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Abstract: Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped
clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause
seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations
of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review,
we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of
endothelium and epithelium, and their contribution to CCM and potentially other diseases.

Keywords: cerebral cavernous malformation; endothelial barrier; epithelial barrier; Rho;
ROCK; MEKK3

1. Introduction

One of the key functions of endothelial and epithelial cells is to create a barrier that separates
different tissue compartments, and in the case of skin, epithelial cells separate body and outer
environment. Compromised barrier function leads to abnormal mixing of different tissue components,
which can contribute to pathogenesis of many diseases. In this review, we focus on a group of proteins
that participates in the development of a neurovascular disease, cerebral cavernous malformation
(CCM), and examine their impact on cellular signaling and barrier function.

2. Clinical Features of CCM

CCM (also known as cavernous angioma) disease is characterized by the development of
abnormally dilated capillaries, primarily in the central nervous system (Figure 1) [1]. Grossly, these
lesions appear to be blood filled, mulberry shaped clusters of thin-walled small vessels. Histologically,
the nested microvessels have little supporting tissue and intervening parenchyma, and the dilated
vessels are lined by a single layer of dysmorphic endothelial cells. Thrombi frequently form in
these vessels, and hemosiderin deposits can be seen adjacent to these capillaries, indicating chronic
bleeding (Figure 2). CCM patients are mostly diagnosed by magnetic resonance imaging initiated
due to neurological changes, including headache, seizures, and other neurological deficits, such as
nausea or vomiting, weakness or numbness, slurred speech, and altered vision. About 25% to 50% of
CCM patients do not have clinical symptoms, and only a small fraction of these patients is identified
incidentally [2,3]. The prevalence of CCM is about 0.5% in the general population [4,5], and about 70%
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to 80% of CCM patients have one lesion, and the other 20% to 30% of CCM patients have more than
one lesion [6,7]. Most of the patients with one lesion have the sporadic form of the disease without a
family history, while the majority of the patients who have more than one lesion have a family history
with autosomal dominant Mendelian inheritance.
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Figure 1. Radiological presentation of CCM. (A) MRI image of the brain of a familial CCM patient. 
Susceptibility weighted imaging showed multiple dark CCM lesions with various sizes. Arrows 
indicate representative lesions. (B) 3D reconstruction of T2 weighted imaging of a CCM lesion. It 
shows the lesion is not uniform, but with popcorn appearance. The arrow indicates the location of the 
lesion. (C) Schematic presentation of a CCM lesion showing it is composed of nested dilated 
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Figure 2. Histopathological presentation of CCM. (A) H&E staining of a surgically resected CCM 
lesion. It is composed of clusters of thin walled dilated microvessels with no supporting smooth 
muscle cells beneath the endothelial cell layer and no intervening brain parenchyma. Thrombi are 
present within the lumen of capillaries within the CCM lesion. (B) High power image of the boxed 
region of panel A. Black arrows point to individual endothelial cells lining the inner surface of dilated 
capillaries, and yellow arrowheads point to hemosiderin deposition adjacent to the capillaries, a sign 
of chronic bleeding. Bar = 200 μm. 

3. Genetics of CCM 

Based on linkage analyses, three gene loci (CCM1 [7q21-22], CCM2 [7p15-p13], and CCM3 
[3q25.2-q27]) have been identified in the germ-line of familial cases [8–10]. Subsequently, the genes 

Figure 1. Radiological presentation of CCM. (A) MRI image of the brain of a familial CCM patient.
Susceptibility weighted imaging showed multiple dark CCM lesions with various sizes. Arrows
indicate representative lesions. (B) 3D reconstruction of T2 weighted imaging of a CCM lesion. It shows
the lesion is not uniform, but with popcorn appearance. The arrow indicates the location of the lesion.
(C) Schematic presentation of a CCM lesion showing it is composed of nested dilated microvessels.
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Figure 2. Histopathological presentation of CCM. (A) H&E staining of a surgically resected CCM
lesion. It is composed of clusters of thin walled dilated microvessels with no supporting smooth muscle
cells beneath the endothelial cell layer and no intervening brain parenchyma. Thrombi are present
within the lumen of capillaries within the CCM lesion. (B) High power image of the boxed region of
panel A. Black arrows point to individual endothelial cells lining the inner surface of dilated capillaries,
and yellow arrowheads point to hemosiderin deposition adjacent to the capillaries, a sign of chronic
bleeding. Bar = 200 µm.

3. Genetics of CCM

Based on linkage analyses, three gene loci (CCM1 [7q21-22], CCM2 [7p15-p13], and CCM3
[3q25.2-q27]) have been identified in the germ-line of familial cases [8–10]. Subsequently, the genes
within these loci are identified to be CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 [11–16].
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Of all familial CCM patients, ~60% have CCM1 mutations, ~20% have CCM2 mutations, ~10%
have CCM3 mutations, and a minority of familial CCM patients do not have mutations in these
three genes [17]. Although mutations of KRIT1, CCM2, and PDCD10 genes are all associated with
histologically identical CCM lesions, patients with PDCD10 mutations have the most severe phenotype,
with earlier symptomatic onset [18,19]. A large fraction of mutations identified in patients are located
in the coding region of CCM genes and are loss-of-function mutations [20]. DNA sequencing of
lesional tissue and endothelial cells from familial CCM patients showed that in addition to germ-line
mutations, these harbor somatic mutations of CCM genes, suggesting a two-hit mechanism for CCM
pathogenesis [21,22]. Somatic mutations in the same CCM genes have been identified in sporadic
lesions, indicating that loss of CCM function also contributes to sporadic disease development [23].
This also suggests that biomarkers and therapeutic targets aimed at the familial disease will also apply
in sporadic CCM cases.

CCM proteins are conserved molecules. Orthologs of all three CCM genes have been identified
in Caenorhabditis elegans. The KRIT1 ortholog kri-1 germline affects animal longevity and germ cell
survival [24,25], and ccm-2 participates in such processes [26]. The PDCD10 ortholog ccm-3 is required
for excretory canal organization and germline tube development through affecting a large array
of cellular events, including actomyosin organization, cell polarity and endocytic recycling [26–28].
In zebrafish, krit1 and ccm2 loss leads to dilation of major vessels, with spreading of endothelial
cells [29], and a C-terminally truncated PDCD10 causes a similar phenotype [30]. Although Ccm
heterozygous knockout mice have little or no potential to develop CCM–like lesions in the brain, when
they are on a genetically instable background (Msh2−/− or Trp53−/−), these mice have a significantly
higher lesion burden [19,31,32]. These findings demonstrate that loss of heterozygosity is likely an
important driving force for CCM pathogenesis. Mouse studies further show that KRIT1, CCM2,
and PDCD10 participate in CCM pathogenesis. Deletion of Krit1, Ccm2, and Pdcd10 genes all cause
embryonic lethality due to cardiovascular defects [33–35]. Conventional homozygous Krit1 and
Ccm2 deletion both cause defects in branchial arch artery formation [33,34], while Pdcd10 deletion
causes vasculogenesis and hematopoiesis defects [35]. When embryonic lethality is circumvented
by tamoxifen-induced postnatal deletion of floxed Ccm genes, CCM-like lesion formation ensues,
primarily in the cerebellum, suggesting they are CCM disease causing genes [36–39]. Consistent with
human studies, mice with Pdcd10 deletion also showed a more severe phenotype than mice with Krit1
or Ccm2 mutations, indicating PDCD10 may affect KRIT1 and CCM2-independent events [19]. Recent
evidence reveals that clonally expanded mutated endothelial cells only comprise a fraction of cells
lining CCM lesions, suggesting endothelial cells with CCM deletions may co-opt endothelial cells
without CCM mutations to participate in CCM disease [40].

4. CCM Proteins and Their Interactions

KRIT1 (Krev interaction trapped protein-1, CCM1) is the largest of the three CCM proteins, with
529 amino acid residues [41]. It was first identified through its binding to the small GTPase Rap1
(also called Krev-1), and it is comprised of an N-terminal Nudix domain, three NPxY/F motifs, an
ankyrin-repeat region, and a C-terminal FERM (band 4.1, ezrin, radixin, moesin) domain (Figure 3).
Through its N-terminal Nudix domain and NPxY/F motif containing region, KRIT1 interacts with the
β1-integrin binding protein ICAP1 to limit β1-integrin activation [42,43]. The KRIT1 FERM domain
binds to a transmembrane protein Heg1 and the small GTPase Rap1 and is important for KRIT1 to
localize to the plasma membrane [41,44–46]. Consistent with its role in cytoskeletal regulation, KRIT1
also directly associates with microtubules [47].

CCM2 is a 444 amino acid residue protein, with a phosphotyrosine-binding domain (PTB) at its
N-terminus and a C-terminal harmonin-homology domain (HHD) [13,48]. It was first characterized as
an osmosensing scaffolding protein that binds to small GTPase Rac1 and protein kinases MEKK3 and
MKK3 [49]. CCM2 is central to the CCM protein complex organization, as it can bind to both KRIT1 and
PDCD10 (programmed cell death 10, CCM3) (Figure 3) [50–52]. The CCM2 PTB domain binds directly
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with the KRIT1 NPxY/F motif, and LD-like motif of CCM2 (within the linker region between the PTB
and HHD domains) binds to the focal adhesion targeting (FAT) homology domain of PDCD10 [51–54].
Binding between KRIT1 and CCM2 is important for CCM2 localization [51,54], while the interaction
between CCM2 and PDCD10 controls CCM2 and PDCD10 protein stability, as CCM2 depletion decreases
cellular PDCD10 protein content, and PDCD10 depletion reduces CCM2 protein abundance [53]. CCM2
also associates with F-actin, bringing the actin regulating small GTPase Rac1 to the proximity of the actin
cytoskeleton [55]. A paralog of CCM2, CCM2L, also exists [56]. Although CCM2L can bind to KRIT1 and
compete with CCM2 for KRIT1 binding, it does not bind to PDCD10 [56]. Similar to CCM2, CCM2L also
interacts with MEKK3 [57], but the significance of CCM2L for CCM disease pathogenesis and its effect on
CCM protein complex organization and function remains poorly defined [58].

PDCD10 (CCM3) protein has 212 amino acid residues and consists of an N-terminal dimerization
domain and a C-terminus FAT homology domain (Figure 3) [59]. It was first discovered as a gene
upregulated during myeloid cell apoptosis [60]. In addition to binding to CCM2 [50], PDCD10 can bind
to components of another protein complex, the striatin interacting phosphatase and kinase (STRIPAK)
complex, through its dimerization domain. These proteins include striatin itself and germinal center kinase
(GCK) III group of serine/threonine protein kinases MST4/MASK, MST3/STK24, and STK25/YSK1/SOK1
and other STRIPAK complex components, including STRIP1/FAM40A and STRIP2/FAM40B [61–67].
Although PDCD10 can bind to CCM2, PDCD10 primarily resides within the STRIPAK complex, rather
than the CCM protein complex, in cells [63,64]. Furthermore, PDCD10 can bind to an array of other
proteins, including paxillin, PTPN13, UNC13D [50,67–70]. Similar to KRIT1 and CCM2, PDCD10 also
interacts with cytoskeletal regulating small GTPases. Cdc42 can co-immunoprecipitate with PDCD10, and
Cdc42 deletion causes a CCM-like phenotype, suggesting Cdc42 and PDCD10 resides in the same CCM
pathogenic pathway [71]. In addition, PDCD10 can directly bind to RIPOR1/FAM65A, a RhoA associated
protein, providing a link between PDCD10 and RhoA signaling [72].
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Figure 3. CCM protein domain organization and protein interactions. CCM protein domain
organizations are presented schematically. Direct interaction partners are shown in green letters.
Locations of the letters indicate rough interaction sites for these binding proteins. If a binding site
is unknown, the binding partner is listed to the right of each CCM protein. Key pathways affected
by CCM protein and their interaction partners are shown in blue letters. Dashed red lines indicate
interaction sites between individual CCM proteins.
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5. CCM Proteins and Cellular Signaling

Because each of the CCM proteins has a multitude of interaction partners, it is not surprising that
these proteins can impact multiple signaling pathways and cellular processes, including endothelial to
mesenchymal transition, autophagy, exocytosis, and Golgi complex organization [63,69,72–75]. One
of the best understood CCM controlled signaling pathways is the RhoA-Rho-associated coiled-coil
kinase (ROCK) signaling. Decreased expression of any of the CCM proteins leads to increased
RhoA and ROCK activity [19,30,34,54,76,77], which in turn increases myosin regulatory light chain
(MLC) phosphorylation, causing actomyosin contraction that affects cell migration and intercellular
junction integrity. Through its PTB domain, CCM2 can bind to the E3 ubiquitin ligase Smad ubiquitin
regulatory factor 1 (Smurf1) [76,78], which ubiquitinates RhoA to promote its degradation [78]. In the
absence of CCM2, Smurf1-mediated RhoA degradation is reduced, leading to RhoA accumulation and
increased ROCK activity [78]. Depletion of PDCD10 and its binding partners STK25, STRIP1/FAM40A,
STRIP2/FAM40B, and RIPTOR/FAM65A all increase MLC phosphorylation, indicating PDCD10 may
affect RhoA-ROCK activity through these proteins [19,30,65]. The enhanced RhoA-ROCK signaling is
a critical component of CCM pathogenesis, which is further detailed below.

Another relatively well understood CCM-regulated pathway is the MEKK3 signaling. As discussed
above, CCM2 directly interacts with MEKK3 [49]. Both Krit1 and Ccm2 deletion leads to activation of
the MEKK3-MEK5-ERK5-KLF2/4 signaling cascade, causing increased Adamts4/5 expression [57,79,80].
These changes disrupt both embryonic cardiac development and promote CCM-like lesion formation
in neonatal mice [79,80]. Consistent with the findings that CCM2 negatively regulates MEKK3,
and MEKK3 is required for immune related receptor signaling [81–84], MEKK3 activating ligands
lipopolysaccharide (LPS), IL-1β, and pI:pC can all promote CCM-like lesion formation [85]. There is
some evidence that aberrantly activated MEKK3 signaling can lead to increased RhoA-ROCK signaling,
but the exact mechanism for this potential crosstalk and its contribution to CCM disease need to be
further elucidated [79,80,85,86].

CCM proteins have also been implicated in cell death regulation. The C. elegans KRIT1 ortholog kri-1
is required to promote irradiation-induced germ cell death through a cell-nonautonomous fashion [25],
while in neuroblastoma cells, CCM2 is critical for the TrkA receptor tyrosine kinase to induce tumor cell
death [87,88]. As its name suggests, PDCD10 has also been associated with apoptosis regulation. In
endothelial cells, overexpression of PDCD10 promotes endothelial apoptosis, and in cardiomyocytes,
PDCD10 expression is required for ischemic reperfusion injury-induced cell death [89,90]. However, the
exact effect of PDCD10 on apoptosis is still under debate. For example, PDCD10 is up-regulated during
oxidative stress, but one report suggested such upregulation promotes tumor cell survival, while another
report suggested such upregulation enhances apoptosis [91,92]. Thus, how CCM proteins affect cell death
and proliferation to impact human health and disease remains to be further explored.

6. CCM Proteins Participate in Endothelial Barrier Maintenance and Regulation

Early morphological studies showed that CCM lesions are lined by altered endothelial cells with
disrupted cell–cell connections, including tight junctions [93,94]. Using MRI based in vivo permeability
measurements, it is now clear that CCM lesions have increased vascular permeability [95,96]. In white
matter regions away from CCM lesions, patients with familial CCM disease (harboring a germline
mutation) have higher baseline permeability than patients with sporadic disease, indicating CCM
mutations globally affect blood–brain barrier function [95,96]. Furthermore, baseline brain white
matter vascular permeability can be used to distinguish familial CCM patients with non-aggressive
and aggressive disease, and between stable and non-stable CCM disease [95,96]. These data suggest
blood–brain barrier defect regulates CCM clinical disease presentation.

Consistent with patient-based studies, cell culture and mouse studies demonstrated how CCM
proteins may affect endothelial barrier function. All three CCM proteins can limit RhoA-ROCK
signaling in endothelial cells, although PDCD10 may use a mechanism distinctive of KRIT1 and
CCM2 [19,54,65]. The small GTPase RhoA and the other two CCM protein binding small GTPases Rac1
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and Cdc42 are cytoskeletal regulators that control barrier function [97–99]. In the case of RhoA, its
effector ROCK can either directly or indirectly induce MLC phosphorylation, leading to perijunctional
actomyosin contraction, which in turn causes intercellular junction remodeling to increase paracellular
permeability [100]. Indeed, decreased KRIT1, CCM2 and PDCD10 expression all promote MLC
phosphorylation, stress fiber formation, junctional protein redistribution, and barrier dysfunction in
endothelial cells [19,34,54,101].

In addition to maintaining baseline endothelial barrier, KRIT1 also participates in endothelial
barrier regulation. While tumor necrosis factor (TNF) increased arteriole and venule permeability
in wild type mice, it failed to induce barrier loss in Krit1 heterozygous knockout mice [101,102]. In
contrast, histamine-induced vascular permeability increase occurred normally in Krit1 heterozygous
knockout mice [101,102]. However, another report suggests KRIT1 is required for preservation of
endothelial barrier following stimuli [103]. KRIT1 depletion in cultured endothelial cells attenuated
prostacyclin-induced perijunctional F-actin accumulation and tightening of endothelial barrier and
enhanced cyclic stretch-induced Rho activation and endothelial barrier disruption [103]. In vivo studies
further showed that Krit1 heterozygous knockout exacerbated barrier loss induced by combined
treatment of high tidal volume mechanical ventilation and TRAP6, a thrombin receptor activating
peptide. This treatment also increased protein and cell content of bronchoalveolar lavage fluid,
indicating partial KRIT1 loss participates in lung damage [103]. These data suggest KRIT1 may
participate in endothelial barrier regulation in a stimulus-dependent manner and contribute to
endothelial dysfunction-related diseases.

Because of the robust ROCK activation in CCM depleted endothelial cells, ROCK became a leading
target for novel CCM therapy. ROCK inhibition not only reverses CCM depletion-induced stress fiber
formation and barrier loss in vitro but also limits Ccm deletion-induced loss of endothelial barrier
function in vivo [19,34,54,101]. Pharmacological studies further show that ROCK inhibition by fasudil,
atorvastatin, and a newly identified ROCK2 specific inhibitor limits CCM-like lesion formation in
multiple mouse models of CCM [104–106], highlighting ROCK inhibition may be a valid therapy for
CCM disease. This proof of concept is currently being tested in a clinical trial (NCT02603328) [107].

Besides RhoA-ROCK signaling, additional cellular processes have been implicated for CCM
proteins to regulate endothelial barrier. Vascular endothelial growth factor (VEGF) not only promotes
endothelial growth, but also increases endothelial permeability [108]. It has been demonstrated that
loss of KRIT1 and PDCD10, but not CCM2, increases VEGF production in endothelial cells, and
VEGF in turn acts on VEGFR2 to increase endothelial permeability [109]. However, existing evidence
also suggests that PDCD10 is required for proper VEGFR2 signaling [35], indicating the relationship
between CCM proteins and VEGF and its signaling may be complex. In KRIT1 depleted cells or
heterozygous knockout mice, endothelial reactive oxygen species (ROS) production is elevated, at
least partially, through upregulated NAPDH oxidase expression [102,110]. When an endothelial
targeting ROS scavenger was used, the increased vascular permeability was reduced in KRIT1 deficient
mice, demonstrating ROS production also plays a role for KRIT1 to regulate endothelial barrier [102].
However, the molecular mechanisms for ROS to affect barrier function in endothelium, in the presence
or absence of KRIT1, remain to be elucidated.

7. Tight Junctions and CCM Disease

One of the major determinants of the endothelial barrier is the tight junction. In contrast to well
demarcated tight junction, adherens junction, and gap junction domains within the apical junctional
complex of epithelial cells, these domains are frequently mixed at cell–cell contact sites between
endothelial cells [111]. Such junctions can vary significantly in endothelial cells of different origins.
Microvascular endothelial cell bodies can have a thickness of 0.3 µm, with cell–cell junction depth of
~0.5–0.9 µm, while endothelial cells from arteries and high endothelial venules the cell–cell contact
sites may reach 3–10 µm in height [111]. In the brain, the endothelial cells, pericytes at the abluminal
side of endothelial cells, and astrocyte end feet together form the neurovascular unit to create the
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highly impermeable blood–brain barrier [112]. At the endothelial junctional complex, the adherens
junction component VE-cadherin provides adhesive force at the cell–cell junctions, and the tight
junction proteins are critical for limiting permeability between individual endothelial cells.

The tight junction seals the paracellular space between individual cavity lining cells
and is created and maintained by a large number of transmembrane proteins. The
four-transmembrane-domain-containing claudin family consists of more than 25 members in
mammals. Some of the claudins (including claudin-1, -3, -5) are barrier forming, while some
claudin family members are forming size and charge selective pores that allow charged ions
and small molecules to pass (including claudin-2, -10, -15) [113]. In the brain microvascular
endothelium, the most dominantly expressed claudin is the barrier forming claudin-5 [114,115].
Although claudin-5 is not required for brain microvascular endothelial tight junction organization,
its knockout increased brain microvascular permeability, leading to neonatal death [116]. The
four-transmembrane domain-containing tight-junction-associated MARVEL protein (TAMP) family
contains occludin, tricellulin, and marveld3 [117], and these proteins generally impact macromolecular
permeability [118,119]. Occludin knockout itself does not disrupt normal epithelial tight junction
organization, but causes brain calcification, particularly around small vessels [120]. Patients with
homozygous recessive occludin mutations have a more severe brain phenotype, with band-like
calcification with simplified gyration and polymicrogyria [121]. This suggests occludin plays a critical
role in brain development, likely through affecting brain endothelial function. Additional tight junction
proteins belong to the immunoglobulin superfamily of proteins with a single transmembrane domain
(e.g., junctional adhesion molecule A, JAM-A and Coxsackie and adenovirus receptor, CAR) and popeye
family of proteins with three transmembrane domains (Popdc1/Bves). In the intestine, JAM-A maintains
proper epithelial macromolecular barrier function and limits intestinal inflammation [122,123], and
endothelial JAM-A promotes leukocyte transmigration [73,124]. Similarly, CAR participates in epithelial
barrier maintenance [125], and CAR affects shear stress induced endothelial immune response [126].

Multiple plaque proteins concentrate at the cytoplasmic side of the tight junction. These proteins
typically bind to multiple transmembrane tight junction proteins, other tight junction plaque proteins,
and the cytoskeleton, thus stabilize tight junction organization. Zonula occludens (ZO) family proteins
(ZO-1, -2, -3) is a well-studied family of tight junction plaque proteins [127]. They can bind to almost
all transmembrane tight junction proteins, heterodimerize among different ZO proteins, and associate
with the actin cytoskeleton [127]. ZO-1 knockout mice are embryonic lethal, with defects in vascular
endothelial cells [128], a finding supported by in vitro endothelial cell studies [129]. Cingulin family is
another group of tight junction plaque proteins (cingulin, paracingulin/cingulin-like/JACOP) that can
interact with occludin, JAM-A, ZO proteins, myosin and actin filaments, which are also required for
proper endothelial function, including brain endothelial barrier function [130,131].

Many CCM affected signaling events can regulate the tight junction. As discussed above, Rho-ROCK
signaling increases MLC phosphorylation to impact actomyosin contraction, which in turn regulates tight
junction protein expression and localization [132–135]. In addition, ROCK can directly phosphorylate
occludin and claudin-5, and such phosphorylation events are associated with blood brain barrier
dysfunction [136]. Interaction between endothelial cells and basement membrane induces β1-integrin
engagement, increases MLC phosphorylation in an MLC kinase and ROCK -dependent fashion to promote
claudin-5, occludin, and ZO-1 reorganization at the cell–cell junction [137]. This pathway is likely affected
by CCM proteins through KRIT1 binding to the β1-integrin signaling inhibitor ICAP-1, a protein that can
also bind to ROCK [138–140]. The KRIT1 binding small GTPase Rap1 enhances tight junction protein
localization at endothelial cell–cell contact sites and promotes endothelial barrier function [141]. Consistent
with this, the Rap1 activating guanine-nucleotide-exchange factor EPAC also maintains endothelial barrier,
prevents VEGF and TNF-induced endothelial permeability increase, and limits claudin-5, occludin, and
ZO-1 disorganization at the cell–cell junctions [142]. Another small GTPase, Rasip1, is an effector of
Rap1, which down-regulates RhoA activity through ArhGAP29 [143–145]. Rasip1 can also interact
with the KRIT1 interacting transmembrane protein Heg1 [146], thus KRIT1 can bring Rasip1 and Rap1
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close to one another through KRIT1-Heg1 interaction. Furthermore, engagement between individual
JAM-A molecules at intercellular junctions can activate Rap1 to preserve epithelial and endothelial barrier
functions through JAM-A interaction with the tight junction protein ZO-2, the adherens junction protein
AF-6, and PDZ-GEF1/2 [147,148]. These data provide a complex signaling network for the tight junction
proteins (JAM-A and ZO-2) and other cell surface adhesion molecules (β1-integrin and Heg1) to affect
CCM-dependent cellular signaling pathways to impact tight junction barrier.

Consistent with such findings, resected CCM lesions have reduced occludin, claudin-5, and ZO-1
staining, and decreased tight junction protein expression has between associated with the tendency
for local bleeding and edema [149,150]. In Krit1 deleted brain microvascular endothelial cells, loss
of claudin-5 and ZO-1 protein can be readily observed by immunofluorescent staining and western
blot [151], and PDCD10 depletion in brain microvascular endothelial cells decreases claudin-5, occludin,
and ZO-1 protein abundance, likely through an ERK1/2 and cortactin-dependent process [152]. A
recent study suggests PDCD10 depletion in brain endothelial cells upregulates gap junction protein
connexin 43 expression and increases gap junction communication, a phenomenon only minimally
seen in KRIT1 or CCM2 depleted cells [153]. Such changes are associated with redistribution of tight
junction proteins to gap junctions, and the connexin 43 gap junction inhibitor GAP27 can reverse
tight junction disorganization and decrease endothelial barrier permeability in PDCD10 depleted
cells [153]. These indicate increased gap junction function participates in tight junction disruption in
CCM3 disease. With such findings, it is likely that tight junction protein disorganization downstream of
RhoA-ROCK signaling and gap junction is a key effector driving CCM pathogenesis, and it is possible
that normalizing tight junction protein expression and localization at the cell–cell junctions can limit
CCM development or lesional bleeding. However, the specific roles of tight junction proteins in CCM
initiation and progression remain to be formally tested, likely by using transgenic or knockout mice.

8. CCM Proteins Impact Intestinal Homeostasis

In contrast to a plethora of studies on the function of CCM proteins in endothelial cells, we just start
to appreciate their roles in epithelial cells. By investigating the effects of KRIT1 in β-catenin signaling,
Glading and Ginsberg revealed KRIT1 depletion increases β-catenin transcriptional activity in both
endothelial and epithelial cells [154]. This is functionally significant, as Apc mutation induced more
intestinal polyp formation in Krit1 heterozygous knockout mice with increased intestinal epithelial
nuclear β-catenin accumulation [154]. A recent C. elegans study suggested KRIT1 can also form a
complex with CCM2 to promote zinc transporter expression to cause Zn2+ storage in the intestinal
granules, indicating KRIT1 may also impact intestinal epithelial transport [26].

Despite these findings, it was not known if CCM proteins can regulate barrier function in
epithelium. Our group addressed this question by studying KRIT1 function in intestinal epithelial
Caco-2 cells, a well characterized model to study intestinal epithelial barrier maintenance and
regulation [155]. In this model, KRIT1 depletion caused a reduction of epithelial barrier function,
characterized by selectively increased relative permeability of small cations, including Na+, to the
anion Cl- [155]. Such a change is consistent with decreased expression of claudin-1, a tight junction
protein that limits small ion permeability, in KRIT1-depleted Caco-2 cells [155,156]. In contrast
to the effect of KRIT1 on endothelial cells, intestinal epithelial KRIT1 depletion does not induce
MLC phosphorylation, and ROCK inhibition does not reverse KRIT1 depletion-induced barrier
loss [155]. This indicates that KRIT1 regulates epithelial and endothelial barrier function through
distinct mechanisms. In Caco-2 monolayers, decreasing actomyosin contractility by inhibiting either
ROCK or myosin ATPase activity both reduced epithelial barrier function, along with elevated
permeability to both small and large cations. These changes are inhibited in KRIT1-depleted
Caco-2 monolayers, indicating KRIT1 also participates in actomyosin contraction-induced barrier
regulation [155]. Furthermore, KRIT1-depleted epithelial monolayers are resistant to osmotic stress and
enteric pathogen Salmonella typhimurium-induced epithelial barrier regulation (Figure 4), suggesting
KRIT1 may impact gastrointestinal pathophysiology. With the above data, it is surprising to find



Int. J. Mol. Sci. 2020, 21, 675 9 of 19

that KRIT1 depletion exacerbates TNF-induced epithelial barrier loss. Mechanistic studies suggest
this loss is due to aberrantly activated apoptosis in KRIT1-depleted monolayers, but we currently do
not know how this occurs [155]. Nevertheless, these data suggest KRIT1 regulates epithelial barrier
function through at least two distinct pathways: one is actomyosin and tight junction-dependent
barrier maintenance and regulation, and the other is tight junction-independent epithelial apoptosis.
Such findings not only point to a role for KRIT1 to mediate the crosstalk between distinctive epithelial
barrier regulation pathways, but also suggest KRIT1 may coordinate tight junction barrier maintenance,
regulation, and epithelial apoptosis to impact intestinal disease development.
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Figure 4. KRIT1 depletion limits pathophysiological stimuli-induced epithelial barrier dysfunction.
KRIT1 depletion by stable transfection of a siRNA expressing plasmid decreased epithelial barrier
function (A-B, assessed by transepithelial resistant (TER) measurements) in differentiated Caco-2
intestinal epithelial monolayers grown on semi-permeable Transwell inserts [155]. (A) Hyperosmotic
stress induced by including 300 mM mannitol in Hank’s balanced salt solution caused barrier loss
in control (siRNA against β-galactosidase transfected, blue bars) Caco-2 monolayers. In contrast,
no barrier loss was induced in KRIT1 depleted (siRNA against KRIT1 transfected, red bars) Caco-2
monolayers. (B) Salmonella typhimurium (strain ATCC 14028) infection by including bacteria in apical
culture media caused barrier loss in control, but not KRIT1 depleted Caco-2 monolayers. Mean with
standard error (triplicate samples) are shown. One-way ANOVA analysis with Bonferroni correction
was used (* p < 0.05, ** p < 0.01).

An understanding of the potential contribution of the gastrointestinal tract to CCM disease
development was stemmed from the surprising finding that neonatal mice with the same induced
endothelial specific Ccm deletion can have drastically different CCM-like lesion burdens when they
were raised in different animal facilities [85]. Fecal microbiome analysis showed that mice susceptible
to Ccm deletion-induced lesion formation have a Gram-negative bacteria rich microbiome relative to
resistant mice. Such a fecal microbiome provides the cell wall product LPS as the ligand to activate the
endothelial TLR4-MEKK3-KLR2/4 signaling pathway to promote CCM development [85]. This view is
further supported by the finding that germ-free mice and mice treated with antibiotics have lower
lesion burden [85]. Because familial CCM patients have genetic mutations of CCM genes in all organs
and cell types, this study also raised the possibility that CCM could function in the gastrointestinal
tract to influence CCM disease development. Indeed, when Pdcd10 was deleted in the intestinal
epithelium, it promoted endothelial Pdcd10 deletion-induced lesion formation [157]. In contrast,
intestinal epithelial specific deletion of Krit1 does not impact endothelial Krit1 deletion-induced lesion
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formation [157]. This finding may at least partially explain why patients with PDCD10 mutations have
a more aggressive CCM disease than patients with KRIT1 mutations. In addition to impacting CCM-like
disease development, constitutive intestinal epithelial specific Pdcd10 deletion alone shortened mouse
life span, reduced intestinal mucus layer thickness, enlarged goblet cells, and caused intestinal
inflammation [157]. These findings indicate PDCD10 is required for intestinal homeostasis and may
impact intestinal disease development, which needs to be further investigated.

9. Conclusions and Future Directions

Through their many binding partners, CCM proteins impact many cellular events. The most
prominent effect of CCM proteins on cellular signaling is their ability to limit RhoA-ROCK activity and
MEKK3-MEK5-ERK5-KLF signaling, events that are important for endothelial function and CCM lesion
formation. Despite such detailed understanding, we are just starting to grasp the full spectrum of CCM
protein functions. Understanding how CCM proteins affect endothelial function through a variety of
pathways to impact CCM disease and identifying therapies to preserve and promote normal CCM function
in the brain remain top priorities for CCM research. With the finding that CCM proteins also function
in intestinal epithelial cells, it becomes pressing to understand CCM protein functions in the gut, in the
context of both CCM disease and other intestinal disorders. It also points to a need to understand CCM
protein signaling in other cell types and organs. Such studies will not only advance our understanding of
CCM protein biology, but also provide targets to modulate cellular functions to benefit human health.
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KRIT1 Krev interaction trapped protein-1
LPS lipopolysaccharide
MLC myosin regulatory light chain
PDCD10 programmed cell death 10
PTB phosphotyrosine-binding domain
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