Rational Design of a Glycoconjugate Vaccine against Group A *Streptococcus*

Roberta Di Benedetto ¹, Francesca Mancini ¹, Martina Carducci ¹, Gianmarco Gasperini ¹, Danilo Gomes Moriel ¹, Allan Saul ^{1,†}, Francesca Necchi ¹, Rino Rappuoli ² and Francesca Micoli ^{1,*}

- ¹ GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; roberta.x.dibenedetto@gsk.com (R.D.B.); francesca.x.mancini@gsk.com (F.M.); martina.x.carducci@gsk.com (M.C.); gianmarco.x.gasperini@gsk.com (G.G); danilo.x.moriel-gomes@gsk.com (D.G.M); allan.saul@honorary.burnet.edu.au (A.S.); francesca.x.necchi@gsk.com (F.N.)
- ² GSK, Via Fiorentina 1, 53100 Siena, Italy; rino.r.rappuoli@gsk.com (R.R.)
- * Correspondence: francesca.x.micoli@gsk.com; Tel.: +39-0577-53-9087
- + Now retired.

Figure S1. Immunogenicity of GAC when conjugated to CRM₁₉₇ through different chemistries. CD1 mice were immunized i.p. at day 0 and 28 with 4 μ g GAC/dose formulated with 2 mg/mL Alhydrogel. Summary graph of anti-CRM₁₉₇ specific IgG geometric mean units (bars) and individual antibody levels (dots) is reported (CRM₁₉₇ used as coating antigen). Mann-Whitney two-tailed test was performed to compare the response induced by the two immunization groups (*p* > 0.05).

Figure S2. Characterization by SDS-PAGE analysis (3–8% Tris-acetate gel for GAS proteins conjugates, 7% Tris-acetate gel for CRM₁₉₇ conjugate) of the conjugation mixtures in comparison to corresponding unconjugated proteins. Ten µg of conjugates and 2 µg of unconjugated proteins were loaded per well. Lane 1: marker, lane 2: SLO; lane 3: SLO conjugate; lane 4: SpyAD; lane 5: SpyAD conjugate; lane 6: SpyCEP; lane 7: SpyCEP conjugate; lane 8: CRM₁₉₇, lane 9: CRM₁₉₇ conjugate.

		Factor 1	Factor 2	Factor 3	Response 1	Response 2	Response 3
Std	Run	A:[PS]	B:[NaIO4]	C:pH	Recovery	Oxidation GlcNAc	Size
		mg/mL	mM		%	%	Da
5	1	2.8	2.4	7.4	62	10.2	6970
1	2	2.8	2.4	5.6	69	13.5	6970
20	3	5.5	5.3	6.5	62	11.9	6782
15	4	5.5	5.3	6.5	76	12.7	6766
2	5	8.2	2.4	5.6	87	10.3	6886
6	6	8.2	2.4	7.4	78	8.5	6927
16	7	5.5	5.3	6.5	80	12.2	6807
12	8	5.5	10.0	6.5	88	16.7	6625
4	9	8.2	8.0	5.6	93	13.3	6825
17	10	5.5	5.3	6.5	78	12.8	6784
14	11	5.5	5.3	8.0	82	11.8	6808
7	12	2.8	8.0	7.4	77	14.4	6764
3	13	2.8	8.0	5.6	72	19.2	6766
9	14	1.0	5.3	6.5	70	19.4	6447
11	15	5.5	0.5	6.5	77	nd	7028
8	16	8.2	8.0	7.4	80	17.8	6726
13	17	5.5	5.3	5.0	84	17.8	6825
18	18	5.5	5.3	6.5	76	14.9	6774
10	19	10.0	5.3	6.5	88	15.1	6835
19	20	5.5	5.3	6.5	88	nd	6694

Table S1. DoE approach applied to GAC oxidation: summary of conditions tested and results obtained.

ANOVA	for	Response	e Surface	Reduced	Quadratic	model
Analysis	s of	variance	table [Pa	rtial sum	of squares	- Type III]

Analysis of variance table [Farilar sum of squares - Type in]									
	Sum of		Mean	F	p-value				
Source	Squares	df	Square	Value	Prob > F				
Model	134,14	5	26,83	9,33	0,0008	significant			
A-[PS]	15,35	1	15,35	5,34	0,0395				
B-[NaIO4]	73,85	1	73,85	25,67	0,0003				
С-рН	17,52	1	17,52	6,09	0,0296				
AC	14,61	1	14,61	5,08	0,0437				
A ²	19,97	1	19,97	6,94	0,0218				
Residual	34,52	12	2,88						
Lack of Fit	29,07	8	3,63	2,66	0,1798	not significant			
Pure Error	5,46	4	1,36						
Cor Total	168,67	17							
Std. Dev.		1,70		R-Square	d	0,7953			
Mean		14,04		Adj R-Squ	uared	0,7100			
C.V. %		12,08		Pred R- Squared		0,4656			
PRESS		90,14		Adeq Precision		10,476			
-2 Log Likelihood		62,80		BIC		80,15			
				AICc		82,44			
	Coefficient		Standard	95% CI	95% CI				
Factor	Estimate	df	Error	Low	High	VIF			
Intercept	12,87	1	0,54	11,70	14,04				
A-[PS]	-1,06	1	0,46	-2,06	-0,060	1,00			
B-[NalO4]	2,65	1	0,52	1,51	3,78	1,01			
C-pH	-1,13	1	0,46	-2,13	-0,13	1,00			
AC	1,35	1	0,60	0,045	2,66	1,00			
A ²	1,22	1	0,46	0,21	2,22	1,01			

Figure S3. Identification of optimal conditions for GAC oxidation: statistical analysis of the model for the DoE.

		Factor 1	Factor 2	Factor 3	Response 2	Response 3	Response 4
Std	Run	A:[GACox]	B:[CRM197]	C:[NaBH₃CN]	w/w Ratio GAC/CRM197	Recovered PS	Unconjugated CRM197 in Mixture
		mg/mL	mg/mL	mg/mL		%	%
20	1	25	25	25	0.26	21.1	0
8	2	40	40	40	0.28	20.7	0
17	3	25	25	25	0.29	23.1	0
15	4	25	25	25	0.29	22.6	0
13	5	25	25	10	0.42	35.4	0
6	6	40	10	40	0.49	9.4	0
5	7	10	10	40	0.16	12.8	0
4	8	40	40	10	0.43	41.3	0
3	9	10	40	10	0.12	41.2	33
12	10	25	40	25	0.34	41.9	0
16	11	25	25	25	0.30	22.2	0
14	12	25	25	40	0.25	18.9	0
9	13	10	25	25	0.15	32.9	0
1	14	10	10	10	0.27	22.0	5
10	15	40	25	25	0.49	25.6	3
11	16	25	10	25	0.47	12.5	0
2	17	40	10	10	0.65	9.2	16
18	18	25	25	25	0.33	26.1	0
7	19	10	40	40	0.12	30.8	11
19	20	25	25	25	0.34	27.0	0

Table S2. DoE approach applied to conjugation of GACox to CRM₁₉₇: summary of conditions tested and results obtained.

(a) Response w/w ratio GAC/CRM₁₉₇

ANOVA for Response Surface Linear model

Analysis of variance table [Partial sum of squares - Type III]

	Sum of		Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Model	0,32	3	0,11	43,45	< 0.0001	significant
A-[GAC]	0,23	1	0,23	94,44	< 0.0001	
B-[CRM ₁₉₇]	0,056	1	0,056	22,64	0,0002	
C- [NaBH₃CN]	0,033	1	0,033	13,28	0,0022	
Residual	0,039	16	2,455E-003			
Lack of Fit	0,035	11	3,153E-003	3,42	0,0926	not significant
Pure Error	4,608E-003	5	9,216E-004			
Cor Total	0,36	19				
Std. Dev.		0,050		R-Squared		0,8907
Mean		0,32		Adj R-Square	ed	0,8702
C.V. %		15,32		Pred R-Squa	ared	0,8084
PRESS		0,069		Adeq Precisi	on	25,625
-2 Log Likeliho	bod	-67,89		BIC		-55,91
				AICc		-57,23
	Coefficient		Standard	95% CI	95% CI	
Factor	Estimate	df	Error	Low	High	VIF
Intercept	0,32	1	0,011	0,30	0,35	
A-[GAC]	0,15	1	0,016	0,12	0,19	1,00
B-[CRM ₁₉₇]	-0,075	1	0,016	-0,11	-0,041	1,00
C- [NaBH₃CN]	-0,057	1	0,016	-0,090	-0,024	1,00

Figure S4. Cont.

Response

(b)

Recovered PS %

ANOVA for Response Surface Linear model

Analysis of variance table [Partial sum of squares - Type III]

	Sum of		Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Model	1640,06	3	546,69	31,69	< 0.0001	significant
A-[GAC]	112,07	1	112,07	6,50	0,0215	
B-[CRM ₁₉₇]	1209,63	1	1209,63	70,11	< 0.0001	
C- [NaBH₃CN]	318,36	1	318,36	18,45	0,0006	
Residual	276,05	16	17,25			
Lack of Fit	248,85	11	22,62	4,16	0,0638	not significant
Pure Error	27,20	5	5,44			
Cor Total	1916,11	19				
Std. Dev.		4,15		R-Squared	d	0,8559
Mean		24,83		Adj R-Squ	lared	0,8289
C.V. %		16,73		Pred R-So	quared	0,7342
PRESS		509,31		Adeq Pred	cision	21,521
-2 Log Likeliho	bod	109,25		BIC		121,24
				AICc		119,92
	Coefficient		Standard	95% CI	95% CI	
Factor	Estimate	df	Error	Low	High	VIF
Intercept	24,83	1	0,93	22,86	26,80	
A-[GAC ₁₉₇]	-3,35	1	1,31	-6,13	-0,56	1,00
B-[CRM]	11,00	1	1,31	8,21	13,78	1,00
C- [NaBH₃CN]	-5,64	1	1,31	-8,43	-2,86	1,00

Figure S4. Identification of optimal conditions for GACox conjugation to CRM₁₉₇: statistical analysis of the models for GAC/CRM₁₉₇ w/w ratio (**a**) and GAC yield (**b**).