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Abstract: (1) Background: The treatment of peripheral arterial disease (PAD) is focused on improving
perfusion and oxygenation in the affected limb. Standard revascularization methods include bypass
surgery, endovascular interventional procedures, or hybrid revascularization. Cell-based therapy can
be an alternative strategy for patients with no-option critical limb ischemia who are not eligible for
endovascular or surgical procedures. (2) Aims: The aim of this narrative review was to provide an
up-to-date critical overview of the knowledge and evidence-based medicine data on the position of
cell therapy in the treatment of PAD. The current evidence on the cell-based therapy is summarized
and future perspectives outlined, emphasizing the potential of exosomal cell-free approaches in
patients with critical limb ischemia. (3) Methods: Cochrane and PubMed databases were searched for
keywords “critical limb ischemia and cell therapy”. In total, 589 papers were identified, 11 of which
were reviews and 11 were meta-analyses. These were used as the primary source of information,
using cross-referencing for identification of additional papers. (4) Results: Meta-analyses focusing
on cell therapy in PAD treatment confirm significantly greater odds of limb salvage in the first
year after the cell therapy administration. Reported odds ratio estimates of preventing amputation
being mostly in the region 1.6–3, although with a prolonged observation period, it seems that the
odds ratio can grow even further. The odds of wound healing were at least two times higher when
compared with the standard conservative therapy. Secondary endpoints of the available meta-analyses
are also included in this review. Improvement of perfusion and oxygenation parameters in the
affected limb, pain regression, and claudication interval prolongation are discussed. (5) Conclusions:
The available evidence-based medicine data show that this technique is safe, associated with minimum
complications or adverse events, and effective.

Keywords: cell therapy; peripheral arterial disease; bone marrow; adipose tissue; mesenchymal stem
cells; exosome; critical limb ischemia

1. Introduction

Most regulatory authorities have realized the need for early access to innovative therapies for
unmet medical needs that may improve health care quality for life-threatening conditions. Since critical
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limb ischemia is a significant healthcare problem with its rising incidence, accelerating the development
of innovative advanced therapies is essential. However, cell therapy’s therapeutic efficacy in various
animal models has been only partially reproduced in human clinical trials. Despite the progress in
basic and clinical research over the last two decades, the regenerative therapy of limb ischemia based
on cell therapy is still considered an experimental treatment method, not recommended for routine
clinical use.

1.1. Critical Limb Ischemia

Peripheral arterial disease is a severe medical condition associated with high morbidity, mortality,
and significant socioeconomic and social impacts. Increased incidence of renal failure, cardiovascular
disease, diabetes mellitus with associated microangiopathy and retinopathy are documented in patients
with PAD [1,2].

Critical limb ischemia (CLI) is the end-stage of peripheral artery disease (PAD) caused by tissue
hypoxia and characterized by ischemic rest pain, ulcers, or gangrene associated with a significant risk
of affected limb loss and a high risk for cardiovascular events. The annual incidence is approximately
500–1000 new cases per million in industrialized countries. The disease prevalence increases with
increasing rates of diabetes, aging of the population, and persistent rates of tobacco abuse [3]. Current
treatment options are based on endovascular intervention, bypass surgery, and the best medical
conservative treatment with infusion of vasoactive agents as a potential adjunct therapy [4,5]. However,
approximately 20–30% of critical limb ischemia patients are not eligible for revascularization, or this
procedure has failed. Besides, the mortality of patients with CLI is about 20% within 6 months
from diagnosis, the 1-year mortality of patients with no-option CLI climbs to 40%, reflecting the
multivascular character of atherosclerosis in this population [6,7].

Over the past two decades, many therapeutic advances have been accomplished in the
field of PAD revascularization techniques. Modern technologies improve short-term outcomes
of interventions, though they fail to improve the long-term expectations. Moreover, although surgical
or endovascular revascularization improves macrovascular perfusion, microvascular perfusion often
remains unimproved. Supportive treatment is also being used to treat patients with PAD, usually with
hyperbaroxia and lumbar sympathectomy. Despite all advancements in medicine, literature sources
show that 20–45% of patients are not suitable for a revascularization procedure [8,9]. This subgroup of
patients is burdened with a high risk of limb loss, increased morbidity, and mortality.

Thus, there is a critical need to develop novel therapeutic strategies to improve limb perfusion
and healing process, mainly for patients without revascularization options. New methods targeting
neovascularization and microcirculation improvement provide a potential solution and new hope for
no-option CLI patients [10].

1.2. Cell Therapy

The concept of cellular therapy has made significant progress over the past decades, from the use
of cells for its original function (red blood cell transfusion) toward their use for treatments different
from their native role. In 1997, Asahara et al. identified a class of bone marrow (BM) progenitors
responsible for angiogenesis in ischemic tissues [11]. The first test using autologous mononuclear bone
marrow cells in patients with CLI was published by Tateishi-Yuyama et al. in 2002 [12]. The mechanism
of cell therapy action consists of accelerating the body’s regeneration processes in ischemic tissues.
The developmental and regenerative processes of the vascular system are divided into two steps.
The first one is the process of vasculogenesis, i.e., an in-situ differentiation of cellular precursors
of angioblasts into the form of primitive endothelial cells, which subsequently form a labyrinth
of primitive vessels (see Figure 1). The second step is angiogenesis, which includes the growth
and remodeling of the primitive network into a complex one. Therapeutic angiogenesis is applied
particularly in adulthood [13].
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Figure 1. Scheme of vasculogenesis [13].

Multifunctional stem cells are nonmature, nondifferentiated tissue precursors. Their essential
characteristics are the high potential for self-renewal and their ability to differentiate into various cell
lines based on stimuli from the surrounding environment. Stem cells are present in almost all types of
tissues and represent crucial components of endogenous repair mechanisms. Adult stem cells include
bone marrow stem cells, circulating stem cells, and tissue-resident stem cells. Bone marrow-derived
stem cells contain a heterogeneous group of hematopoietic stem cells, giving rise to all cell lines of the
hematopoietic system, multipotent adult progenitor, mesenchymal or stromal cells. They are crucial
for tissue regeneration with important paracrine activity, and, finally, side population cells [14].

Numerous stem cell populations from various sources have been proposed for cell-based therapy;
however, endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and their products play
a pivotal role in therapeutic neovascularization and treatment of limb ischemia.

The use of cell therapy in treatment of critical limb ischemia is currently undergoing tumultuous
development and although several reviews on this issue have been published, many of those are
outdated by now. Additionally, several meta-analyses have been performed; none of the reviews,
however, focused specifically on these meta-analyses and their detailed comparison. In this narrative
review, we collected the current information and aimed to provide an up-to-date critical overview of
the knowledge and evidence-based medicine data on the position of cell therapy in the treatment of
PAD. This review should serve as a source of information both to the professionals only entering this
field and experienced expert looking for concise up-to-date information.

2. Materials and Methods

Literature sources for this narrative review were identified through a search in the Cochrane
and PubMed databases in September 2020. The keywords “critical limb ischemia cell therapy” were
used for the initial search. Altogether, 589 papers were identified, 11 of which were reviews and
11 meta-analyses (see Table 1). The meta-analyses and reviews were used as the primary source of
information for this paper, using cross-referencing for identification of additional papers and validation
of the information to be included in this review. In all, 59 papers were used for this review.
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Table 1. Meta-analyses identified for further analysis.

Reference Year of
Publication

Records
Screened

Records
Excluded

Studies
Assessed for

Eligibility
RCT Included

Studies

Fadini G.P. et al. [10] 2009 108 66 42 6 37
Liu F.P. et al. [15] 2012 341 318 23 14 7
Teraa M. et al. [16] 2013 2399 2385 14 12 12
Benoit E. et al. [17] 2013 51 6 45 45 45
Wang Z.X. et al. [18] 2014 102 27 75 31 9
Liu Yumeng et al. [19] 2014 441 379 62 16 13
Liew A. et al. [20] 2015 3910 3262 28 16 16
Min Ai. et al. [21] 2016 526 468 58 25 25
Rigato M. et al. [22] 2017 1532 1467 65 26 19
Pan T. et al. [23] 2018 1495 1468 27 27 9
Xie B. et al. [24] 2018 1130 662 23 23 23

3. Cell Types and Methods Used in the Cell Therapy of CLI Patients

3.1. Endothelial Progenitor Cells (EPCs)

EPCs are present in the BM as a part of the mononuclear hematopoietic cell fraction; they also
circulate in peripheral blood and are found in the form of resident stem cells in almost all tissues
capable of differentiation within the endothelial lineage. Endothelial and hematopoietic lineages have
common precursors, hemangioblasts. Under physiological conditions, the number of circulating EPCs
is small. Their number in the peripheral blood increases in response to ischemia by mobilization
from the BM after secretion of proangiogenic cytokines, such as the vascular endothelial growth
factor (VEGF), stromal cell-derived factor 1 (SDF-1), or hypoxia-inducible factor 1 (HIF-1). EPCs are
attracted to ischemia sites and contribute to angiogenesis by secreting interleukins, growth factors,
and other cytokines by activating resident stem cells, recruiting circulating progenitors, and inhibiting
cells apoptosis. Altogether, through these indirect mechanisms, the therapeutic cells accelerate the
formation of the vascular network and enhance healing processes [25].

Despite the progress in stem cell research, the precise definition of EPCs remains uncertain
and controversial. In general, they are characterized by the coexpression of markers for both
hematopoietic and endothelial cell lineages (CD34, CD133, VEGF receptor-2, kinase-insert domain
receptor, von Willebrand factor, and endothelial nitric oxide synthase) [26]. CD133 is an early
hematopoietic stem cell marker. The loss of CD133 expression is associated with increased expression
of a variety of endothelial lineage markers constituting a signal for EPCs maturation toward the
endothelial lineage [27]. Expression of such markers can distinguish between early EPCs (e.g., CD133 +

CD34+ cells) and late-outgrowth EPCs. While the subpopulation of late-outgrowth EPCs form vascular
networks de novo and can incorporate into nascent blood vessels, early EPCs indirectly augment
vasculogenesis via the paracrine mechanism [25–28].

The number of administered CD34+ cells has been shown to influence cellular therapy’s clinical
benefit [29,30]. Klepanec et al. showed that the number of administrated CD34+ cells, unlike the total
number of bone marrow mononuclear cells (BM-MNCs), was strongly related to clinical benefit [30].
This result partially contradicts the findings of the (PROVASA) study—Intraarterial Progenitor Cell
Transplantation of Bone Marrow Mononuclear Cells for Induction of Neovascularization in Patients
with Peripheral Arterial Occlusive Disease trial. The number of CD34+ cells and BM-MNCs were
shown to be independent predictors of improved ulcer healing [31].

Conversely, results published by Klepanec et al. [30] are consistent with studies demonstrating
the superior effects of enriched CD34+ cells compared with BM-MNCs. The CD34+ cells were
able to restore microcirculation and improve tissue perfusion in preclinical models, [32] as well
as in clinical series [29,33]. In fundamental studies, the surface expression of CD34+, CD133+,
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and VEGF receptor-2 and kinase insert domain receptor identified a population of EPCs with enhanced
potency for neovascularization of ischemic tissue [32,34]. Furthermore, enriched CD133+ progenitor
cells demonstrated positive functional effects in patients with chronic as well as recent myocardial
infarction [35,36]. The notion that mononuclear cells depleted of CD34+ cells do not improve myocardial
function in a murine infarct model further supports the hypothesis that CD34+ cells may be pivotal for
therapeutic benefits [37].

3.2. Mesenchymal Stem Cells (MSCs)

MSCs are nonhematopoietic cells present in the bone marrow, adipose tissue, and many other
tissue sources. MSCs, as stromal cells, constitute an essential part of the marrow microenvironment
supporting hematopoiesis, also possessing extensive proliferative capacity [38]. They have multilineage
potential with the ability to differentiate into adipogenic, osteogenic, chondrogenic, and skeletal muscle
cells, as well as into vascular smooth muscle cells, neural precursors, cardiomyocytes, or perivascular
cells [39,40]. It is now well accepted that mesenchymal stem cells (MSCs) are the therapeutic cells
involved in the regenerative process [41]. Emerging evidence suggests that secretion of soluble factors
could explain most of the beneficial effects of MSCs. They have multiple actions, including support
of angiogenesis, modulation of inflammatory and immune reactions, protection against apoptosis,
and stimulation of EPCs. MSCs have been shown to express and secrete factors essential for the process
of angiogenesis, such as SDF-1, VEGF, basic fibroblast growth factor (FGF), or matrix metalloproteinases
for the process of angiogenesis. MSCs are also able to stimulate endothelial cell migration and tube
formation [42]. Moreover, MSCs have a vital role in stabilizing the new vasculature through their role
as pericytes. These perivascular cells control proliferation and migration through interactions between
endothelial cells [43].

Flow cytometric analysis of standard MSC markers revealed a significantly higher expression
of CD44 and CD90 markers in CLI patients. The group of patients with NO-CLI had an excellent
response to the application of bone marrow stem cells (BMCs) [43]. CD44 is a multistructural and
multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration,
and angiogenesis. Expanded BMCs enriched in CD90+ cells were efficient in the treatment of diabetic
ulcers [44]. Moreover, MSCs play an essential role in the healing process via their immunomodulatory
and anti-inflammatory properties, together with their antibacterial activity [45].

3.3. Indication/Contraindications of Cell Therapy in the Treatment of CLI

Cell therapy is currently indicated as an experimental treatment method in clinical trials
and patients with severe PAD forms when standard treatment procedures have been exhausted
without any possibility of further revascularization of the affected limb [46]. The contraindications
include a presumed patient survival of fewer than six months, a known disease of the BM (e.g.,
lymphoma, leukemia, myelodysplastic syndrome, metastatic impairment of bone marrow), chronic
renal insufficiency on dialysis therapy, or acute limb ischemia with a severe inflammatory reaction
threatening the patient’s life implying the need of early amputation of the limb.

3.4. The Technique of Separation and Administration of Cell Therapy in the Treatment of CLI

Most clinical trials focusing on autologous cell therapy have used bone marrow mononuclear
cells (BM-MNC). The hip bone’s top ridge is the most commonly used collection site; the collection
itself is performed after a previous premedication and in local anesthesia. The procedure is performed
under standard conditions with the administration of antibiotics. Another possibility is the separation
of mononuclear cells from 60 mL of peripheral blood mononuclear cells (PB-MNC). Separation
instruments must be used in suitable clinical setup, to obtain a cellular concentrate with the same
biological function capable of supporting vascular growth in patients with PAD [47,48].

The protocols for autologous cell therapy use a broad spectrum of techniques for cell concentration.
However, all used methods work similarly. They use a source material rich in pluripotent cells obtained
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from the patient’s BM (either from BM directly or after mobilizing them into the peripheral circulation).
They concentrate mononuclear cells into a preparation suitable for injection application into the ischemic
limb, (Figure 2a). After bone marrow aspiration (typically in a volume of 240 mL), the sample is treated
with EDTA anticoagulation and subsequently separated for 15 min with gradient-density centrifugation,
(Figure 2b). After centrifugation, the component rich in BM-MNC is aspirated. The isolate intended
for PAD treatment is applied deep into the intramuscular space, along the presumed course of the
affected limb’s crural arteries and into the surrounding area of the defect, (Figure 2c).
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Figure 2. The technique of separation and administration of cell therapy: (a) harvesting BM-MNC
(bone marrow mononuclear cells) from the hip bone. (b) Gradient—density centrifugation with bone
marrow concentrate aspiration. (c) Intramuscular injection of the bone marrow concentrate along the
calf vessels.

The intramuscular application under the control of ultrasound is theoretically unnecessary,
considering the high migration activity of the isolate in tissues; nevertheless, given the distribution
and easy accessibility in everyday practice, ultrasound control is recommended. After the procedure,
the patient remains on bed rest for 24 h. Dressings are changed the following day, and the patient is
discharged to home care. Standard changes in the defect dressings are proposed.

4. Results of Meta-Analyses

Efficacy of Cell Therapy in the Treatment of CLI

After the promising results of preclinical studies suggesting a beneficial effect of BM-MNCs and
MSCs on limb ischemia improvement, an increasing number of clinical trials emerged exploring the
efficacy and safety of cell therapy in patients with CLI. Several prospective clinical trials performed
between 2002 and 2016 studied the efficacy and safety of cell therapy in CLI treatment. The design of
most published studies was of very high quality. Randomized prospective clinical trials as well as
prospective controlled clinical trials (versus placebo or standard medical care) were performed. Results
of the clinical trials were subsequently analyzed and thoroughly evaluated in several meta-analyses,
which included more than 1500 patients [10,15–24].

An overview of meta-analyses with primary and secondary endpoints focused on the efficacy of
the non-option CLI treatment is presented in Figure 3 and Table 2.

The primary aim of the presented meta-analyses was to assess the need to perform a major
amputation of the limb (both below or above the knee) and compare the number of patients in whom
complete healing of the defect was achieved. Conclusions of the included meta-analyses are similar.
A statistically significant difference showing a positive effect of the cell therapy in CLI treatment was
observed, together with a reduced number of major amputations of the limb and more healed defects
in patients treated with cell therapy.

During the first year following the administration of cell therapy, Wang et al. reported eight
times higher odds that the patients would not undergo limb amputation when compared with the



Int. J. Mol. Sci. 2020, 21, 8999 7 of 15

control group (OR = 8.05, 95%CI (3.58; 18.08), p < 0.001). The odds of not undergoing limb amputation
were approximately 22 times higher after 3 years (OR = 22.33, 95%CI (4.14; 120.50), p < 0.001) [18].
Liu Yumeng et al. reported three times higher odds of not undergoing limb amputation in the
group with active treatment when compared with the control group (OR = 3.03, 95%CI (1.96; 4.55),
p < 0.001) [19]. Liew et al. reported approximately two times higher odds of not undergoing limb
amputation in the group of patients treated with cell therapy compared with the control group
(OR = 1.85, 95%CI (1.15; 2.94), p = 0.010) [20]. All meta-analyses showed at least two times higher odds
of complete defect healing compared to the control group. Liu Yumeng et al. demonstrated even a six
times higher odds of defect healing in the treatment group [19].
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Figure 3. “Primary endpoints” evaluating the efficacy of non-option CLI treatment using the cell
concentrate. The forest plots present (A) the odds ratios for nonamputation and (B) wound healing,
respectively, for the group of patients treated with cell therapy. (OR = odds ratio, RR = risk ratio,
95%CI = 95% confidence interval, AFS = amputation-free survival.)

Secondary aims assessed in the meta-analyses comprised values evaluating perfusion and
oxygenation in the affected limb. The ankle-brachial pressure index (ABI), transcutaneous oxygen
pressure (TcpO2), claudication interval, and pain manifestation in the limb were compared. The obtained
results are presented in Table 2. The published data show an improved condition of the affected limb
in patients undergoing cell therapy in all parameters. For example, Benoit et al. reported increased
ABI values in 63.2% of patients in the reviewed studies included in their meta-analysis, improved
TcpO2 in 76.9% of patients, pain reduction in almost 90%, and prolongation of the claudication interval
in 89.5% of patients [17].
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Table 2. Secondary endpoints—in individual studies, primary endpoints were supplemented with secondary (minor) endpoints such as ABI, TcpO2, pain scale,
and claudication interval. (MD = mean difference, SD = standard deviation, SE = standard error, SMD = standardized mean difference, OR = odds ratio, 95%CI = 95%
confidence interval).

Study Specification ABI TcpO2 (mmHg) Pain (Scale 0–10) Claudication Interval (m)
MD (95 %CI) p MD (95 %CI) p MD (95 %CI) p MD (95 %CI) p

Teraa M. et al. Overall increase 0.12 (0.09; 0.15) <0.001 14.28 (8.54; 20.02) <0.001 −1.10 (−1.37; −0.83) <0.001 178.73 (127.68; 229.78) <0.001
Wang Z.X. et al. Increase after 4–8 weeks 0.14 (0.07; 0.21) <0.001 6.89 (6.17; 7.62) <0.001 −0.01 (−1.44; 1.43) 0.990

Increase after 12 weeks 0.14 (0.00; 0.27) 0.050 1.95 (−7.41; 11.3) 0.680 −1.84 (−4.11; 0.44) 0.110
Increase after 24 weeks 0.14 (0.10; 0.19) <0.001 20.35 (12.51; 28.19) <0.001 −1.37 (−1.69; −1.04) <0.001

Rigato M., et al. Overall increase 0.11 (0.07; 0.15) <0.001 10.74 (4.93; 16.54) <0.001 −0.74 (−1.12; −0.36) <0.001 93.73 (−30.05; 217.51) 0.140
Xie B., et al. Overall increase 0.13 (0.11; 0.15) <0.001 12.22 (5.03; 19.41) <0.001 144.84 (53.03; 236.66) 0.002

Mean ± SD or SE Mean ± SD or SE Mean ± SD or SE Mean ± SD or SE

Fadini G.P., et al. Before therapy 0.46 ± 0.04 22.8 ± 2.8 6.35 ± 0.43 75.7 ± 19.4
After therapy 0.63 ± 0.04 0.011 35.8 ± 2.9 <0.001 2.11 ± 0.37 < 0.001 402.3 ± 70.9 <0.001

SMD (95 %CI) SMD (95 %CI) SMD (95 %CI) SMD (95 %CI)

Liu Yumeng et al. Overall increase 0.65 (0.33; 0.97) <0.001
Min Ai., et al. Overall increase 1.00 (0.63; 1.37) <0.001 1.07 (0.39; 1.37) 0.002 −1.10 (−1.65; −0.56) <0.001 1.12 (0.77; 1.47) <0.001

Other Other Other Other

Benoit E. et al.
No. studies with

improvement/No. of all
studies (in %)

24/38 (63.2) 20/26 (76.9) 33/37 (89.2) 17/19 (89.5)

Liew A. et al. OR (95 %CI) of
improvement 5.91 (1.85; 18.86) 0.003
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5. Discussion

Cell therapy represents a relatively safe therapeutic intervention, with a low risk of early
complications in the course of and shortly after the procedure. The most frequent, although rarely
observed, complication is bleeding from the collection site. The bleeding after bone marrow collection
or peripheral venous access may be, nevertheless, quickly and effectively treated with compression.
Benoit et al., in a group of more than 1200 patients, reported a formation of only one arteriovenous
shunt after intramuscular BM administration into the limb. A spontaneous shunt occlusion was
observed within 1 year after the procedure [17].

5.1. Bone Marrow Aspiration Concentrate (BMAC)

The incidence of anemia reported in the literature due to bone marrow collection for separation
of the cellular concentrate is between 0.6% and 0.8%. [31] Considering the fact that the bone marrow
aspirate comes from the patient’s own body, there is no risk of transferring infectious diseases (HIV,
Hepatitis C, etc.) or adverse immunological reactions.

Potential risks associated with cell therapy administration include a progression of renal failure,
diabetic retinopathy, cardiovascular risk, and possible cancer potentiation or acceleration. The cellular
concentrate is applied deep into the intramuscular space, along the presumed course of the crural
arteries. Thus, it is possible to anticipate that an intramuscular administration of BMC into the
muscle tissue damaged with ischemia may lead to local rhabdomyolysis and worsening chronic renal
insufficiency. However, the published studies have not confirmed any renal failure in relationship
with cell therapy [17].

Endothelial progenitor cells participate in regenerative processes; however, they do not
cause pathological vasculogenesis of retinal capillaries, which could worsen retinopathy [49].
No statistically significant difference in the incidence of cardiovascular conditions was reported
in the above-presented meta-analyses.

Some tumors express chemotactic signals for the mobilization of monoclonal cells from the
bone marrow; in the case of these cells, it is suspected that they may participate in the pathological
vascularization of tumors [50,51]. Nevertheless, the mere presence of stem cells and a tumor is not
sufficient for initiation of the process of pathological angiogenesis [52]. Wickersheim et al. have
demonstrated in an animal model that endothelial progenitors derived from bone marrow are not
present in the tumor endothelium of primary or secondary metastatic tumors [53].

No relationship between administration of cell therapy and an increased risk of cancer incidence
has been demonstrated [50–53]. The risk of malignancy certainly increases with age and the presence
of various physical, chemical, and biological risk factors. The incidence of PAD is frequently associated
with smoking, which also represents a risk factor, significantly increasing the risk of malignant diseases.
History of malignancy was considered a contraindication for cell therapy administration in most studies.

5.2. MSC-Derived Exosomes for Cell-Free Regenerative Therapy

A growing consensus exists that paracrine factors, including exosomes, mediate most of the stem
cell therapy’s therapeutic effects. Exosomes are nanometer-sized membrane-bound vesicles, paracrine
ingredients enclosed within lipid bilayers, and mediators of cell–cell communication. MSC-exosomes
carry bioactive molecules, including growth factors, cytokines, or RNAs, which could be internalized
by recipient cells to mediate intercellular communication. Therefore, the biological functions of
MSC-exosomes are considered similar to MSCs, and MSC-derived exosome therapy is emerging as a
promising strategy for the treatment of several diseases, including limb ischemia.

5.3. Adipose Tissue-Derived Stem Cells–Stromal Vascular Fraction (ASCs–SVF)

ASCs possess many phenotypic and functional similarities to bone marrow-derived MSCs
(BM-MSCs). Moreover, unlike BM-MSCs, multipotent ASCs can be harvested at relatively high numbers
(5 × 105/g fat, a typical harvest of 500 g tissue) with minimally invasive techniques (i.e., lipoaspiration
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or lipectomy) from subcutaneous adipose tissue. ASCs rapidly proliferate in culture. This rapid
expansion achieves cell quantities sufficient for treating large-volume lesions. Transplantation of ASCs
is an emerging therapeutic option for addressing many intractable diseases, including cardiovascular
diseases and peripheral artery disease (PAD). The nonadipocyte stromal vascular fraction (SVF) of
human adipose tissue contains a population of mesenchymal stem cells (MSCs), intimately associated
with blood vessels. Freshly isolated SVF and cultured cells displayed cell surface markers typical of
human adipose tissue-derived populations [54].

Evidence suggests that ASC’s therapeutic effects are primarily mediated through paracrine
mechanisms rather than through cellular transdifferentiation [55–58]. Secreted factors can be captured
in a conditioned medium (ASC-CM) composed of a cocktail of beneficial growth factors and cytokines.
Both individually and in combination, they demonstrate disease-modifying effects in animal models.
The three predominant paracrine actions of adipose stem cell-secreted factors are trophic support of
survival and repair of cells in diseased or injured tissues (VEGF, HGF), modulation of the immune
system (IL-10, PGE2), and recruitment of endogenous stem and progenitor cells (GM-CSF, SDF-1).
Moreover, these factors have the potential to work in concert to affect physiological improvements in
diseased and injured tissues [59].

5.4. Regulatory Requirements

Most regulatory authorities have realized the need for early access to innovative therapies for
unmet medical needs that may improve health care quality for life-threatening conditions. Since critical
limb ischemia with its rising incidence is a significant health problem, accelerating innovative advanced
therapies is essential.

Somatic cell therapies, including MSCs, are regulated as advanced therapy medicinal products
(ATMPs). EU regulation allows member states to use the so-called “hospital exemption.” This exemption
authorizes the hospital on the national level to use ATMPs without marketing authorization [Article
28. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007
on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC)
No 726/2004]. The intention and ratio of this clause are to allow noncommercial ATMPs with enough
evidence for therapeutic use to be received by individual patients under the responsibility of the
concrete hospital or medical practitioner.

In March 2016, the European Medicines Agency declared autologous bone marrow mononuclear
cells (BM-MNC) as an advanced therapy medicinal product with the proposed indication to improve
limb perfusion/restore blood flow. The cells are not intended to be used for the same essential function,
but to regenerate and replace human tissue [European Medicines Agency—March 2016—Scientific
recommendation on the classification of advanced therapy medicinal products].

Another important EU exemption is the “compassionate use” program for patients with
life-threatening, long-lasting, or debilitating illness who cannot be treated by an authorized medical
product. This program allows such a patient to access an investigational drug outside a clinical trial
[Committee for Medicinal Products for Human Use (CHMP). Guideline on compassionate use of
medicinal products, pursuant to article 83 of regulation (EC) No 726/2004. 2007; 2-3].

However, the balance between the progress of new technologies and innovations and scientific
caution with emphasis on patients’ safety is necessary. Additionally, the homogenous approach
towards regenerative therapy and innovation in the EU constitutes an appropriate barrier against stem
cell tourism within Europe. Future studies should also focus on the possibility of stem cells application
as adjunctive therapy in patients immediately after percutaneous revascularization of CLI limb and
only one vessel below the knee run-off to intensify the healing process.

6. Conclusions

The aim of cell therapy in patients with CLI is to prolong limb survival, decrease the speed of
symptom progression, and improve life quality. The available evidence-based medicine data show
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that this technique is safe, associated with minimum complications or adverse events, and relatively
effective. The meta-analyses show that the reported odds ratio estimates of preventing amputation
through cell therapy are mostly in the region 1.6–3 over the period of 12 months; more importantly,
however, this number seems to steeply grow with a prolonged study period.

The majority of the adverse events were associated with hospitalization for complications related
to disease progression, not to cell therapy, such as pain in the extremities and gastrointestinal disorders
unrelated to cell therapy. In the considered RCTs, BM-derived cell therapy appeared to be relatively
safe, and side effects were generally mild and transient.

Although stem cells extracted from bone marrow are at present the most investigated type,
adipose tissue-derived stem cells–stromal vascular fraction (ASCs–SVF), an emerging method of
cell therapy, is very promising due to its much easier extraction and, in addition, could be also
used in diabetic patients or renal insufficiency whose bone marrow stem cells are of poor quality.
However, the effectiveness of this method needs a lot of further research and validation. Cell therapy
at present cannot be and is not an alternative to the already established techniques of PAD treatment.
However, regenerative medicine may represent a future hope for the group of patients who have
already exhausted the standard revascularization treatment and in whom symptomatic therapy does
not bring the expected relief.
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