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Abstract: Growth hormone (GH), mostly through its peripheral mediator, the insulin-like growth
factor 1(IGF1), in addition to carrying out its fundamental action to promote linear bone growth,
plays an important role throughout life in the regulation of intermediate metabolism, trophism and
function of various organs, especially the cardiovascular, muscular and skeletal systems. Therefore, if
a prepubertal GH secretory deficiency (GHD) is responsible for short stature, then a deficiency in
adulthood identifies a nosographic picture classified as adult GHD syndrome, which is characterized
by heart, muscle, bone, metabolic and psychic abnormalities. A GHD may occur in patients with
pituitary autoimmunity; moreover, GHD may also be one of the features of some genetic syndromes
in association with other neurological, somatic and immune alterations. This review will discuss the
impact of pituitary autoimmunity on GHD and the occurrence of GHD in the context of some genetic
disorders. Moreover, we will discuss some genetic alterations that cause GH and IGF-1 insensitivity
and the arguments in favor and against the influence of GH/IGF-1 on longevity and cancer in the
light of the papers on these issues that so far appear in the literature.

Keywords: autoimmune GHD; genetic GHD; anti-pituitary antibodies; lymphocytic hypophysitis;
GH insensitivity

1. Autoimmunity and Growth Hormone Deficiency (GHD)

Growth hormone (GH), mostly through its peripheral mediator, the insulin-like growth factor
1(IGF1), plays its fundamental action in promoting linear bone growth in prepubertal age, but it
continues playing an important role throughout life in the regulation of intermediate metabolism,
trophism and the function of various organs, especially the cardiovascular, muscular and skeletal
systems. Therefore, if a prepubertal GH secretory deficiency (GHD) is responsible for impaired growth
and short stature, then a deficiency in adulthood identifies a nosographic picture classified as adult

Int. J. Mol. Sci. 2020, 21, 1392; doi:10.3390/ijms21041392 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/21/4/1392?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21041392
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 1392 2 of 12

GHD syndrome, which is characterized by heart, muscle, bone, metabolic and psychic abnormalities [1].
Pituitary autoimmunity may play a pivotal role in favoring GHD both in children and in adults, as
GH-secreting cells, alone or together with other pituitary hormone-secreting cells, may be aggressed by
antipituitary antibodies (APA) in the context of lymphocytic hypophysitis (LYH) or of other forms of
autoimmune hypophysitis [2–8] (Table 1A). Thus, to be able to search for APA in patients at risk may
allow us to identify those prone to developing an autoimmune hypopituitarism [9]. Several methods
have been proposed to detect these antibodies. Among these, indirect immunofluorescence is one of
the most widely employed methods used to detect these antibodies in patients with suspected LYH;
however, its sensitivity and specificity is low. Thus, the roles of antipituitary and antihypothalamus
(AHA) antibodies are still discussed as methodological difficulties and also because several antigens
have been suggested as the possible target of APA, but the true pituitary antigens are still a matter of
discussion [10–15]. Consequently, in spite of the diffuse use of the immunofluorescence method, the
results that appear in the literature so far are often conflicting, particularly due to the use of different
human or animal substrates. This suggests caution against generalization of the results obtained
with this method. We used cryostat sections of young baboon pituitary and hypothalamus glands to
detect APA and AHA, due the difficulty of having human substrates in our disposal. However, we
think that improvement of the specificity and sensitivity of this method may be obtained considering
a predetermined cut-off of the titer and a particular kind of immunostaining, thus excluding the
low titers and confounding immunostaining patterns. In our studies, we used as substrate cryostat
sections of pituitary and hypothalamus glands from young baboon to detect APA and AHA by the
simple indirect immunofluorescence method. In particular, fluorescein isothiocyanate conjugated with
goat antihuman immunoglobulins was used to detect the presence of APA and AHA, considering a
predetermined cut-off of the titer and the kind of immunofluorescence pattern used to improve the
sensitivity and the specificity of the method. To this purpose, we considered APA positive at titers >1:8
and a particular immunostaining pattern, involving some but not all pituitary cells. This procedure
allowed us to find out patients with autoimmune pituitary impairment and to foresee the kind of
future hypopituitarism in those with pituitary function still normal, also suggesting that the occurrence
of LYH is more frequent than that so far considered [2–8]. This procedure may allow more reliable
results for diagnosing pituitary immunity, also by using animal substrates, especially when the results
are validated by a second step with four-layer double immunofluorescence [8]. In fact, this method
allows not only to detect APA and/or AHA, but also to identify the different cell lines targeted by
these autoantibodies and to predict a possible specific hormonal deficiency. Using this method, the
same pituitary section from young baboon is tested in a first step against the patient’s serum, and then
against the fluorescein isothiocyanate (FITC) goat anti-human immunoglobulin sera; in the second step,
it is tested against rabbit anti-sera, anti-GH, -ACTH, -TSH, -PRL, -FSH and -LH, separately, followed
by rhodamine goat sera anti-rabbit IgG. The different color of anti-Ig conjugate against human sera
and animal serum (green for FITC and red for rhodamine) allows for direct assessment of whether the
patient’s serum and the animal’s sera stained the same or different pituitary cells. Using these methods,
we were able to identify patients at risk of developing pituitary dysfunction [9] and to demonstrate
that somatotrophs were the main target of APA in patients previously found to be APA-positive at a
high titer [8]. Moreover, a longitudinal study in patients with autoimmune polyendocrine syndromes
(APS) but without hypopitutarism at the enrolment, followed-up for 5 years, was able to identify those
subsequently developing an autoimmune pituitary dysfunction [16], whereas, the characterization
of pituitary cells targeted by antipituitary antibodies in patients with isolated autoimmune diseases
without pituitary insufficiency helped us to foresee the kind of future hypopituitarism [17]. Concerning
this, some patients with idiopathic GHD or with autoimmune endocrine diseases may show APA
directed to GH-secreting cells [18], consequently favoring a GHD. These antibodies have been detected
both in adults [17] and in children [18] with apparently idiopathic GHD. Moreover, APA have been
detected at high frequency in a large cohort of Dutch patients with idiopathic isolated GHD or
with idiopathic GHD among a multiple pituitary hormone deficiency, thus claiming the usefulness



Int. J. Mol. Sci. 2020, 21, 1392 3 of 12

of searching for APA in patients with apparently idiopathic GHD to find out those with a silent
form of autoimmune hypophysitis [19]. APA recognizing GH-secreting cells have been detected not
only in children with idiopathic GHD but also in some children with idiopathic short stature (ISS)
without GHD but whom subsequently develop this deficiency, suggesting that the detection of APA in
children with ISS could identify those prone to subsequently developing an autoimmune GHD [18]
(Table 1A). Figure 1 shows a sample positive for APA tested subsequently by a double four-layer
immunofluorescence method in a study aimed at characterizing the pituitary-secreting cells targeted
by these antibodies.
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Figure 1. Immunofluorescence in cryostat sections of young baboon anterior pituitary gland tested
against the serum of a patient with isolated growth hormone deficiency GHD, in a primary step adding
FITC goat sera anti-human immunoglobulins (left panel: (a) = simple immunofluorescence) and in a
second immunostaining step adding rabbit antisera anti-GH followed by rhodamine goat sera anti
rabbit IgG (right panel: (b) = double four-layer immunofluorescence). The overlapping color in the
same cells, green in left panel and red in right panel, indicates that the cells immunostained by APA are
the somatotrophs [18]. Scale bars = 40×.

Table 1. Growth hormone and IGF-1 deficiency or insensitivity in autoimmune and genetic diseases.

A: GHD and Autoimmunity B: GHD and Genetic Disorders C: GH and IGF-1 Insensitivity and
Genetic Disorders

• Lymphocytic hypophysitis:

(a) Lymphocytic adenohypophysitis
(b) Lymphocytic infundibulo-neurohypophysitis
(c) Lymphocytic panhypophysitis
(d) IgG4-related hypophysitis
(e) Anti-CTLA-4 hypophysitis
(f) Anti-PIT-1 hypophysitis

• Pituitary autoimmunity linked to TBI
• Pituitary autoimmunity in Sheehan’s syndrome
• Pituitary autoimmunity after acute meningitis

• Prader Willi syndrome
• Hyper-immunoglobulin

M syndrome
• 17p13.1 syndrome
• Smith-Magenis syndrome
• Isolated

Lissencephaly Sequence
• Miller-Dieker syndrome
• Cystic fibrosis
• Turner syndrome

• Defects of the GH receptor
• Altered intracellular GH

signaling pathway
• Altered synthesis of IGFs
• Altered transport/bioavailability

of IGFs
• IGF-1 insensitivity linked to

mutation of IGF1 receptor
• Laron syndrome

GHD: Growth hormone deficiency; TBI: traumatic brain injury; IGF-1: Insulin like growth factor-1.

However, not only pituitary autoimmunity, but also autoimmune processes involving the
hypothalamus, may impair hormonal hypothalamic-pituitary secretions, including GH-Rreleasing
Hormone GHRH ones. In fact, in some cases, AHA targeting several hypothalamic cells, including those
GHRH-secreting ones, may cause an impairment of GHRH secretion and consequently a GHD [20].
Some diseases involving brain structures may be accompanied by a pituitary dysfunction, including
GHD. An autoimmune GHD can occur in some patients following traumatic brain injury, in patients
with Sheehan’s syndrome and in patients with acute infectious meningitis (Table 1A).

The most frequent causes of traumatic brain injury (TBI) are road accidents (the main cause,
which represents 50% of all cases) followed by falls, accidents related to violence, head injury linked
to sport (hockey, football, soccer), combat sports (boxing and kickboxing) characterized by chronic
repetitive head injuries and accidental war trauma, including explosion lesions [21–35]. Post-traumatic
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hypopituitarism is generally characterized by an isolated anterior pituitary hormone deficiency
rather than multiple hormone deficiencies. Impairment of GH secretion and consequently of IGF-1
concentrations seems to be the most common early disorder after traumatic brain injury, both in the
acute and chronic phase [25,29]. Concerning this, it has been suggested that impairment of GH and
gonadotropin secretions is the most commonly pituitary disorder occurring post-TBI due to the more
lateral location of somatotrophs and gonadotrophs at a pituitary level [25,26]. The pathophysiological
basis of hypopituitarism secondary to traumatic brain injury is still discussed. The cause of the
damage could be the hypoxic-ischemic insult, with subsequent oxidative stress and cytotoxicity
leading to the death of neuronal cells by apoptosis or necrosis. Prospectively, in addition to the
primary mechanical event, secondary insults (i.e., hypotension, hypoxia, hyperthermia and increased
intracranial pressure due to skull fractures, edema and hemorrhage) and changes in cerebral flow
and metabolism can contribute to hypothalamic-pituitary damage [26–28], which can contribute to
perpetuating pituitary dysfunction. However, concerning the interrelationship between TBI and
hypothalamic-pituitary autoimmunity, the first question to be satisfied is whether TBI may favor
the development of the autoimmune process. It has been proposed that the release of sequestered
pituitary or hypothalamic antigens from the necrotic hypothalamic-pituitary system after TBI may
trigger an autoimmune response that is able to perpetuate neuroendocrine dysfunction, leading to late
post-traumatic hypopituitarism [30,31,35]. Several studies reported the role of traumatic brain injury in
triggering the neuroinflammatory and autoimmune process. In particular, some years ago Ankeny and
Popovich underlined the potential mechanisms for CNS trauma-induced B cell activation and discussed
the potential consequences of these injury-induced B cell responses. They concluded by hypothesizing
that a subset of autoimmune B cell responses initiated by CNS injury could play a pathogenic role,
thus suggesting that a targeted inhibition of B cell could improve recovery in cases of brain and spinal
cord injury [36]. In the subsequent years, Zhang et al. reported their results in searching for the
identification of serum autoantibody responses to brain-specific protein after TBI in humans. They found
that TBI-evoked antibodies showed predominant immunoreactivity against a cluster of bands from
35–50 kDa on human brain immunoblots, which were identified as glial fibrillary acid protein (GFAP)
and GFAP breakdown products. These antibodies showed an increase by 7 days after injury and
were of IgG subtype predominantly. Changes in autoantibody levels were negatively correlated with
outcome as measured by a Glasgow outcome scale- extended (GOS-E) score at 6 months, suggesting
that TBI patients with greater anti-GFAP immune responses had worse outcomes [37]. The role of
antibodies against GFAP in acute and chronic phases of TBI was subsequently further clarified by
Wang et al., also opening the way to possible therapy [38]. However, not only negative effects have been
attributed to TBI-evoked neuroinflammation and consequent autoimmunity. In fact, post-traumatic
neuroinflammation may also promote brain recovery through the production of new neurons from
neuronal stem/progenitor cells (NPCs) as demonstrated by experimental TBI in animals [38–40].
In fact, the neurogenic process is particularly stimulated by cytokines in some regions of the brain.
In the hippocampus, for example, TBI robustly increases NPC proliferation, whereas injury-induced
neuronal differentiation and survival of new neurons is far less pronounced [39,40]. Anyhow, a
spontaneous cognitive recovery has been shown to be associated with granule neurons produced after
TBI [41]. Moreover, a possible protective role had been also attributed to the TBI-evoked autoimmunity
by previous studies [42,43]. In particular, a reduced neuronal loss favored by a neuroprotective T
cell-dependent response evoked by CNS injury had been demonstrated in animals by Yoles et al. in
2001. They found that in transgenic mice overexpressing T cell receptors, ganglion cell survival after
injury was higher [43]. With regards to the events leading to the post-TBI hypothalamic-pituitary
deficiencies, considering all the findings previously discussed on this argument, it may be speculated
that head trauma may trigger an ongoing cascade of vascular and histopathological alterations (necrotic,
ischemic and hypoxic changes) also related to inflammation. Mediators of the inflammatory process
may favor the activation of the immune system through the acceleration of neuronal cell necrosis, which
allows us to unmask sequestered pituitary or hypothalamic antigens and the consequent production
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of respective autoantibodies that may contribute to late hypothalamic-pituitary dysfunction in TBI
patients (35). These antibodies may precociously aggress GHRH and corticotropin-releasing hormone
(CRH) neurons at the hypothalamic level and somatotrophs and gonadotrophs at the pituitary level
with consequent impairment of the respective hormone secretions.

A similar cascade of events evoking an autoimmune aggression to the hypothalamus–pituitary
axis impairing GH secretion may occur in patients with Sheehan’s syndrome (SS). In fact, the presence
of APA and AHA has been detected in some of these patients [44] even many years after the onset of
hypopituitarism. In particular, AHA and APA were detected at a high titer in 8 and in 7, respectively, of
20 patients with SS. However, none of these patients had AHA immunostaining vasopressin-secreting
cells, but only releasing factor-secreting cells. This suggests that in women with this syndrome, an
autoimmune process involving both the hypothalamus and the pituitary gland, triggered by cellular
damage caused by ischemia, may contribute to late pituitary dysfunction involving GH secretion
directly or through the inhibition of GHRH secretion [44]. Pituitary dysfunction may occur also after
acute bacterial or viral meningitis. A study by Tanrivedi et al. investigated whether autoimmune
mechanisms could play a role in the pathogenesis of acute meningitis-induced hypopituitarism,
searching prospectively for APA and AHA in 16 affected patients in the acute phase and at 6 and
12 months after the acute meningitis. A GHD was diagnosed in 18.7% of patients in acute phase.
At 12 months, 6 patients had GHD that was isolated or associated with other pituitary hormone
deficiencies. The occurrence of AHA and APA positivity was substantially high in these patients,
ranging from 35 to 50%. This seems to suppose a possible role of autoimmunity in the pathogenesis of
pituitary dysfunction after acute infectious meningitis [45]. Taking this into account, we think that
searching for AHA and APA in some conditions may help to avoid an underestimation of autoimmune
causes of pituitary dysfunction and, in particular, of GHD. Thus, we suggest to search for APA and
AHA in patients with apparently idiopathic GHD, isolated or associated with other pituitary hormone
deficiencies, especially if belonging to an autoimmune polyglandular syndrome (APS), in patients with
post-traumatic hypopituitarism or with some brain diseases involving hypothalamic-pituitary axis.
This could favor an early diagnosis of hypothalamic-pituitary autoimmunity, allowing, if possible,
to interrupt with appropriate therapy the progression to a clinically overt GHD. In particular, in
patients with short stature positive for APA and with GHD in childhood, submitted to replacement
GH therapy, it is advisable to retest pituitary function and APA detection after the stopping of therapy
in the transition age. In fact, some patients positive for APA at middle but not at high titer may show
a disappearance of APA and a remission of GHD after GH replacement therapy. Moreover, as APA
may shift their pituitary target in the transition age from somatotrophs to gonadotrophs, an early
characterization of APA by double immunofluorescence is advisable in GHD patients positive for APA
showing delayed puberty to allow an early diagnosis and an appropriate therapy, thus preventing
the progression from a delayed puberty to clinically overt hypogonadotropic hypogonadism [46].
Moreover, to search for APA and AHA may contribute to diagnosing the different form of autoimmune
hypophysitis in patients at risk also in potential or subclinical age. In addition to the classic forms
of LYH (lymphocytic adenohypophysitis, lymphocytic infundibulo-neurohypophysitis, lymphocytic
panhypophysitis), some new forms of pituitary autoimmune disease that may cause also GHD have
recently been described, namely the IgG4-related hypophysitis, the anti-CTL-4 hypophysitis and
the anti-PIT-1 hypophysitis [5,6,47–49] (Table 1A). The IgG4-related hypophysitis is characterized
by a massive infiltration of the pituitary and stalk by IgG4-secreting plasma cells associated with a
variable degree of fibrosis and high plasma IgG values. This hypophysitis is included together with
several other diseases in the spectrum of IgG4-related diseases, an increasingly recognized syndrome
of unknown etiology, which includes a collection of disorders that share specific histopathological,
serological and clinical characteristics [47]. A further form of secondary autoimmune hypophysitis has
recently been described in patients undergoing immunotherapy with antibodies to CTLA4 (cytotoxic
T-lymphocytic-associated antigen-4) for melanoma or other malignancies [48]. In such cases, the
hypophysitis represents one of the immune-related adverse events (IRAEs). The anti-PIT-1 hypophysitis
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(anti-PIT-1 antibody syndrome) is characterized by acquired and specific GH, prolactin and TSH
deficiencies. This disorder is associated with a thymoma or other neoplasm that ectopically expresses
PIT-1 protein. In this case, the circulating anti-PIT-1 antibody is a disease marker, and PIT-1-reactive
cytotoxic T cells (CTLs) play a pivotal role in disease development. Although several underlying
mechanisms for pituitary autoimmunity have been proposed and previously extensively discussed,
these findings suggest a new possible pathophysiological aspect highlighting the importance of
paraneoplastic syndrome as a cause of pituitary autoimmune diseases [49].

2. GHD in the Context of Genetic Disorders

GHD may also be one of the features of some genetic syndromes associated sometimes with
other neurological, somatic and immune alterations, causing, if misdiagnosed, further distress in
affected patients [50,51] (Table 1B). Mutations in the GH1 and GHRH genes shed light on the
phenotype and pathogenesis of isolated GHD, whereas mutations in transcription factors such as
HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 are involved in combined pituitary hormone
deficiencies. Depending upon the expression patterns of these molecules, the phenotype may consist
of isolated pituitary dysfunction or more complex disorders such as septo-optic dysplasia and
holoprosencephaly [49–52]. A link between genetic disorders and autoimmunity has been described
in Prader–Willi syndrome (PWS), a genetic condition caused by loss of the paternal copy of a region
of imprinted genes on chromosome 15, in which developmental delay is associated with severe
muscular hypoplasia and hyperphagia leading to severe obesity. The phenotype is most probably
due to hypothalamic dysfunction, which is also responsible for GH, TSH and ACTH deficiencies and
central hypogonadism [53]. A study investigating the role of autoimmune pituitary involvement in
55 adults with this syndrome discovered that about 30% of them were positive for APA. The authors
concluded that, although the presence of these antibodies could only be an “epiphenomenon”, their
results suggested that autoimmune mechanisms might contribute, at least in part, to the pituitary
dysfunction of Prader–Willi syndrome, and they claim to search for APA in these patients to clarify the
role of pituitary autoimmunity in their pituitary dysfunction [54]. GH treatment in affected patients
has been demonstrated to improve muscle bulk, reduce fat mass and increase levels of physical and
cognitive activities other than to improve body growth [55].

The hyper-immunoglobulin M syndromes (HIGM) are a heterogeneous group of genetic disorders,
due to several mutations of activation-induced cytidine deaminase (AICDA) inducing extremely
elevated IgM and significantly decreased IgG and IgA, which has been rarely reported to be associated
with GHD [56]. However, a GHD associated with other physical alterations has been described
in a nine-year-old girl with short stature and with a new AICDA mutation. She responded well
to systemic corticosteroid and to Ig and GH replacement therapy. The authors concluded that the
mutation analysis could clarify the pathophysiological aspects of this syndrome and improve the
diagnosis of HIGM patients, addressing the most appropriate therapy to the affected patients [57].
The region p13 of the chromosome 17 is a region of genomic instability that is linked to different
rare neuro-developmental genetic diseases, depending on whether a deletion or duplication of the
region has occurred [58,59]. The 17p13.1 syndrome is a rare genetic disorder characterized by short
stature and GHD associated with intellectual disability, facial dysmorphisms and obesity. Among
the alterations of the neuroendocrine structures, a possible pituitary dysfunction causing GHD may
occur in patients with microdeletion of 17p13.1. Recently, Leka-Emiri and coworkers described a
case of a child with a maternally inherited 17p31.1 microdeletion presenting with apparently familial
short stature but with low IGF1 for their age and impaired GH response to appropriate stimuli.
They concluded affirming that, although familial short stature is considered a normal variation of
growth retardation, hormonal and genetic investigation is essential in the etiological diagnosis, allowing
for an appropriate GH replacement therapy in those with GHD [59]. A heterozygous deletion at
chromosome 17p11.2 region that includes RAI1 (or a heterozygous intragenic RAI1 pathogenic variant)
characterizes the Smith-Magenis syndrome [60]. This syndrome is characterized by distinctive physical
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features (particular facial features that progress with age), developmental delay, cognitive impairment,
behavioral abnormalities, sleep disturbance and childhood-onset abdominal obesity. The behavioral
phenotype, including significant sleep disturbance, stereotypies and maladaptive and self-injurious
behaviors, is generally not recognized until age 18 months or older and continues to change until
adulthood. Hearing loss and skeletal, ophthalmologic, cardiac and renal anomalies are usually present,
whereas, among the endocrine alterations, hypothyroidism and GHD frequently occur, causing more
severe mental and somatic impairment if not corrected early with appropriate replacement therapy [60].
Instead, microdeletions and microduplications concerning the 17p13.3 region can result in either
isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS) [58,59]. Both conditions
are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay,
intellectual disability and seizures. However, patients with MDS have larger deletions than patients
with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal
spasticity and craniofacial dysmorphisms. In both conditions, developmental delay may be related to
GHD among a complex picture of encephalic and somatic alterations. A possible GHD can occur in
patients with cystic fibrosis [61,62]. This is an incurable, chronic disease that cause severe damage to
respiratory and digestive tracts and is the most common genetically inherited disease among Caucasian
population. This disease is caused by a defect in cystic fibrosis (CF) genes, the so-called mutations
in cystic fibrosis transmembrane conductance regulator (CFTR) gene population. At present over
100,000 people suffer from this disease [61]. Patients with CF may present with signs and symptoms
that overlap with those of adult GHD syndrome. A recent study investigating the hormonal pattern
of 50 clinically stable adult CF patients showed an impaired GH response to GHRH+Arginine in 16
of them (32%). GHD was severe in 7 and partial in 9 patients. The authors concluded that adult
patients with CF may show GHD [62]. Also, in these cases, an appropriate GH replacement therapy is
advisable to avoid heart, muscle, bone, metabolic and psychic abnormalities, all pictures of adult GHD
syndrome [1]. Also, for girls with Turner syndrome, a 45/X syndrome characterized by growth failure,
gonadal insufficiency and somatic and internal organ alterations, may have some benefit from GH
therapy, even if not belonging to the classical GHD (Table 1B). In fact, in these cases, the doses used are
usually higher than those used in children with GHD and the results are still discussed. A recent paper
investigated the benefits and adverse effects of GH treatment in women with Turner syndrome (TS),
comparing a group of 33 TS patients treated in childhood with GH to a group of 124 TS patients who
did not receive GH. Treated patients were significantly taller and had a better lipid profile and lower
prevalence of arterial hypertension than untreated patients. However, they also had low thrombocyte
counts, a greater prevalence of retrognatism, nail anomalies and elevated creatinine levels, especially
when the GH treatment was delayed or prolonged. They concluded that GH treatment in children
with TS has benefits in adulthood but adverse effects may occur, especially in girls with treatment that
is delayed or is too long [63].

3. Genetic Alteration Affecting GH and IGF-1 Actions

The genetic defects affecting GH and/or IGF-1 actions resulting in short stature can be classified
in five categories: (a) GH insensitivity by defects affecting the GH receptor; (b) alteration of the
intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1); (c) altered synthesis of
IGFs; (d) altered transport/bioavailability of IGFs (IGFALS,PAPPA2); (e) IGF-1 insensitivity by defects
affecting the IGF1 sensitivity linked to mutation of IGF1 receptor [64] (Table 1C). All these categories
show GH/IGF-1 deficiency or insensitivity. Zvi Laron first described a syndrome with complete GH
insensitivity in patients with characteristic features of GHD, but presenting increased levels of GH [65].
These patients are all characterized by typical appearance such as dwarfism, facial phenotype, obesity
and hypogenitalism. Moreover, in affected patients, GH insensitivity, caused by deletion or mutations
of the GH receptor gene, may be associated with several clinical signs of immune dysfunction and
autoimmune dysregulation, indicating a possible interrelationship between the GH-IGF-1 system and
the mechanisms evoking immune dysregulation. This occurs especially in patients with molecular
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defects in the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1) [64].
Interestingly, patients with Laron syndrome do not develop cancer [66–70] and recent studies on
genome-wide profiling of patients with this syndrome has been able to identify novel cancer protection
pathways, opening the way to new developments in oncology [69,70]. These results, together with
those of the studies in centenarians [70,71], seem to indicate a preventing effect of reduced secretion or
lacking action of GH-IGF-1 on some diseases with increased life expectance. However, a recent study
published in September 2019 suggests caution against generalization of these assumptions. The authors
used a protocol intended to regenerate the thymus in healthy aging men by GH administration.
They observed protective immunological changes, improved risk indices for many age-related diseases
and a mean epigenetic age approximately 1.5 years less than baseline after 1 year of treatment.
The GrimAge predictor of human morbidity and mortality in these patients showed a 2-year decrease
in epigenetic vs. chronobiological age that persisted six months after discontinuing treatment [72].
Thus, this seems to suggest caution in the use of possible interventions aimed at down-regulating
activity of the GH-IGF-1/insulin pathway for the extension of human life span. In conclusion, it can
be affirmed that replacement GH therapy in GHD short children and in adults with GHD has been
shown to be safe when no other risk factors for malignancy are present. Nevertheless, the use of GH in
cancer survivors and in short children with RASopathies, (caused by germline pathogenic variants in
genes that encode RAS pathway proteins, which make affected patients at increased risk of cancer [73]),
chromosomal breakage syndromes or DNA-repair disorders should be carefully evaluated owing to
an increased risk of recurrence of primary cancer, or second neoplasm in these individuals [72].
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