Supporting Information for:

Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics

Elizabeth K. Whitmore ^{1,2}, Devon Martin^{1,2}, and Olgun Guvench ^{1,2,*}

- ¹ Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, Maine, 04103, USA; ewhitmore@une.edu (E.K.W.); dmartin11@une.edu (D.M.)
- ² Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, Maine, 04469, USA
- * Correspondence: oguvench@une.edu; Tel.: +01-207-221-4171

	Hyaluronan		Non-Sulfated Keratan	
	GlcAβ1-3GlcNAc - ϕ , + ψ d (Å)	GlcNAcβ1-4GlcA -φ, -ψ d (Å)	Galβ1-4GlcNAc -φ, -ψ d (Å)	GlcNAcβ1-3Gal -φ, +ψ d (Å)
Run 1	81.5	74.0	88.5	79.5
Run 2	73.0	73.5	85.0	84.0
Run 3	61.0	74.0	84.5	88.5
Run 4	77.0	76.5	84.5	73.5
All ²	66.0	74.0	84.5	84.0

 Table S1. Most Probable End-to-End Distances (d) in MD-Generated 20-mer Conformations with

 Glycosidic Linkage Conformations in Secondary Basins 1

¹Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins. ²All = end-to-end distance distribution aggregated across all four runs.

	20-mer Ensemble	10-mer Ensemble
${}^{1}C_{4}$	68.727%	70.100%
${}^{4}C_{1}$	7.062%	9.025%
B _{1,4}	0.018%	0.005%
⁵ S ₁	0.740%	0.685%
^{2,5} B	3.213%	2.610%
² So	19.702%	17.065%
B 3,0	0.080%	0.070%
${}^{1}S_{3}$	0.125%	0.125%
^{1,4} B	0.178%	0.115%
${}^{1}S_{5}$	0.155%	0.200%

 Table S2. Percent of Occurrences of Different IdoA Ring Puckers in

 Non-Sulfated Dermatan MD Simulations

	20-mer Ensemble	10-mer Ensemble
¹ C ₄	54.222%	64.645%
⁴ C ₁	4.410%	6.730%
${}^{3}S_{1}$	0.003%	0.000%
B _{1,4}	0.085%	0.035%
⁵ S ₁	4.120%	3.110%
^{2,5} B	12.510%	8.550%
² So	24.505%	16.520%
B 3,0	0.008%	0.000%
${}^{1}S_{3}$	0.035%	0.085%
^{1,4} B	0.047%	0.155%
${}^{1}S_{5}$	0.055%	0.170%

 Table S3. Percent of Occurrences of Different IdoA Ring Puckers in

 Non-Sulfated Heparan MD Simulations

Figure S1. Excluded constructed hyaluronan 20-mer conformation with GlcA 20 ring pierced by C₁-O₃ bond in GlcA 6 β 1-3 GlcNAc 5 linkage post-minimization (E_b = 690.5 kcal/mol; closeup shows atoms involved in the ring pierce); E_b , cutoff = 128.5 kcal/mol.

Figure S2. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and constructed ensembles of hyaluronan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) constructed ensemble of hyaluronan 200-mer; each plot has 40,000 samples and shows linear regression and R².

Figure S3. System potential energy probability distribution of the MD-generated hyaluronan 20-mer ensemble; each MD run is represented by a different color.

Figure S4. (a,c,e,g,i,k,m,o,q,s) Cremer-Pople plots and (b,d,f,h,j,l,n,p,r,t) Cremer-Pople parameter θ timeseries for each GlcNAc monosaccharide ring in the MD-generated hyaluronan 20-mer ensemble; monosaccharides are numbered from reducing to non-reducing end; each of the 4 runs is represented by different color.

Figure S5. (a,c,e,g,i,k,m,o,q,s) Cremer-Pople plots and (b,d,f,h,j,l,n,p,r,t) Cremer-Pople parameter θ timeseries for each GlcA monosaccharide ring in the MD-generated hyaluronan 20-mer ensemble; monosaccharides are numbered from reducing to non-reducing end; each of the 4 runs is represented by different color.

Figure S6. Scatterplot of radius of gyration as a function of end-to-end distance in MD-generated hyaluronan 20-mer conformations with non-⁴C₁ ring puckers (pink) overlaid on data for full MD-generated hyaluronan 20-mer ensemble (blue) and corresponding linear regression (*Figure S1a*).

(a)

(c)

(e)

(g)

(i)

(s)

-180 -90 0 90 180

φ

Figure S7. $\Delta G(\phi, \psi)$ plots for each glycosidic linkage in the MD-generated hyaluronan 20-mer ensemble; (a) GlcA2 \rightarrow GlcNAc1, (b) GlcNAc3 \rightarrow GlcA2, (c) GlcA4 \rightarrow GlcNAc3, (d) GlcNAc5 \rightarrow GlcA4, (e) GlcA6 \rightarrow GlcNAc5, (f) GlcNAc7 \rightarrow GlcA6, (g) GlcA8 \rightarrow GlcNAc7, (h) GlcNAc9 \rightarrow GlcA8, (i) GlcA10 \rightarrow GlcNAc9, (j) GlcNAc11 \rightarrow GlcA10, (k) GlcA12 \rightarrow GlcNAc11, (l) GlcNAc13 \rightarrow GlcA12, (m) GlcA14 \rightarrow GlcNAc13, (n) GlcNAc15 \rightarrow GlcA14, (o) GlcA16 \rightarrow GlcNAc15, (p) GlcNAc17 \rightarrow GlcA16, (q) GlcA18 \rightarrow GlcNAc17, (r) GlcNAc19 \rightarrow GlcA18, and (s) GlcA20 \rightarrow GlcNAc19; monosaccharides are numbered from reducing to non-reducing end; ϕ , ψ separated into 2.5° bins.

Figure S8. Snapshots from hyaluronan 20-mer MD: (a) 20-mer conformation with GlcA 8 (cyan) β 1-3 GlcNAc 7 (blue) linkage dihedrals near $\Delta G(\phi, \psi)$ min II (ϕ = -52.1° and ψ = +91.0°), which causes a kink (linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of the same disaccharide unit with linkage dihedrals near $\Delta G(\phi, \psi)$ min I (ϕ = -70.9° and ψ = -119.1°). (c-f) End-to-end distance probability distributions of MD-generated hyaluronan 20-mer conformations with β 1-3 linkages with - ϕ , + ψ dihedrals in each of the four runs; as the end-to-end distance distribution from run 2 appeared to be an outlier, these data were compared to the average end-to-end distance distribution of all snapshots in MD runs 1, 3, and 4 (black dashed line).

Figure S9. Scatterplots for dihedrals ϕ and ψ of glycosidic linkages flanking non-⁴C₁ ring puckers in the MDgenerated hyaluronan 20-mer ensemble: (a) GlcA β 1-3GlcNAc flanking GlcNAc, (b) GlcA β 1-3GlcNAc flanking GlcA, (c) GlcNAc β 1-4GlcA flanking GlcNAc, (d) GlcNAc β 1-4GlcA flanking GlcA; contour lines come from corresponding aggregated MD-generated $\Delta G(\phi, \psi)$ data.

Figure S10. Snapshots from hyaluronan 20-mer MD: (a) 20-mer conformation with GlcNAc 17 (blue) β 1-4 GlcA 16 (cyan) linkage dihedrals near $\Delta G(\phi, \psi)$ min II (ϕ = -86.8° and ψ = -78.6°), which causes a kink (linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of this disaccharide unit with linkage dihedrals near $\Delta G(\phi, \psi)$ min II' (ϕ = -55.7° and ψ = -39.7°), (c) closeup of the same disaccharide unit with linkage dihedrals near $\Delta G(\phi, \psi)$ min I (ϕ = -68.3° and ψ = +115.2°). (d-g) End-to-end distance probability distributions of MD-generated hyaluronan 20-mer conformations with β 1-4 linkages with - ϕ , - ψ dihedrals in each of the four runs; as the end-to-end distance distribution from run 2 appeared to be an outlier, these data were compared to the average end-to-end distance distribution of all snapshots in MD runs 1, 3, and 4 (black dashed line).

Figure S11. Cremer–Pople data for (a) GlcNAc and (b) GlcA in the constructed hyaluronan 20-mer ensemble; each of the 4 runs is represented by different color and the force-field geometry is represented by a single large black dot; each run contains 10,000 parameter sets.

Figure S12. $\Delta G(\phi, \psi)$ in the constructed hyaluronan 20-mer ensemble for aggregated (a) GlcA β 1-3GlcNAc and (b) GlcNAc β 1-4GlcA glycosidic linkage data; contour lines every 1 kcal/mol.

Figure S13. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and constructed ensembles of non-sulfated dermatan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) constructed ensemble of non-sulfated dermatan 200-mer; each plot has 40,000 samples and shows linear regression and R².

Figure S14. (a-j) Cremer-Pople parameter θ timeseries for each GalNAc monosaccharide ring in the MDgenerated non-sulfated dermatan 20-mer ensemble; monosaccharides are numbered from reducing to nonreducing end; each of the 4 runs is represented by different color.

Figure S15. End-to-end distance distributions of MD-generated non-sulfated dermatan 20-mer conformations with boat/skew-boat ring puckers that cause a kink in the polymer chain, i.e. non-²So (pink solid line; most probable end-to-end distance is 83.5 Å) and ²So conformations (green solid line; most probable end-to-end distance is 84.0 Å) and the average of all four runs in the full MD-generated ensemble (black dashed line; most probable end-to-end distance is 83.5 Å); probabilities were calculated for end-to-end distances sorted into 0.5 Å bins.

Figure S16. (a,c,e,g,i,k,m,o,q,s) Cremer-Pople plots and (b,d,f,h,j,l,n,p,r,t) Cremer-Pople parameter θ timeseries for each IdoA monosaccharide ring in the MD-generated non-sulfated dermatan 20-mer ensemble; monosaccharides are numbered from reducing to non-reducing end; each of the 4 runs is represented by different color.

Figure S17. (a,c,e,g,i) Cremer-Pople plots and (b,d,f,h,j) Cremer-Pople parameter θ timeseries for each IdoA monosaccharide ring in the MD-generated non-sulfated dermatan 10-mer ensemble; monosaccharides are numbered from reducing to non-reducing end; each of the 4 runs is represented by different color.

Figure S18. Cremer–Pople data for (a) GalNAc and (b) IdoA in the constructed non-sulfated dermatan 20mer ensemble; each of the 4 runs is represented by different color and the force-field geometry is represented by a single large black dot; each run contains 10,000 parameter sets.

Figure S19. $\Delta G(\phi, \psi)$ in the constructed non-sulfated dermatan 20-mer ensemble for aggregated (a) IdoA β 1-3GalNAc and (b) GalNAc β 1-4IdoA glycosidic linkage data; contour lines every 1 kcal/mol.

Figure S20. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and constructed ensembles of non-sulfated keratan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) constructed ensemble of non-sulfated keratan 200-mer; each plot has 40,000 samples and shows linear regression and R².

Figure S21. (a,c,e,g,i,k,m,o,q,s) Cremer-Pople plots and (b,d,f,h,j,l,n,p,r,t) Cremer-Pople parameter θ timeseries for each GlcNAc monosaccharide ring in the MD-generated non-sulfated keratan 20-mer ensemble; monosaccharides are numbered from reducing to non-reducing end; each of the 4 runs is represented by different color.

Figure S22. Scatterplot of radius of gyration as a function of end-to-end distance in MD-generated non-sulfated keratan 20-mer conformations with non-⁴C₁ ring puckers overlaid on data for full MD-generated non-sulfated keratan 20-mer ensemble and corresponding linear regression (*Figure S34a*).

Figure S23. Snapshots from non-sulfated keratan 20-mer MD: (a) 20-mer conformation with Gal 2 (cyan) β 1-4 GlcNAc 1 (blue) linkage dihedrals in tertiary basin (ϕ = +13.8° and ψ = +131.1°), which causes a slight bend (linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of this disaccharide unit with linkage dihedrals in secondary basin, i.e. near $\Delta G(\phi, \psi)$ min II (ϕ = -98.8° and ψ = -71.0°), (c) closeup of the same disaccharide unit with linkage dihedrals in primary basin near $\Delta G(\phi, \psi)$ min I (ϕ = -86.2° and ψ = +100.5°). (d) End-to-end distance probability distributions of MD-generated non-sulfated keratan 20-mer conformations with β 1-4 linkages with + ϕ , + ψ (pink solid line; most probable end-to-end distance is 85.0 Å) and - ϕ , - ψ (green solid line; most probable end-to-end distance distribution of all snapshots in all four runs; these data were compared to the average end-to-end distance is 90.0 Å).

Figure S24. Snapshots from non-sulfated keratan 20-mer MD: (a) 20-mer conformation with GlcNAc 3 (blue) β 1-3 Gal 2 (cyan) linkage dihedrals in tertiary basin (ϕ = +38.8° and ψ = -127.3°), which causes a kink (linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of GlcNAc 5 (blue) β 1-3 Gal 4 (cyan) disaccharide unit with linkage dihedrals in secondary basin (ϕ = -95.3° and ψ = +39.9°), (c) closeup of the same disaccharide unit with linkage dihedrals in primary basin (ϕ = -80.7° and ψ = -138.2°). (d) End-to-end distance probability distributions of MD-generated non-sulfated keratan 20-mer conformations with β 1-3 linkages with + ϕ , - ψ (pink solid line; most probable end-to-end distance is 82.0 Å) and - ϕ , + ψ (green solid line; most probable end-to-end distance is a distribution of all snapshots in all four runs; these data were compared to the average end-to-end distance is 90.0 Å).

Figure S25. (a,c,e,g,i) Cremer-Pople plots and (b,d,f,h,j) Cremer-Pople parameter θ timeseries for each Gal monosaccharide ring in the MD-generated non-sulfated keratan 10-mer ensemble; monosaccharides are numbered from reducing to non-reducing end; each of the 4 runs is represented by different color.

Figure S26. Cremer–Pople data for (a) GlcNAc and (b) Gal in the constructed non-sulfated keratan 20-mer ensemble; each of the 4 runs is represented by different color and the force-field geometry is represented by a single large black dot; each run contains 10,000 parameter sets.

Figure S27. $\Delta G(\phi, \psi)$ in the constructed non-sulfated keratan 20-mer ensemble for aggregated (a) Gal β 1-4GlcNAc and (b) GlcNAc β 1-3Gal glycosidic linkage data; contour lines every 1 kcal/mol.

Figure S28. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and constructed ensembles of non-sulfated heparan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) constructed ensemble of non-sulfated heparan 200-mer; each plot has 40,000 samples and shows linear regression and R².

Figure S29. (a-j) Cremer-Pople parameter θ timeseries for each IdoA monosaccharide ring in the MDgenerated non-sulfated heparan 20-mer ensemble; monosaccharides are numbered from reducing to nonreducing end; each of the 4 runs is represented by different color.

Figure S30. End-to-end distance distributions of MD-generated non-sulfated heparan 20-mer conformations with boat/skew-boat ring puckers that cause a kink in the polymer chain, i.e. non-²So (pink solid line; most probable end-to-end distance is 73.0 Å) and ²So conformations (green solid line; most probable end-to-end distance is 68.5 Å) and the average of all four runs in the full MD-generated ensemble (black dashed line; most probable end-to-end distance is 68.5 Å); probabilities were calculated for end-to-end distances sorted into 0.5 Å bins.

Figure S31. Snapshot of non-sulfated heparan 20-mer from MD simulation; GlcNAcα1-4IdoA linkages are highlighted; linker oxygen atoms in red and carbon atoms (GlcNAc C₁ and IdoA C₄) in cyan.

Figure S32. End-to-end distance probability distribution of MD-generated non-sulfated heparan 20-mer conformations with IdoA α 1-4GlcNAc linkages with - ϕ , - ψ dihedrals aggregated across all four MD runs (pink solid line; top two most probable end-to-end distances are 65.5 Å and 73.5 Å); these data were compared to the average end-to-end distance distribution of all snapshots in all four MD runs (black dashed line; most probable end-to-end distance is 68.5 Å).

Figure S33. Scatterplots for dihedrals ϕ and ψ of IdoA α 1-4GlcNAc linkages flanking different IdoA conformations in the MD-generated non-sulfated heparan 20-mer ensemble: (a) ¹C₄, (b) ²So, (c) boat/skewboat (non-²So), and (d) ⁴C₁; contour lines come from corresponding aggregated MD-generated $\Delta G(\phi, \psi)$ data.

Figure S34. Cremer–Pople data for (a) GlcNAc and (b) IdoA in the constructed non-sulfated heparan 20-mer ensemble; each of the 4 runs is represented by different color and the force-field geometry is represented by a single large black dot; each run contains 10,000 parameter sets.

Figure S35. $\Delta G(\phi, \psi)$ in the constructed non-sulfated heparan 20-mer ensemble for aggregated (a) IdoA α 1-4GlcNAc and (b) GlcNAc α 1-4IdoA glycosidic linkage data; contour lines every 1 kcal/mol.

Figure S36. Bond potential energy probability distributions from constructed ensembles of hyaluronan (a) 20-mer (cutoff = 128.5 kcal/mol), (b) 10-mer (cutoff = 112.8 kcal/mol), and (c) 200-mer (cutoff = 412.2 kcal/mol).

Figure S37. Bond potential energy probability distributions from constructed ensembles of non-sulfated dermatan (a) 20-mer (cutoff = 131.9 kcal/mol), (b) 10-mer (cutoff = 117.5 kcal/mol), and (c) 200-mer (cutoff = 397.7 kcal/mol).

Figure S38. Bond potential energy probability distributions from constructed ensembles of non-sulfated keratan (a) 20-mer (cutoff = 126.3 kcal/mol), (b) 10-mer (cutoff = 111.5 kcal/mol), and (c) 200-mer (cutoff = 397.3 kcal/mol).

Figure S39. Bond potential energy probability distributions from constructed ensembles of non-sulfated heparan (a) 20-mer (cutoff = 130.3 kcal/mol), (b) 10-mer (cutoff = 115.8 kcal/mol), and (c) 200-mer (cutoff = 391.5 kcal/mol).