
we refer to these smaller EVs as exosomes. 

Specific markers of exosomes have been reported: ALIX and TSG101 are well-established 
markers of exosomes, and tetraspanins such as CD9, CD63, and CD81 are specific markers on the 
exosomal membrane. Additionally, exosomes contain a variety of specific proteins depending on 
their cells of origin [31]. Interestingly, it has been reported that exosomes derived from mesenchymal 
stem cells (MSCs) or HEK 293T cells do not contain class I and class II human major histocompatibility 
complex (MHC) proteins or co-stimulatory molecules such as CD80 and CD86. The absence of these 
proteins on the exosomal surface suggests no immune rejection can be expected for allogeneic 
therapeutics [32–35]. Exosomes derived from stem cells are actively being developed as a cell-free 
therapy because they recapitulate the functions of stem cells such as repair, regeneration, anti-
inflation, and immune modulation without the limitations and risks of stem cells themselves 
[30,31,36,37]. As an example, exosomes derived from MSCs have therapeutic effects on various 
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2. Exosomes

2.1. Exosomes and Extracellular Vesicles

Extracellular vesicles (EVs) are lipid bilayered vesicles shed by cells. Three major types of EVs
have been characterized according to their biogenesis: (1) exosomes are produced through the most
complex process; specifically, inward budding of the cellular membrane results in the formation of
early endosomes. Another inward budding of the early endosomal membrane results in multivesicular
bodies (MVBs). Finally, fusion of MVBs with the plasma membrane sheds exosomes toward the
extracellular space. The diameter of exosomes ranges from 30 to 200 nm; (2) microvesicles are produced
from simple outward budding of the plasma membrane. The size of microvesicles are known to be
from 100 or 200 to 1000 nm; and (3) apoptotic bodies are produced as a result of apoptotic cell death [27].
The apoptotic bodies are the largest type of EVs with size from 500 to 2000 nm in diameter.

Since apoptotic bodies are byproducts of cell death, numerous attempts to develop EV-based
therapeutics have focused on exosomes and microvesicles. Especially, exosomes are widely accepted
as next generation therapeutics due to the extensive investigation of potential applications [28,29]. As
mentioned, the size ranges of exosomes and microvesicles overlap and it is difficult to differentially
isolate these EVs according to their size [30–32]. Recently, an alternative term, small extracellular
vesicles (sEVs), was proposed to refer to EVs with diameters smaller than 200 nm [21]. In this review,
we refer to these smaller EVs as exosomes.

Specific markers of exosomes have been reported: ALIX and TSG101 are well-established markers
of exosomes, and tetraspanins such as CD9, CD63, and CD81 are specific markers on the exosomal
membrane. Additionally, exosomes contain a variety of specific proteins depending on their cells
of origin [31]. Interestingly, it has been reported that exosomes derived from mesenchymal stem
cells (MSCs) or HEK 293T cells do not contain class I and class II human major histocompatibility
complex (MHC) proteins or co-stimulatory molecules such as CD80 and CD86. The absence of
these proteins on the exosomal surface suggests no immune rejection can be expected for allogeneic
therapeutics [32–35]. Exosomes derived from stem cells are actively being developed as a cell-free
therapy because they recapitulate the functions of stem cells such as repair, regeneration, anti-inflation,
and immune modulation without the limitations and risks of stem cells themselves [30,31,36,37]. As
an example, exosomes derived from MSCs have therapeutic effects on various diseases including
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myocardial infarction [6,38], CCl4-induced liver injury [39], graft-versus-host disease (GvHD) [20],
acute and chronic kidney injury [40], and atopic dermatitis [34,41].

The size of exosomes enables their safe systemic administration through multiple routes without
the risk of embolism compared to cell-based therapy [42]. There is also a low risk of tumorigenesis
since exosomes cannot replicate themselves [43]. In addition, the use of exosomes would avoid various
issues related to cell therapy such as the inability to sterilize the cells, short shelf-life, and limited
quality control (QC) before release [41,44]. A couple of studies have also reported that exosomes
from MSCs and HEK 293T did not cause toxicity in vivo or in vitro [44–48]. A recent study suggested
that long-term repetitive injection of exosomes does not induce toxicity [45]. Nano-sized exosomes
may reach and accumulate in additional tissues beyond the tissues of therapeutic interest through
systemic administration. Therefore, analysis of the biodistribution following administration through
the intended route is a prerequisite for the development of exosome-based therapeutics.

2.2. Technologies for Isolation of Exosomes

The most important hurdle to overcome for exosome-based therapy is development of the
proper technologies for large scale isolation of exosomes [49]. Exosomes from different sources
have been isolated with various experimental methods such as differential ultracentrifugation (UC),
density gradient ultracentrifugation (DGUC), ultrafiltration (UF), size exclusion chromatography
(SEC), precipitation, and tangential flow filtration (TFF) [50,51]. According to a recent report, UC is the
most widely used method to isolate exosomes from conditioned media of MSCs [24]. Commercial kits,
which are mostly based on the precipitation of proteins, were the second choice for exosome isolation
among the 126 papers analyzed in a recent report [24].

Among various methods, TFF has been proposed as the ideal method for industrial manufacture of
exosomes [51]. Compared to other methods, which have limited compliance with good manufacturing
practice (GMP), the availability of GMP-compliant TFF systems may also result in validated process
control and GMP documents [50]. Methods based on UC have a risk of producing exosomes with
co-precipitated contaminants and functional loss due to exosome aggregation caused by high pressure
during centrifugation. The media used in DGUC may inhibit the function of exosomes [51]. Commercial
kits based on protein precipitation are widely used in many academic labs. However, the additives
used for precipitation (e.g., polyethylene glycol (PEG)) may inhibit the biological functions of exosomes.
Although SEC has the advantage of removing proteins smaller than exosomes, a low recovery rate
and the potential loss of exosome function were reported [51]. In principle, SEC cannot distinguish
exosomes from non-exosomal particles with similar sizes. Recent reports revealed the functional
importance of proteins associated with the surface of exosomes [52,53]. These results suggest that
careful selection of the proper methods is important to isolate functional exosomes without the loss of
these surface-associated proteins.

2.3. Quality Control of Exosomes

The QC of isolated exosomes is of importance for both reproducible research and the development
of therapeutics. In an international effort to establish standards for exosome analysis, the Minimal
Information for Studies of Extracellular Vesicles 2018 (MISEV 2018) was suggested through a series
of publications [21,54,55]. Many studies also reported on the GMP production of exosomes for the
development of therapeutics with suggested release criteria [45,50,56–61]. The worldwide market for
exosome-based therapy is expected to grow from 5 million USD in 2016 to 10.0 million USD in 2021,
with a compound annual growth rate (CAGR) of 14.9% [62]. In terms of regulation, fast-track approval
of exosome therapeutics by regulatory authorities in Korea, Italy, and China is expected [62]. The
Korea Ministry of Food and Drug Safety (MFDS) published the Guideline on Quality, Non-clinical and
Clinical Assessment of Extracellular Vesicles Therapy Products in 2018 [22]. As shown in Table 1, most
of the criteria in the MISEV 2018 and the MFDS Guideline are quite similar. The MFDS Guideline also
includes guides for the characterization of starting materials, methods for the production, isolation, and
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characterization of exosomes, stability testing, the consideration of non-clinical studies, toxicological
evaluation, and the considerations of clinical studies.

Table 1. Comparison of Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018)
and the Korea Ministry of Food and Drug Safety (MFDS) Guideline.

QC Criteria MISEV2018 Recommendation MFDS Guideline (2018) Examples

Exosome Number
(or quantification)

Global quantification by at least
two methods: protein amount,

particle number, lipid amount, etc.

Number of vesicles (or
particles) and total protein

amount or others

Nanoparticle tracking analysis
(NTA)

Protein quantification

Exosome Size RPS, NTA, DLS, etc. NTA, DLS, RPS, fluorescence
correlation spectroscopy, etc. NTA

Identity Protein markers;
Phospholipids

At least semi-quantitative
method to detect proteins,

RNAs, or lipids enriched in
exosome

Western blot: CD9, CD63, CD81,
ALIX, TSG101

FCM: CD9, CD63, CD81, and more
ELISA

Purity

Ratios of two quantification
figures (e.g., protein:particle)

Assessment of absence of expected
contamination

For proteins which are not
expected to enrich in

exosomes;
For process impurities: serum

albumin, antibiotics, etc.

ELISA for Calnexin or GM130
ELISA for impurities

Potency Assays Dose-response assessment Biological assay which can
represent MoA

Various methods:
immune-modulation,

proliferation, collagen, etc.

Others not mentioned Mycoplasma, Sterility,
Endotoxin, and Virus tests

3. Analysis of Exosomes Biodistribution

3.1. Bioimaging Modalities

Various modalities, such as bioluminescence imaging (BLI), nuclear, fluorescence, and magnetic
resonance imaging (MRI) [63–65], have been used for in vivo imaging (Table 2). In general, BLI is
known to have the highest sensitivity and high signal-to-noise ratio while nuclear imaging has the
highest penetration [63]. However, BLI with luciferase requires additional administration of substrates
for luciferase and is limited by the low spatial and temporal resolution. Nuclear imaging requires
hazardous radioisotopes with low spatial resolution and high cost. Fluorescence imaging with near
infrared (NIR) fluorescent dyes is limited by the spatial and temporal resolution. Fluorescence imaging
using fluorescent proteins (FP) has the highest spatial resolution. However, the low penetration of FP
fluorescence does not allow noninvasive in vivo imaging. MRI has high penetration with high spatial
and temporal resolution but is limited by low sensitivity and high cost.

Table 2. Comparison of bioimaging modalities.

Modality Examples Pros Cons

Bioluminescence
Imaging [63,64] Luciferase

Highest sensitivity (10−15
−10−17 mole/L)

Medium cost
High signal-to-noise (compared to

fluorescence)

Substrate needed
Medium penetration (mm−cm)

Low spatial resolution (mm)
Low temporal resolution (sec−min)

Nuclear Imaging
(PET/SPECT) [63–65] 99 mTc

Highest penetration (m)
High sensitivity (10−10

−10−12 mole/L)
Medium temporal resolution (10 s−min)

Hazardous
Low spatial resolution (mm)

High cost

NIR Fluorescence
Imaging [63,64] DiR

Medium penetration (mm−cm)
Medium sensitivity (10−9

−10−12 mole/L)
Low cost

Low spatial resolution (mm)
Low temporal resolution (s−min)

Fluorescent Protein
Imaging [63,64] GFP Highest spatial resolution (nm)

Medium sensitivity
Lowest penetration (mm): does not
allow noninvasive in vivo imaging

Magnetic Resonance
Imaging (MRI) [63,64] SPIO

Highest penetration (m)
High spatial resolution (µm)

Highest temporal resolution (min−h)

Lowest sensitivity (10−3
−10−5 mole/L)

High cost
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3.2. Labeling Methods for Exosomes

For in vivo imaging, exosomes have to be labeled with probes using proper methods. Methods for
labeling probes include covalent binding, genetic modification, membrane integration, encapsulation
(or internalization), and metabolic labeling (Table 3).

3.2.1. Covalent Binding

Covalent binding can be used to label exosomes by reacting them with probes that have functional
moieties. Due to the covalent bonding, labeled probes tightly bind to exosomes with minimal
dissociation. However, nonspecific exosomal proteins may also be labeled when using this method.
Additionally, the labeling of exosomal surface proteins may affect their function and/or structure
resulting in altered interactions of the exosomes with the target cells. It was recently reported that
the modification of surface proteins altered the biodistribution of exosomes [66]. According to this
report, treatment of glycosidase with exosomes resulted in a slight increase in the lung distribution
of exosomes in mice compared to the distribution of untreated exosomes. However, it is necessary
to further explore this finding with a large number of animals to obtain more statistically significant
results since only three mice per group were used in the study. Another study performed without
covalent binding suggested that labeling exosomes with lipophilic dyes also slightly changes the
biodistribution of exosomes. The researchers labeled exosomes containing luciferase, with a lipophilic
fluorescent dye and compared the biodistribution of the exosomes with and without the lipophilic
dyes [67]. The exosomes without the lipophilic dye, accumulated in the organs in the following order:
lung > liver > spleen > kidney. On the contrary, the exosomes with the lipophilic dye accumulated in
the organs in the following order: liver > lung and spleen. Taken together, it is necessary to develop a
method to analyze the effect of exosome surface modification.

3.2.2. Surface Modification

Surface modification of exosomes can be avoided by genetic modification to load probe proteins
into exosomes. To date, luciferase proteins are mostly used for genetic modification (Table 4). However,
genetic modification may change the property of cells and even exosomes. Uneven loading of probe
proteins is another issue that needs to be addressed [68,69].

3.2.3. Membrane Integration

The most widely used labeling method for exosomes is membrane integration of lipophilic
fluorescent dyes. This method is simple and easy, but carries the risk of exosome aggregation [65].
Another issue with lipophilic dyes is that they can label both lipoproteins and lipid micelles. Lipophilic
dyes have been widely used to analyze the biodistribution of cells for the development of cell-based
therapies. A study reported that there was no transfer of lipophilic dyes such as PKH67 or Dil from
labeled to unlabeled cells in co-culture conditions [70]. These results suggest that there is a low risk of
background signals resulting from the transfer of lipophilic dyes released from exosome membranes to
the target tissue or cells. On the other hand, the long in vivo half-life of lipophilic dyes may cause
pseudo signals after the clearance of exosomes [65]. The in vivo half-life of PKH2 and PKH26 was
reported to be 12 days and more than 100 days, respectively [71]. Dialkylcarbocyanine dyes, such as
DiD, Dil, DiO, and DiR, are also widely used. The in vivo half-life of DiR is known to be approximately
4 weeks [72]. Taken together, it is necessary to include a control containing lipophilic dyes alone [45].
Another potential issue with the use of lipophilic dyes is the formation of micelles in the liquid because
of the lipophilic nature of the dyes [73]. When PKH26 or CM-Dil was incubated in phosphate-buffered
saline (PBS) without exosomes, there were detectable levels of particles. On the contrary, in our studies,
no detectable particles were observed when PKH dyes were incubated in the PBS without exosomes.
In addition, no detectable changes in particle numbers were observed when PKH dyes were reacted
with exosomes at the appropriate concentration (unpublished observation). Again, it is important to
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include a negative control that consists of the lipophilic dyes in the same buffer without exosomes.
Since removal of free unlabeled dyes is a prerequisite, it is also important to process this negative
control using with same removal method.

3.2.4. Encapsulation

Encapsulation can be applied to label exosomes, while avoiding surface modification. However,
electroporation may cause the aggregation of exosomes or structural distortion of the membrane,
resulting in fused exosomes [65]. When lipophilic materials are used for encapsulation, it is difficult to
exclude the possibility of sustained release of internalized probes from the exosomes. It is expected
that uneven distribution of transporter proteins on the exosome membrane may cause uneven loading
of probes when a transporter protein is utilized for the encapsulation of probes. The expression of a
specific transporter protein is also limited by the cell types.

3.2.5. Metabolic Labeling

Metabolic labeling of exosomes is achievable with the addition of specific substances during the
cell culture process. After the isolation of metabolically labeled exosomes, covalent binding of the
probes can be achieved with click chemistry [74]. However, the addition of extra substances during
cell culture may cause changes in the characteristics of the cells or exosomes.

3.3. Analysis of Biodistribution of Exosomes in Literature

We analyzed 29 published papers that reported biodistribution studies of different exosomes or
EVs (Table 4). The most widely used labeling method was membrane integration of lipophilic dyes
followed by covalent binding, encapsulation (or internalization), and genetic engineering (Figure 2).
Only one paper described metabolic labeling.
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Figure 2. Labeling methods and probes used for labeling exosomes.

3.3.1. Labeling Methods

All four papers involving genetic engineering described the use of luciferases. No publication
was reported using fluorescent proteins (Table 4). As discussed, the low penetration of fluorescence
is not suitable for noninvasive in vivo imaging (Table 2). Genetic engineering may cause changes
in the characteristics of host cells or even exosomes. When genetically modified cells are used to
produce labeled exosomes, the possibility of differences in the characteristics of labeled exosomes for
biodistribution analysis and unlabeled exosomes for therapeutic use cannot be excluded. On the other
hand, genetically labeled exosomes have an advantage in comparing their in vivo distribution with
and without additional labeling. Especially, genetically labeled exosomes can be utilized to monitor
the effects of surface modifications, such as covalent binding or membrane integration, which may
cause structural or functional changes in the membranes of exosomes [67].
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Table 3. Comparison of labeling methods.

Labeling Methods Pros Cons Reference

Covalent biding Tight binding of probes
to proteins

Cannot distinguish between exosomes vs.
non-exosome proteins

May change membrane protein functions
which affect the interaction of exosomes

with target cells

[66]

Genetic modification Can avoid surface
modification

Genetic change of cells may change the
property of cells and/or exosomes

Uneven loading into exosomes
[68]

Membrane integration
(lipophilic fluorescent

dyes)
Simple and easy

May cause clumping of exosomes
Cannot distinguish between lipid proteins

and micelle
May cause background signals from

dissociated probes
May cause pseudo signals even after

clearance of exosomes
May affect the interaction of exosomes with

target cells

[65]

Encapsulation by
electroporation

May avoid surface
modification

May cause aggregation or fusion of
exosomes [65]

Encapsulation by
lipophilic agents Simple and easy May cause background signals from

released probes [65]

Transporter-dependent
encapsulation Simple and easy

Depends on transporter (e.g., GLUT1)
Un-even encapsulation

May cause background signals from
released probes

[75]

Metabolic labeling Covalent biding of
probes by click chemistry

May change the property of cells and/or
exosomes

May change membrane protein functions
which affect the interaction of exosomes

with target cells

[74,76]

Labeling of exosomes by encapsulation has been performed with various labeling probes such as
radioisotopes, nanoparticles, and fluorescent dyes (Table 4). Passive loading of probes is frequently
used. An interesting example of active loading of probes is the use of transporter proteins on the
membrane of exosomes. A study reported the encapsulation of glucose-coated gold nanoparticles
by the GLUT1 glucose transporter on the exosomal membrane [75]. Additional transporters are
expected to be available for the specific encapsulation of probes in exosomes obtained from different
sources with the advancement of research. However, the distribution or abundance of transporter
proteins on the exosomal membrane may cause the uneven loading of proteins. Sonication was also
employed to encapsulate probes in exosomes [76]. However, sonication may cause distortion or
damage to the exosomal membrane, eventually affecting the biodistribution of exosomes. Additionally,
superparamagnetic iron oxide (SPIO) nanoparticles have been used to label exosomes through the
transfection of exosome-producing cells [75]. It is important to recognize that the loading amount of
nanoparticles is restricted by their size. The hydrodynamic radius of SPIO nanoparticles in a previous
report [75] was 62 nm (https://www.magneticinsight.com/wp-content/uploads/2016/05/VivoTrax_
datasheet.pdf). Since the diameter of exosomes in the study is around 100 nm [75], the loading
efficiency of SPIO nanoparticles in exosomes seems to be limited.

https://www.magneticinsight.com/wp-content/uploads/2016/05/VivoTrax_datasheet.pdf
https://www.magneticinsight.com/wp-content/uploads/2016/05/VivoTrax_datasheet.pdf
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Table 4. Biodistribution of exosomes in literature.

Labeling
Method Modality Nomenclature

(Markers) Cell Source Isolation Method Purification
after Labeling

Dose
(/Head) Animal Model Admin.

Route
Imaging
Method Tissue Distribution Ref.

Covalent
binding

RI
(124I) EVs

MLP29
(murine

liver-derived
progenitor cell

line)

UC
(100,000 g, 70 min)

SEC
(Sephadex

G-25)

0.6–1.8
MBq

(40–120 ng)

Mouse
(BALB/cJRj)

IV
hock PET Bladder > liver > thyroid

> lung > kidney > brain [66]

Covalent
binding

Fluorescence
(Cy7-NHS)

Exosomes
(CD9, ALIX,

TSG101)

Human U937
leukemia cells

UC
(100,000 g, 2 h)

SEC
(Sephadex

G50)
40 µg

Mouse
(BALB/c) with

syngeneic CT26
colon

adenocarcinoma

IV IVIS
Liver > kidney, tumor,

spleen, heart, lung, colon,
brain, bladder, blood

[77]

Covalent
binding

Fluorescence
(Cy7-NHS) EVs Helicobacter pylori

UC (150,000 g, 3 h)
and DGUC

(100,000 g, 2 h)
Not disclosed Not

disclosed
Mouse

(C57BL/6) Oral IVIS Mouse, stomach [78]

Covalent
binding

Fluorescence
(Cy7-NHS)

Bacterial EVs
(OMVs) E. coli UC

(150,000 g, 3 h)
UC

(150,000 g, 3 h) 15 µg
Mouse

(C57BL/6 and
SKH1-E)

IP IVIS
(3 h) liver > kidney > lung
> spleen > small intestine

(24 h) liver
[79]

Covalent
binding

RI
(111Indium)

Exosomes
(CD81, CD9)

Murine B16F10
melanoma

UC
(100,000 g, 90 min)

SEC
(Sepharose

CL-2B)
1 × 1011

Mouse
(C57BL/6 and NSG),
melanoma-bearing

IV SPECT/CT Liver > spleen > bone,
kidney, lung [80]

Covalent
binding

RI
(131I)

Exosomes
(CD9, CD63)

Mouse MDSCs
and EPCs, HEK293

UF (100 kDa)
and UC

(100,000 g, 70 min)

UF
(100 kDa)

350 ± 50
µCi

Mouse
(BALB/c or
C57BL/J6)

Xenograft bearing
4T1 or AT3

IV SPECT/CT

(Tumor exosomes) tumor
> liver > lung, spleen,

kidney, brain, heart
(MDSC-exosome) liver,
lung, tumor > kidney,

spleen, brain, heart
(EPC-exosomes) tumor >
liver > lung, kidney, brain,

spleen, heart

[81]

Covalent
binding

RI
[99mTc(CO)3
(−H2O)3]+

EVs Erythrocyte
UC

(130,000 g, 30 min)
and SEC

SEC
(Desalting
Column)

15 ± 2 Mbq Mouse
(BALB/c) IV SPECT/CT Liver, bladder, spleen >

kidney > lung, heart, bone [82]

Metabolic
labeling

Fluorescence
(Cy3 or
Cy5.5)

Exosomes
(CD63)

Human
MDA-MD-231 and

MCF7 breast
cancer cells

ExoQuick Gel filtration
(G-25) 10 µg

Mouse, athymic
MDA-MB-231 or

MCF7 tumor bearing
IV IVIS

(MCF7 exosomes) liver >
large and small intestines
> kidney, tumor, spleen,

lung, muscle, blood
(MDA-MD-231 exosomes)

liver > large and small
intestines > lung > tumor,
spleen, kidney > muscle,

blood

[74]
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Table 4. Cont.

Labeling
Method Modality Nomenclature

(Markers) Cell Source Isolation Method Purification
after Labeling

Dose
(/Head) Animal Model Admin.

Route
Imaging
Method Tissue Distribution Ref.

Genetic
Engineering

Luminescence
(CD63-NanoLuc)

Exosomes
(CD63)

HT29/CD63Nluc
and

HCD116/CD63Nluc

UC
(110,000 g, 70 min) NA NA Female mouse

(Balb/c-nu/nu)

NA
(SC

implant of
cells)

BLI
(IVIS) Stomach, intestine [83]

Genetic
Engineering

Luminescence
(Renilla

Luciferase;
Rluc)

EVs
(CD63, Alix)

CAL-62 thyroid
cancer cell and
MDA-MB-231

breast cancer cells

UC
(100,000 g, 60 min) NA 25 µg

Mouse
(BALB/c, female)

N = 3
IV BLI

(IVIS)

62/Rluc: lung> liver >
spleen > kidney

62/Rluc/DiR: liver > lung,
spleen

231Rluc: lung, liver >
spleen > kidney

[67]

Genetic
Engineering

Luminescence
(Gaussia

Luciferase)

EVs
(CD63, ALIX) HEK293T cells UC

(100,000 g, 90 min) NA 100 µg Mouse
(athymic nude) IV BLI

Spleen, liver > lung,
kidney, brain, heart,

muscle
[84]

Genetic
Engineering

Luminescence
(Gaussia

Luciferase)
Exosomes B16-Bl6 murine

melanoma cells
UC

(100,000 g, 1 h) NA
1 × 1010

RLU
(5 µg)

Mouse
(BALB/c) IV BLI

(LAS3000)

Lung > spleen > kidney,
liver, heart, brain,

intestine
[85]

Membrane
integration

MR
(gadolinium)

Exosomes
(CD9, CD63,

CD81)
Human UC-MSCs UC

(120,000 g, 90 min)
UF

(10 kDa)
0.015

mmol/kg

Mouse, K7M2
(human

osteosarcoma)
xenograft
(NU/NU)

IV MRI Liver, spleen > tumor >
lung, kidney, heart, brain [86]

Membrane
integration

Fluorescence
(DiR)

Exosomes
(CD9, CD63,

CD81)
Human UC-MSCs UC

120,000 g, 90 min) Not disclosed 5 mg/kg

Mouse, K7M2
(human

osteosarcoma)
xenograft
(NU/NU)

IV LI-COR Spleen > liver > tumor,
lung > kidney, brain, heart [86]

Membrane
integration

Fluorescence
(Dil) Wnt4-exosomes

Mouse TEP1
(primary thymic

epithelial cell)
TEI (Invitrogen) TEI

(pre-labeling)
Not

disclosed
Mouse

(BALB/c) IV IVIS Thymus > lung, liver,
spleen [87]

Membrane
integration

Fluorescence
(DiR)

CVs
(by sonication)

hCMEC/D3
B16

UC
(60,000 rpm, 24 h) SEC 200 µg of

lipid
Mouse

(FVB albino) ROVS IVIS Liver > spleen, lung >
brain [88]

Membrane
integration

Fluorescence
(DiR)

Exosomes
(ALIX, CD63,
CD81, CD9,

TSG101)

C2C12 murine
myoblast cell

UC
(100,000 g, 1 h) Not disclosed 30 µg Mouse

(C57BL/6) IV IVIS Liver > spleen > lung [89]

Membrane
integration

Fluorescence
(DiR) Exosomes BM-MSC UC

(100,000 g, 3 h)
UC

(100,000 g, ND) 8 × 109

Mouse
(C57BL/6)

Tumor vs. non
tumor

IP IVIS Liver, spleen, pancreas [45]
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Table 4. Cont.

Labeling
Method Modality Nomenclature

(Markers) Cell Source Isolation Method Purification
after Labeling

Dose
(/Head) Animal Model Admin.

Route
Imaging
Method Tissue Distribution Ref.

Membrane
integration

Fluorescence
(PKH67)

Exosomes
(CD63) Mouse BM-MSC UF + ExoQuick ExoQuick 30 µg

Mouse
(BALB/c)

TUBO tumor
IV IVIS (24 h) Tumor > spleen >

kidney, liver, lung [90]

Membrane
integration

Fluorescence
(DiR)

Exosomes
(TSG101,

CD81)

Endothelial colony
forming cell

(ECFC)

UC
(100,000 g, 90 min)

UC
(100,000 g) 20 µg Male FVB mice IV IVIS (4 h) kidney > liver, heart,

spleen, lung [91]

Membrane
integration

Fluorescence
(DiD)

Exosomes
(TSG101, CD9,

HSP70;
GM130-)

Murine EO771 BC
cells

Combination of
UF (100 kDa) and

SEC

UC
(100,000 g,

90 min)

20 µg
(1.6 × 1011)

Mouse
(C57BL/6 or

BALB/C)
IV

IVIS
organ

imaging

Lung, > liver > spleen,
kidney > heart > bone

marrow
[92]

Membrane
integration

Fluorescence
(DiD)

Exosomes
(TSG101, CD9,

HSP70;
GM130-)

Murine 4T1 BC
cells

UC
(100,000× g,

90 min)

UC
(100,000 g,

90 min)

20 µg
(1.2 × 1011)

Mouse
(C57BL/6 or

BALB/C)
IV

IVIS
organ

imaging

Lung > liver > kidney >
spleen, heart, bone

marrow
[92]

Membrane
integration

Fluorescence
(DiD) Exosomes Murine 67NR BC

cells

UC
(100,000× g,

90 min)

UC
(100,000 g,

90 min)

20 µg
(1.2 × 1011)

Mouse
(C57BL/6 or

BALB/C)
IV

IVIS
organ

imaging

Lung > liver > kidney >
spleen, heart, bone

marrow
[92]

Membrane
integration

Fluorescence
(DiR) EVs Undisclosed NA

UC (120,000 g,
70 min) vs.

UF (100
kDa)–SEC

(S-400)

Undisclosed Mouse
(BALB/c) IV

IVIS
organ

imaging

(UC) liver > lung, spleen >
kidney

(UF-SEC) liver > spleen >
lung > kidney

[93]

Membrane
integration

Fluorescence
(DiR)

EVs
(ALIX,

TSG101)
HEK293T cells UC

(110,000 g, 70 min)

NA
(pre-labeling
before UC)

1.5 × 1010,
1,0 × 1010,
0.25 × 1010

p/g BW

Mouse
(NMRI or C57BL/6)

IV
IP
SC

IVIS

(IV) liver > GI-tract,
spleen > lung > pancreas

(IP) liver, GI-tract,
pancreas > spleen, lung
(SC) GI-tract > liver >

pancreas, lung > spleen

[68]

Membrane
integration

Fluorescence
(DiR)

EVs
(ALIX,

TSG101)
DC cells UC

(110,000 g, 70 min)

NA
(pre-labeling
before UC)

1.0 × 1010

p/g BW
Mouse

(NMRI or C57BL/6) IV IVIS Liver > spleen > GI-tract,
lung > pancreas [68]

Membrane
integration

Fluorescence
(DiR)

EVs
(ALIX,

TSG101)
C2C12 cells UC

(110,000 g, 70 min)

NA
(pre-labeling
before UC)

1.0 × 1010

p/g BW
Mouse

(NMRI or C57BL/6) IV IVIS Liver > spleen > GI-tract >
lung > pancreas [68]

Membrane
integration

Fluorescence
(DiR)

EVs
(ALIX,

TSG101)
B16F10 cells UC

(110,000 g, 70 min)

NA
(pre-labeling
before UC)

1.0 × 1010

p/g BW
Mouse

(NMRI or C57BL/6) IV IVIS Liver > GI-tract, spleen,
lungs > pancreas [68]

Membrane
integration

Fluorescence
(DiR)

Exosome
(CD63,

flotillin-1)
BMSCs UF (3

kDa)-ExoQuick-TC ExoQuick-TC 500 µg C57BL/KaLwRij IV Fluobean 800 BM, spleen, liver [94]
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Table 4. Cont.

Labeling
Method Modality Nomenclature

(Markers) Cell Source Isolation Method Purification
after Labeling

Dose
(/Head) Animal Model Admin.

Route
Imaging
Method Tissue Distribution Ref.

Membrane
integration

Fluorescence
(DiD)

EVs
(CD44, CD105,

CD90,
α5-integrin)

MSCs UC
(100,000 g, 1 h) UC 200 µg

Mouse
CD1 with or without

glycerol-induced
AKI

IV
IVIS

organ
imaging

(24 h) liver > spleen >
lung [95]

Encapsulation RI
99mTc

Exosome
mimetics Rat RBCs

UC
(100,000 g, 1 h) +

DGUC

Centrifugation
(not disclosed

in detail)
37 Mbq Mouse

(C57BL/6, male) IV
Gamma
camera
imaging

Liver, spleen, kidney >
thyroid, stomach, lung,
blood, intestine > heart,

muscle, bone

[65]

Encapsulation
MR
gold

nanoparticles

Exosomes
(CD9) Human MSCs UC

(100,000 g, 70 min)
UC

(100,000 g, 2 h) 2.8 × 109 Mouse
(C57bl/6, male)

IV
IN CT

(IV) lung, liver > spleen >
kidney, brain, blood
(IN) lung > spleen >

kidney, brain, blood, liver

[96]

Encapsulation RI
99mTc-HMPAO

Exosome
mimetic RAW264.7 DGUC

(100,000 g, 2 h)
SEC

(MW3000)

7.4–14.8
Mbq

(29–64 µg)

Mouse
(BALB/c) IV SPECT/CT

(5 h) liver > kidney >
spleen > intestine > lung,

heart, stomach, heart >
bone, muscle, blood

[97]

Encapsulation
by

transfection

MR
SPIO

Exosomes
(CD9, CD63) MDA-MB-231 ExoQuick NA 100 µg Mouse IV MPI

CT Liver [75]

Encapsulation
by Sonication

Fluorescence
Chlorin e6

(Ce6)

Tumor
targeting EVs RAW264.7 UC

(100,000 g, 70 min)

UC
(100,000 g,

70 min)
10 mg/kg

Mouse
(BALB/c nu/nu)

with HCT116 tumor
IV

Image
Station 4000

MM

Tumor > liver > lung,
kidney, spleen, brain,

heart
[76]

Abbreviations: AKI, acute kidney injury; BC, breast cancer; BLI, bioluminescence imaging; BMSC, bone marrow stromal cell; BW, body weight; CV, cellular vesicle; CT, computed
tomography; DGUC, density-gradient ultracentrifugation; EPCs, endothelial progenitor cells; FI, fluorescence intensity; FP, fluorescence protein; GNP, gold nanoparticle; ICP-MS,
inductively coupled plasma mass spectroscopy; IN, intranasal; IV, intravenous; IP, intraperitoneal; MDSCs: myeloid derived suppressor cells; MPI, magnetic particle imaging; MR,
magnetic resonance; MRI, magnetic resonance imaging; MSC, mesenchymal stem/stromal cell; NA, not applicable; ND, not determined; NR, nuclear imaging; OMV, outer membrane
vesicle; RI, radioisotope; RLU, relative luminescence unit; ROVS, retro-orbital venous sinus; SC, subcutaneous; SEC, size exclusion chromatography; SPECT, single-photon emission
computed tomography; SPIO, superparamagnetic iron oxide; TEI, total exosome isolation reagent; UC, ultracentrifugation; UC-MSC, umbilical cord MSC; UF, ultrafiltration.
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Among the 29 papers reviewed, eight papers reported the labeling of exosomes by covalent
binding to probes. The most commonly used labeling modality for covalent binding was radioisotope
labeling (five out of eight) (Table 4). Fluorescent dyes (three out of eight) were also used for covalent
binding. The advantage of covalent binding is the low risk of pseudo-positive signals caused by the
spontaneous release of probes without covalent bonds. However, careful analysis is required since
modification of surface proteins by the covalent binding of probes may change the interaction of
exosomes and their target tissues or cells [73,76].

The most widely used labeling method is the membrane integration of lipophilic fluorescent
dyes (Figure 2, left). Fifty percent of the studies evaluated used the membrane integration strategy
with lipophilic fluorescent dyes (Table 4). For membrane integration, fluorescent probes were
overwhelmingly selected over other methods (Figure 2, right). DiR was the most frequently used
lipophilic fluorescent dye (Figure 3). DiR is a dialkylcabarbocyanine with NIR fluorescence which is
ideal for in vivo imaging since it has low absorption by biological materials [98]. The FDA-approved
NIR dye Indocyanine Green (ICG) is also able to label exosomes [99,100]. A potential issue is the
possibility of lipophilic dyes forming micelles in the liquid [73]. Therefore, it is of utmost importance
to compare the number of particles before and after labeling with lipophilic dyes. In addition, it is
necessary to include a proper negative control containing the appropriate amount of lipophilic dye [45].
A buffer solution with lipophilic dyes incubated and processed using the same procedures employed
for the exosomes with lipophilic dyes may also be a good negative control.
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3.3.2. Characterization of Exosomes

One unexpected finding is that many studies used exosomes or EVs without characterization.
As mentioned earlier, QC of exosomes is essential for both reproducible basic exosome research
and the development of exosome therapeutics. The ISEV also proposed minimal requirements in
the MISEV2018 guidelines for the identification of exosomes by analyzing specific markers [21].
Surprisingly, we found that approximately 40% of studies did not include the analysis of specific
markers (Figure 4). Other than publications with exosome-like vesicles from microorganisms or
exosome mimetics, 11 publications did not provide the results of specific marker analysis (Table 4).
Although the results of NTA or electron microscopic analysis were reported in some cases, these
results are not sufficient to confirm the identity of the exosomes used in the studies. More importantly,
analysis of specific markers is especially important to compare the properties of exosomes and analyze
the recovery rate between before and after labeling.
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3.3.3. Exosome Isolation Methods

Selection of the appropriate isolation method is essential for the industrial development of
exosome-based therapeutics [50,51]. As shown in Figure 5, the dominant method for isolating
exosomes is UC. This implies that UC is still the general method used to isolate exosomes in most
academic settings, although the method is not ideal for the mass production of exosomes for the
development of therapeutics. SEC was reported in only one publication [82]. In a few studies,
precipitation with commercial kits was used to isolate exosomes. The process should be carefully
monitored to determine whether the additives used for precipitation such as PEG have adverse effects
on the labeling or biodistribution of exosomes. Ideally, these additives should be removed from the
final exosome products before administration to an experimental animal. One publication reported that
there was no significant difference in the biodistribution of exosomes isolated using UC or SEC [93].
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Another important aspect to consider is the removal of excess unlabeled probes from labeled
exosomes. UC was the most commonly used method for removing free probes in the studies evaluated
(Figure 6). Interestingly, SEC was the second most frequently method for removing free probes. One
drawback of SEC was the increase of sample volume with multiple fractions during the isolation
process. To avoid this, methods based on the gel filtration (GF) principle are possible alternatives to
conventional SEC. Commercial GF columns are already available to remove free probes by simple
centrifugation without a significant increase in the sample volume [44,74,82,97]. Precipitation methods
were also used to remove free probes. Again, the possibility of adverse effects from the additives used
for precipitation cannot be excluded without further steps to remove the additives.
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3.3.4. Determination of Exosome Dose

Determination of the exosome dose for biodistribution analysis is another essential factor. Since
exosomes are composed of lipids, proteins, and nucleic acids, it is possible to determine the exosome
dose from the total amounts of lipids, proteins, or nucleic acids, respectively. It is also possible to
determine the exosome dose from the total number of particles [21]. As shown in Figure 7, the most
frequently used parameter for exosome dose determination was the amount of total proteins, followed
by the number of particles. Parallel description of the amount of proteins and the number of particles
was also reported in three publications as suggested by the ISEV in MISEV2018 [21]. The range of
total proteins was from 10 to 500 µg per animal and that of the number of particles was from 2.8 × 109

to approximately 3.8 × 1011 particles per animal (Table 4). Interestingly, all publications exclusively
reported the use of mice for exosome biodistribution analysis. Recently, increasing evidence suggests
that the use of zebrafish is a promising new approach to study in vivo physiology and pathology
of exosomes [101]. Indeed, the transparency and small size of the zebrafish embryo enables live
whole-body imaging analysis for better understanding of biodistribution including exosome uptake
and fate.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 17 of 26 

Another important aspect to consider is the removal of excess unlabeled probes from labeled 
exosomes. UC was the most commonly used method for removing free probes in the studies 
evaluated (Figure 6). Interestingly, SEC was the second most frequently method for removing free 
probes. One drawback of SEC was the increase of sample volume with multiple fractions during the 
isolation process. To avoid this, methods based on the gel filtration (GF) principle are possible 
alternatives to conventional SEC. Commercial GF columns are already available to remove free 
probes by simple centrifugation without a significant increase in the sample volume [44,74,82,97]. 
Precipitation methods were also used to remove free probes. Again, the possibility of adverse effects 
from the additives used for precipitation cannot be excluded without further steps to remove the 
additives. 

 
Figure 6. Methods to remove unlabeled probes from labeled exosomes. 

3.3.4. Determination of Exosome Dose 

Determination of the exosome dose for biodistribution analysis is another essential factor. Since 
exosomes are composed of lipids, proteins, and nucleic acids, it is possible to determine the exosome 
dose from the total amounts of lipids, proteins, or nucleic acids, respectively. It is also possible to 
determine the exosome dose from the total number of particles [21]. As shown in Figure 7, the most 
frequently used parameter for exosome dose determination was the amount of total proteins, 
followed by the number of particles. Parallel description of the amount of proteins and the number 
of particles was also reported in three publications as suggested by the ISEV in MISEV2018 [21]. The 
range of total proteins was from 10 to 500 μg per animal and that of the number of particles was from 
2.8 × 109 to approximately 3.8 × 1011 particles per animal (Table 4). Interestingly, all publications 
exclusively reported the use of mice for exosome biodistribution analysis. Recently, increasing 
evidence suggests that the use of zebrafish is a promising new approach to study in vivo physiology 
and pathology of exosomes [101]. Indeed, the transparency and small size of the zebrafish embryo 
enables live whole-body imaging analysis for better understanding of biodistribution including 
exosome uptake and fate. 

 
Figure 7. Determination of exosome dose in biodistribution. Abbreviations: Protein, total amount of 
proteins; number, total number of particles; P + N, total amount of proteins with total number of 
particles; Lipid, total amount of lipids. 
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particles; Lipid, total amount of lipids.

3.3.5. Routes of Administration

For in vivo analysis of exosome distribution, intravenous (IV) injection of exosomes was the
dominant (78%) administration route (Figure 8). Three publications used intraperitoneal injection
as an alternative route. The administration of exosomes through intranasal, hock, subcutaneous,
and retro-orbital venous sinus routes was rarely used. The most frequent accumulation tissues for
exosomes after IV injection were reported as the liver, lung, spleen, and kidney (Table 4). Although
the modification of surface proteins such as glycosylation may have affected the in vivo distribution
of exosomes in a few reports [66,67], additional studies with more animals seems to be necessary
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for more accurate analysis. It was also reported that there was a difference in the biodistribution of
exosomes according to the exosome-producing cells [68]. Further studies will be needed to determine
the significance of these findings.
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3.4. Therapeutic Implication of Exosome Biodistribution

As mentioned, the information on in vivo distribution of exosomes provides basis for prediction
of dose and potential side effects. In addition, it also provides the clue for target tissues of specific
therapeutic application. Several studies have already provided the relevance between biodistribution
and therapeutic effects.

3.4.1. Natural Targeting Properties of Exosomes

Tissue tropism is dependent on the surface composition of exosomes [102]. Different integrin
compositions determine the organotropism of exosomes derived from different tumors [103]. Secreted
proteins such as Wnt4 and TGF-β1 have been identified to be associated with exosomes [53,104].
Wnt4-associated exosomes derived from thymic epithelial cells accumulated in the thymus of mice
and this tropism was further enhanced by overexpression of Wnt4 in the originating cells, which might
induce regeneration of thymus [87]. More interestingly, EVs from Helicobactor pyroli was reported to
preferentially accumulate in stomach and induce inflammatory responses [78].

3.4.2. Tumor-Homing of Exosomes

Tumor-homing exosomes could be exploited as targeting delivery vehicles. As an example,
hypoxic cancer-homing exosomes, which were loaded with olaparib, demonstrated retarded tumor
growth in xenograft mice [75]. Interestingly, exosomes derived from MSCs (MSC-exosomes) have been
reported to exhibit tumor-homing properties similar to those of MSCs [105]. Human UC-MSC-exosomes
were reported to accumulate in tumor of mouse osteosarcoma K7M2 cells in nude mice [86]. These
UC-MSC-exosomes reduced proliferation of human osteosarcoma 143B and mouse osteosarcoma K7M2
cells in vitro in a dose-dependent manner by inducing apoptosis. The tumor-homing of MSC-exosomes
has been successfully adopted to deliver therapeutic miRNAs to reduce tumors in xenograft mice with
patient-derived pancreatic cancer [45], and syngeneic breast tumors in mice [90]. Interestingly, beyond
organotropism of tumor exosomes, generalized tropism of tumor exosomes toward neoplastic tissues
from different types or species have also been reported [106].
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3.4.3. Accumulation of MSC-Exosomes in Damaged Tissues

An interesting finding is that MSC-exosomes were preferentially accumulated in the kidneys of
mice with glycerol-induced acute kidney injury compared to the distribution in normal mice [95]. The
application of MSCs as a cell-based therapy for acute or chronic kidney disease has been studied [107].
MSC-exosomes have also been reported to be effective for kidney diseases in various animal models [108].
Since MSCs are known to accumulate in damaged tissues through the interactions of receptors on
the MSCs and target tissues [109,110], it is highly probable that MSC-exosomes are also localized in
damaged tissues due to these receptor interactions. Similarly, exosomes from endothelial progenitor
cells showed accumulation in ischemic kidney to prevent ischemic injury through CXCR4–SDF-1α
interaction [91].

3.4.4. Tissue Targeting by Exosome Engineering

In addition to natural cell-targeting abilities, it is also possible to engineer exosomes to target
specific tissues or cells [102]. PEGylation of exosomes resulted in targeted accumulation of exosomes
derived from cardiosphere-derived cells in ischemic myocardium in mice [111]. Targeted delivery
of exosomes by genetic modification of their surface proteins has been also been reported: (1) brain
targeting by rabies viral glycoprotein (RVG) peptide or RGD motif [19,112]; and (2) tumor targeting
by EGFR-specific nanobodies or HER2-specific single-chain variable fragments [113]. Recently a
peptide CP05, which binds CD63, was introduced as an anchor for homing moieties to change the
biodistribution of exosomes [89]. Engineered exosomes with tumor specificity could be also used
to delivery chemotherapeutic agents to reduce tumors in vivo [76]. In fact, exosomes are being
developed as drug carriers since they are a natural-born delivery vehicle. A wide variety of therapeutic
molecules can be delivered by exosomes, including small molecules [114,115], anti-cancer drugs such
as paclitaxel [116] and doxorubicin [117], and oncolytic viruses as well [116,118,119].

4. Conclusions

Exosomes from different cell types have unique features according to their originating cell types
and are being rapidly developed as therapeutic agents, drug delivery vehicles, and liquid biopsy
markers. Exosomes derived from MSCs are attractive for next generation cell-free therapeutics since
they recapitulate MSC capabilities of repair/regeneration, anti-inflammation, and immune modulation
and overcome the potential risk and limitations of cell-based therapeutics.

Analysis of the biodistribution of exosomes is an essential step to determine the therapeutic dose
and predict the potential side effects of exosomes. However, this is extremely challenging because of the
nano-range of their sizes and complex nature of their composition. QC of produced exosomes is also
extremely important to ensure reproducible results. Additionally, the labeling methods and analytical
modalities are limited by the characteristics of exosomes produced by living cells. A growing number
of studies and advances in the methods and modalities are expected to provide proper evaluation
solutions for high quality exosomes therapeutics in the near future.
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Abbreviations

AKI acute kidney injury
BC Breast cancer
BLI bioluminescence imaging
BMSC bone marrow stromal cell
BW body weight
CAGR compound annual growth rate
CV cellular vesicle
CT computed tomography
DGUC density-gradient ultracentrifugation
DLS dynamic light scattering
EPCs endothelial progenitor cells
EVs extracellular vesicles
FI fluorescence intensity
FP fluorescence protein
GMP good manufacturing practice
GNP gold nanoparticle
GvHD Graft-versus-host disease
ICP-MS inductively coupled plasma mass spectroscopy
IN intranasal
ISEV International Society for Extracellular Vesicles
IV intravenous
IP intraperitoneal
MDSCs myeloid derived suppressor cells
MFDS Ministry of Food and Drug Safety, Korea
MISEV Minimal Information for Studies of Extracellular Vesicles
MHC Major histocompatibility complex
MPI magnetic particle imaging
MRI magnetic resonance imaging
MSCs mesenchymal stem/stromal cells
MVBs multivesicular bodies
NA not applicable
ND not determined
NIR near infrared
NR nuclear imaging
NTA nanoparticle tracking analysis
OMV outer membrane vesicle
PEG polyethylene glycol
PET position-emission tomography
QCs quality controls
RI radioisotope
RLU relative luminescence unit
ROVS retro-orbital venous sinus
RPS resistive pulse sensing
SC subcutaneous
SEC size exclusion chromatography
SPECT single-photon emission computed tomography
SPIO superparamagnetic iron oxide
TEI total exosome isolation reagent
TFF tangential flow filtration
UC ultracentrifugation
UC-MSC umbilical cord MSC
UF ultrafiltration
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