	ZnSO ₄	Zn-Nano
Casein	350	350
White fish meal	100	100
Gelatin	20	20
Fish oil	20	20
Soybean oil	40	40
Starch	200	200
Ascorbyl-2-polyphosphate	10	10
NaCl	10	10
$CaH_2PO_4 \cdot 2H_2O$	10	10
Vitamin mix	5	5
Mineral mix (Zn free)	5	5
Zn source	0.035	0.010
Betaine	10	10
Cellulose	219.965	219.99
Moisture	4.05	3.81
Crude ash	3.9	3.77
Crude protein	38.82	38.17
Crude lipid	7.13	7.53
$Zn (mg kg^{-1})$	23.46	23.01

Supplemental Table 1. Feed formulation and proximate analysis of experimental diets.

Supplemental Table 2. Primers used for real-time quantitative PCR analysis

Canag	Economic prime $(5, 2)$	Reverse primer (5'-	Accession	
Genes	Forward primer (3 - 3)	3')	no.	
brad	GCTCTGATGTGGCGAGG	CGTAGAAGGACAGTG	12002745	
opga	TGG	CAGTGG JX9927		
g6pd	CAGGAATGAACGCTGGG	TCTGCTACGGTAGGTC	12002744	
	ATG	AGGTCC JX992		
fas	AACTAAAGGCTGCTGGT	CACCTTCCCGTCACAA	IN1570124	
	TGCTA	ACCTC		
	GGGGTTTTCACGCTGCT	GGTTCTGATTGGGTCG	JX992746	
асса	TC	TCCTG		
1	CTGGGTCATCGCTTCTTT	TCCTTCGTTGGAGCTT	12002742	
sreop-1	GTG	TTGTCT	JA992142	
777 (110)	ACCCCCCCTTCCTTATCC	TGAGCAGAGTCACCTG	12002741	
ppury	Acocccorreonarce	GTCATTG	JA992741	
dgat 1	GCACCATCCACTGCTGTAT	CGCTCCAACTCTTGTCCG MILCC200		
	CA	ТС	MIN003997	
fata	TGCCCCTCACATAGTTGCT	CACTTCCTCGAACATCC	MC 627270	
jatp4	G	CTCAT	WIG037279	
i-fabp	GACGGCACTGTGCTTAC	AAATCCTCTTAGCGTTG	MG637280	

	TGG	ACACCT		
4 1	CACAAATGCGGATAGTGG	GGTCACTTGGAGCAACT	VV(52740	
2,111	GA	GAAAC	K 1052749	
	AAGAAAGGACAGAAGGGG	ACCAAAGCGGAGCAGTC	WWGGOGGO	
zntS	ACG	AAA	KY652/50	
.7	GAACTCCACCTGCTCTTGA	CCGCCACATCTATCTGA	VN(50751	
znt/	CC	ACG	KY052/51	
_:4	CATTCATAACTTCGCAGAC	CCAGAAAGCAACCCCAG	VV(50750	
<i>z,</i> 1 <i>p</i> 4	GG	ATT	KY652752	
to a t		GCAGGAATCGCCCTTAC	AC EU124661	
mi	ATCETTOCOADTOCTCCA	AC	EU124661	
mtf1	CGAGTTGATGTTGCAGAGC	GAGGTATGGAGGAAAG	KV652754	
mij1	С	AAGGGA	K1032/34	
B activ	GGACTCTGGTGATGG	CTGTAGCCTCTCTC	EU161066	
p-actin	TGTGA	GGTCAG		
rn17	GGCAAATGTACAGG	GCCTTGTTGAGCTT	KD038522	
1017	AGCGAG	GACGAA	KI 930322	
hprt	ATGCTTCTGACCTGG	TTGCGGTTCAGTGC	KD038573	
прп	AACGT	TTTGAT	KI 936525	
tuba	TCAAAGCTGGAGTTC	AATGGCCTCGTTAT	ATGGCCTCGTTAT KD038526	
iubu	TCGGT	CCACCA	KF938320	
h^{2m}	GCTGATCTGCCATGT	TGTCTGACACTGCA	KD038520	
02m	GAGTG	GCTGTA	KF938320	
ubca	TCAAGAAGAGCCAG	TAGGGGTAGTCGA	VD029524	
ubce	TGGAGG	TGGGGAA	KI 930324	
aandh	TTTCAGCGAGAGAG	ATGACTCTCTTGGC	VD028521	
gapan	ACCCAG	ACCTCC		
18srrna	AGCTCGTAGTTGGAT	CGGGTATTCAGGC	ATTCAGGC	
10311110	CTCGG	GAGTTTG	M 750521	
olfa	GTCTGGAGATGCTGC	AGCCTTCTTCTCAA	KU886307	
eija	CATTG	CGCTCT	120000307	

Supplemental Table 3. Effect of dietary different Zn sources on growth performance and morphometrical parameters of juvenile *P. fulvidraco*.

1	3	
	ZnSO ₄	Nano-Zn
IBM	4.08 ± 0.02	4.09 ± 0.02
FBM	22.59 ± 0.49	25.14 ± 0.27
WG	453.7±11.5 a	515.1±2.9 b
SGR	2.44 ± 0.03 a	$2.60 \pm 0.01 \text{ b}$
FI	20.11 ± 0.05	20.24 ± 0.38
FCR	$1.09 \pm 0.03 \text{ b}$	0.96 ± 0.02 a
VSI	6.13±0.28 a	7.02 ± 0.28 b

ISI	1.30 ± 0.03	1.37 ± 0.05
CF	1.43 ± 0.03 a	1.69 ± 0.03 b
Survival	97.78±1.11	92.22 ± 4.44

Values are means \pm SEM (n=3 replicate tanks. For WG, SGR, FI and FCR, 26-30 fish each tank; for VSI, ISI and CF, six fish each tank). Values with different letters within the same row are significantly different at P < 0.05; CF, condition factor; FCR, feed conversion rate; IBW (g fish⁻¹), initial mean body weight; FBW (g fish⁻¹), final mean body weight; ISI, intestinal somatic index; SGR, specific growth rate; VSI, viscerosomatic index; WG, weight gain.

WG (%) = $100 \times (\text{final mean body weight} - \text{initial mean body weight}) / \text{initial mean body weight}.$

SGR (% d^{-1}) = 100 × (ln (final mean body eight) – ln (initial mean body weight)) / day.

VSI (%) = $100 \times (viscera weight) / (body weight)$.

ISI (%)= $100 \times (\text{intestinal weight}) / (\text{body weight})$.

 $CF = 100 \times (live weight, g) / (body length, cm)^{3.}$

FI (g fish ⁻¹): feed intake.

FCR = dry food fed (g) / wet weight gain (g).

Survival =100 \times (final fish number) / (initial fish number).

Supplementary Fig. 1. Intestinal epithelial cells didn't absorb Nano-Zn via caveolae-dependent and macropinocytosis pathways. (A) Protein levels of MTF1 of intestinal epithelial cells after 40 μ M Nano-Zn incubation for 12 h. (B) The mRNA levels of Zn transport protein after 40 μ M Nano-Zn incubation for 12 h. Values are means \pm SEMs, n = 3-6. Asterisks (*) indicate significant differences between control and Nano-Zn group (p < 0.05, n= 3).

Supplementary Fig. 2. Nano-Zn absorption is energy-consuming in the intestinal epithelial cells. (A) Free Zn²⁺ was quantified by calculating FL1 (green) mean fluorescence intensity of intestinal epithelial cells incubated for 12 h in 40 μ M Nano-Zn with 2-h 10 mM NaN₃ or 5 μ g/ml nystatin pretreatment. (B) Representative confocal microscopy stained with Zn²⁺ fluorescent probe (Newport green dcf). The primary intestinal epithelial cells from *P. fulvidraco* were incubated for 12 h in control or 40 μ M Nano-Zn containing medium with or without 2 h 10 mM NaN₃ or 5 μ g/ml nystatin pretreatment. (C) The presence of DCF-stained Zn²⁺ was demonstrated by flow cytometric analysis of green (FL1) fluorescence intensity. The primary intestinal epithelial cells from *P. fulvidraco* were incubated for 12 h in control or 40 μ M Nano-Zn containing medium with or without 2 h 10 mM NaN₃ or 5 μ g/ml nystatin pretreatment. (C) The presence of DCF-stained Zn²⁺ was demonstrated by flow cytometric analysis of green (FL1) fluorescence intensity. The primary intestinal epithelial cells from *P. fulvidraco* were incubated for 12 h in control or 40 μ M Nano-Zn containing medium with or without 2 h 10 mM NaN₃ or 5 μ g/ml nystatin pretreatment. Values are means \pm SEMs, n = 3-6. Asterisks (*) indicate significant differences between two groups (p < 0.05, n= 3). NaN₃, Sodium azide; Ny, Nystatin.