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Abstract: Acidic glycosphingolipids, i.e., gangliosides, are predominantly and consistently expressed
in nervous tissues of vertebrates at high levels. Therefore, they are considered to be involved in
the development and function of nervous systems. Recent studies involving genetic engineering of
glycosyltransferase genes have revealed novel aspects of the roles of gangliosides in the regulation of
nervous tissues. In this review, novel findings regarding ganglioside functions and their modes of
action elucidated mainly by studies of gene knockout mice are summarized. In particular, the roles
of gangliosides in the regulation of lipid rafts to maintain the integrity of nervous systems are
reported with a focus on the roles in the regulation of neuro-inflammation and neurodegeneration
via complement systems. In addition, recent advances in studies of congenital neurological disorders
due to genetic mutations of ganglioside synthase genes and also in the techniques for the analysis of
ganglioside functions are introduced.
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1. Introduction

Nervous tissues are differentiated from the ectoderm, and their morphology is determined before
birth. During the growth stage after birth, further functional differentiation proceeds, and fundamental
shapes and functions are established within several years in the case of humans. However, the formation
of functional networks based on various experiences and learning activities proceed continuously,
leading to the maintenance of high-grade nerve functions due to the plasticity of nervous systems [1].
After reaching middle age, the network function gradually declines along with aging, and physiological
and pathological degeneration gradually proceed in nervous tissues [2]. Under certain pathological
conditions, marked tissue degeneration is induced, leading to functionally irreversible states such as
the occurrence of dementia. During individual processes in the natural history of nervous systems,
structures of carbohydrates on proteins and lipids markedly alter [3] and are involved in the formation
of appropriate environments for the high-grade structures and functions based on the molecular
modification required for each step.
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Since acidic glycosphingolipids, i.e., gangliosides, are predominantly and consistently expressed
in nervous tissues of vertebrates at high levels [3], their marked contribution to the neurological
function has long been expected [4]. Actually, the fact that ganglioside expression patterns markedly
change during development, suggests that they play critical roles in the evolution and differentiation
of nervous systems [5,6]. Contrarily, for carbohydrates on proteins, sufficient understanding has been
achieved in terms of integrative analysis of nervous system-specific carbohydrate functions, although
there have been a number of reports on carbohydrate functions on individual proteins.

In this review, an outline of functions of gangliosides recently identified is summarized with a
focus on findings from studies of knockout mice of various glycosyltransferase genes.

2. Roles of Gangliosides

Gangliosides are sialic acid-containing glycosphingolipids, which are widely expressed in almost
all tissues and cells of vertebrates. They are enriched in brain tissues, suggesting that they are involved
in the evolution and regulation of nervous systems [7]. The most intriguing feature of gangliosides is
that they consist of hydrophilic carbohydrates and hydrophobic lipid portions [8], being expressed on
the cell membrane and present in the outer layer of the lipid bilayer, as shown in Figure 1.

Therefore, it has remained unclear how gangliosides are involved in the regulation of signals for
cell differentiation, activation, and malignant transformation [9]. This review summarizes ganglioside
expression in inflammation and neurodegeneration and their roles in the maintenance of integrity and
generation of phenotypes of cells with a focus on inflammation and degeneration due to the altered
gangliosides are also summarized.
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Figure 1. Glycosphingolipids are amphipathic molecules, expressed in the out layer of lipid two layers
of the cell membrane. The hydrophobic portion (ceramide) is embedded in the outer layer of the
membrane, and the sugar portion is protruding outside the membrane. A representative GM1 structure
is shown. Ganglioside nomenclature is according to Svennerholm [10].

2.1. Gangliosides in Development and Growth

The fact that ganglioside composition in brain tissues varies along with development and growth
of organisms has been well reported [7,11]. It is also well understood that simple structure gangliosides
such as GM3 and GD3 mainly exist at the initial stage of development, i.e., embryonal day 12 to
14 (E12–14) of mice. At the differentiation stage after E16, when extension of neurites and synapse
formation occur, mature-type gangliosides such as GM1, GD1a, GD1b, and GT1b increase and become
the main components of brain tissues [12]. The main pathway of ganglioside synthesis is shown in
Figure 2. Generally, a-series and b-series gangliosides are major structures in brain tissues, and minimal
levels of c-series and asialo-series are sometimes detected. In particular, complex gangliosides
containing extended core structures higher than GM1 and GD1b are frequently expressed in brain
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tissues after the late developmental stage, and sometimes affect pathological conditions such as
Alzheimer’s disease, as described below.
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Figure 2. Main pathway of ganglioside synthesis. Glycosyltransferases catalyzing individual steps are
shown by italics, and deleted structures in KO mice are shown by different colored squares. Structures
on the line of ganglioside synthesis are presented in green letters.

Differently, the ganglioside composition in brain tissues shows almost no change in the adult
stage, while total amounts gradually reduce. In particular sites of the brain, however, gradual changes
occur along with aging [7]. Only a few comprehensive studies on ganglioside expression in nerve
tissues have been performed to date [13,14].

2.2. Function of Monosialylgangliosides and Disialylgangliosides

In order to analyze the regulatory function of nervous systems by gangliosides, a rat
pheochromocytoma cell line, PC12, has been frequently used [15,16]. On the one hand, PC12
cells overexpressing GM1 showed reduced sensitivity to the nerve growth factor (NGF), leading to
lowered neurite extension, and exhibited suppressed activation of TrkA/Ras/ERK1/2 signals upon NGF
stimulation [17]. On the other hand, GD3-overexpressing PC12 cells showed increased phosphorylation
levels of TrkA and ERK1/2 even without NGF stimulation [18]. Similarly, contrastive effects of gene
expression between GM1 synthase and GD3 synthase on phenotypes of various cancer cell lines have
been observed [19,20]. From these results, it has been demonstrated that monosialylgangliosides and
disialylgangliosides play distinct roles in the regulation of malignant properties of cancer cells [9].

Although mechanisms for signal regulation in cancer cells and PC12 cells based on gangliosides
with different numbers of sialic acids remain unclear, it could be a reflection of regulatory functions of
gangliosides in organogenesis and differentiation of nervous tissues and cells. Dynamic changes in
ganglioside expression during the evolution and development of nervous tissues and their implications
are summarized in the next chapter.
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3. Aging, Neurodegeneration, and Gangliosides

In various tissues and cells, only nervous tissues have been thought to show consistent
compositions among species of mammals and birds. In fact, very similar thin-layer chromatography
(TLC) patterns of gangliosides extracted from brain tissues were reported [21]. However, various
changes in ganglioside composition under physiological and pathological conditions have been
investigated [2,8,22].

3.1. Changes of Gangliosides in Central Nervous Systems with Aging

There have been some reports on the changes of ganglioside expression during evolution,
development, and aging of mice and rats [23–25]. For human brain gangliosides, changes of ganglioside
expression have been reported. Generally, contents of gangliosides gradually decrease [26], and, on the
one hand, a-series gangliosides tend to decrease mainly in the frontal cortex [27]. On the other hand,
b-series gangliosides decrease in the cerebellum with aging. Total amounts of lipids contained in brain
tissues continuously reduce until reaching 90 years old. In particular, expression levels of gangliosides
and cerebrosides are largely lowered at that time point. Investigation of 118 individuals aged 20 to
approximately 100 years old revealed that concentrations of gangliosides were maintained between 20
and approximately 70 years old [28], and then the expression patterns continuously altered with aging,
leading to reduced ratios of GM1 and GD1a. Similar findings were reported based on the newest
analytical techniques using mass spectrometry [29]. However, there has been no detailed research on
the functional relationship of altered ganglioside expression with pathological changes in brain tissues.

3.2. Gangliosides in Alzheimer’s Disease

In a variety of neurodegenerative diseases, particularly Alzheimer’s disease, one of the most
important factors involved in neuron death is local inflammation [30]. As reported previously, all
components involved in the classic pathway of complement activation were detected in nervous tissues,
and this pathway is activated in Alzheimer’s disease, resulting in detection as fibrous β amyloid [30] or
neurofibrillary tangles [31]. From these findings, complement activation and subsequent inflammation
can be the main mechanisms for the induction of brain damage in Alzheimer’s disease.

Over approximately the last 20 to 30 years, it has been demonstrated that the complement system is
involved in neurodegeneration such as in Alzheimer’s disease [32]. C1q and other components deposit
in amyloid plaques and neurofibrillary tangles [33,34], leading to complement activation. In areas with
legions, levels of mRNAs for complement components markedly increased [35]. Furthermore, C1q
inhibitors alleviated clinical features of Alzheimer’s disease, suggesting that complement activation
plays important roles in neuroinflammation and subsequent neurodegeneration [36]. Interestingly,
the complement activation observed in double knockout (DKO) mice (deleting GM2/GD2 synthase and
GD3 synthase) containing only GM3 plays similar roles to those in Alzheimer’s disease. This point
will be described later.

Furthermore, complement systems can have both detrimental and beneficial effects regarding
disease control [37]. For example, roles during developmental processes [38] or neuronal generation in
adults [39] have been reported. In particular, its physiological roles in the elimination of unnecessary
cellular components or in the improvement of inflammatory reaction are of interest.

As a role of gangliosides in Alzheimer’s disease, GM1 has been reported to be a factor triggering
the aggregation of Aβ peptides on the cell membrane [40], and mechanisms leading to the continuous
accumulation of Aβ have also been proposed [41]. Murine models of Alzheimer’s disease generated
with genetic backgrounds of knockout of the GD3 synthase gene or GM2/GD2 synthase gene have
been generated, resulting in milder phenotypes in the former [42], and more serious phenotypes in the
latter [43]. Recently, it was reported that the expression of B4GALNT1 promoted the processing of
Aβ [44], and complex gangliosides exacerbated clinical features of Alzheimer’s disease. Additionally,
different changes in ganglioside composition were found in various transgenic model mice expressing
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human amyloid precursor proteins. [45]. From these results, it has been suggested that altered
metabolism of gangliosides is involved in the pathogenesis of Alzheimer’s disease.

3.3. Parkinson Disease and Gangliosides

It has been reported that the amounts of GM1 and GD1a are reduced in the brains of patients
with Parkinson disease [46]. Furthermore, it was also indicated that B4galnt1 (GM2 synthase) KO
mice lacking GM1 ganglioside [47] showed Parkinson disease-like neurological disorders even in
heterozygotes [48]. Indeed, the efficiency of GM1 administration to Parkinson disease model animals
has been reported [49], and similar trials have also been performed in clinical cases, resulting in the
improvement of clinical features [50]. For example, GD3 synthase9 (ST8SIA1) KO mice lacking b-series
gangliosides and showing increased levels of GM1 and GD1a [51] were reported to be less susceptible
to Parkinson disease [52], suggesting that supplementation of GM1 or GD1a is also effective for patients
with other neurodegenerative diseases [46].

3.4. Inflammatory Reaction and Gangliosides

Changes in ganglioside expression in various inflammatory reactions have been observed to
date [53]. For example, changes in gangliosides expressed on glial cells [54] or in multiple sclerosis,
or changes by growth factors [55] have been reported. Furthermore, it has been reported that the
ganglioside GD3 was induced in inflammatory environments of brain tissues in mice and rats [56].
Regarding immune cells, GD3/GD2 were induced in T lymphocytes when stimulated via T-cell
receptors or IL-2 receptors, or various mitogenic factors [57,58]. Moreover, ganglioside GD2 was
expressed on functional T cells [59]. These results are consistent with a report that GD2 was induced
on HTLV-1-infected T cells via a viral product, p40tax [60]. Thus, changes in ganglioside expression
patterns on immune cells are frequently observed in various inflammatory reactions [61,62].

4. Functions of Glycolipids Elucidated in Ganglioside-Deficient (Knockout) Mice

4.1. Abnormal Phenotypes Exhibited by Knockout Mice and Inflammatory Reaction

In order to investigate roles of glycosphingolipids, cDNAs of various glycosyltransferase genes
have been isolated, i.e., GM2/GD2 synthase [63], GD3 synthase [64–66], GM1/GD1b/GA1 synthase [67],
GM3 synthase [68–70], Gb3 synthase [71–73], and many other glycosyltransferase cDNAs, and then
knockout (KO) mouse lines of these enzyme genes have been established. For example, KO mouse
lines of GM2/GD2 synthase [47], GD3 synthase [51], Gb3 synthase [74], lactosylceramide (LacCer)
synthase [75,76], and double KO mice of GM2/GD2 synthase and GD3 synthase [77,78] have been
established and analyzed. DKO mice of B6galt5 and B4galt6 were also generated [79]. Synthetic
pathways of the main glycosphingolipids and glycolipid structures deleted in individual KO mice
are presented in Figure 2. Generally, abnormal phenotypes observed in these KO mouse lines were
milder than expected. This could be because residual glycolipids compensate for the functions of
deleted structures [47]. All these results are summarized in Table 1. However, it is interesting that
inflammatory reactions were found mainly in the central nervous systems of many of these KO mice
involving glycosyltransferase genes [80]. Biochemical and morphological changes observed in the
DKO mice of GM2/GD2 synthase and GD3 synthase genes were also detected in many single gene KO
mouse lines [81] (Table 1).

We reported the involvement of complement systems in neuro-inflammation as a novel aspect of
ganglioside deficiency [80]. We compared the degree of complement activation, inflammatory reaction,
and destruction of lipid rafts among various KO mice of glycosyltransferase genes and wild type
(WT) mice and demonstrated extensively increased expression levels of complement-related genes.
Moreover, we reported the proliferation of astrocytes and assembly of microglia corresponding to the
degree of defects in ganglioside composition in individual KO mice (Figure 3). It was also shown
that various cytokine genes were upregulated with aging, corresponding with the progression of
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neuro-inflammation, as described above. The molecular mechanisms of this inflammation based on
ganglioside deficiency were analyzed with a focus on changes in lipid rafts [81]. Details are described
in the Section 5.

Table 1. Deficient structures, remaining glycolipids, and phenotypes of individual KO mice of
glycosyltransferase genes. Residual glycolipids could compensate for the functions that deleted
structures primarily exerted.

KO Gene Glc-Cer Syn GM3 Syn GD3 Syn GM2/GD2 Syn DKO 1)

Lost structures all glyco-
sphingolipids

ganglio-series
(a-, b-, c-)

b-series
(and c-series)

all complex
gangliosides(inc.

asialo-series)

all complex
gangliosides(inc.

asialo-series)

Remaining
structures asialo-series a-series and

asialo-series GM3, GD3 (and GT3) GM3

Gal-Cer and
sulfatedes

Gal-Cer and
sulfatedes

neutral glycolipids

Gal-Cer and
sulfatedes

neutral glycolipids

Gal-Cer and
sulfatedes

neutral glycolipids

Gal-Cer and sulfatedes
neutral glycolipids

Phenotypes
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Figure 3. Immunohistochemistry of GFAP-positive astrocytes and F4/80-positive microglia. Cerebella
from 50-week-old mice were analyzed by anti-glial fibrillary acidic protein (GFAP) antibody and Alexa
Fluor 555-conjugated anti-mouse IgG1, and anti-mouse F4/80 and Alexa Fluor 488-conjugated anti-rat
IgG. Marked gliosis was found in ganglioside synthase gene KO mice. GFAP-positive cells were
increased (upper, red), and F4/80-positive cells (lower, green) accumulated in cerebella, indicating
astrocytes and microglia, respectively. Scale bar, 50 µm in both panels. Borders between layers of the
cerebellum indicated based on Hematoxylin-Eosin staining of serial sections.
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4.2. Neuro-Inflammation Corresponding to the Degree of Ganglioside Deficiency

Gangliosides have been considered to be involved in the development, differentiation, and function
of nervous systems [82]. However, gangliosides have been shown to play roles mainly in the
maintenance and repair of nervous tissues based on the abnormal phenotypes detected in genetically
engineered mutant mice [83].

Generally, neurodegeneration was commonly found in KO mouse lines of ganglioside synthase
genes [47,84,85]. In particular, age-dependent progressive neurodegeneration was observed in KO
mice of GM2/GD2 synthase, while subtle abnormal neurological signs could be detected when they
were born [47]. In addition, DKO mice of GM2/GD2 synthase and GD3 synthase genes demonstrated
neurodegeneration in the early stage of life [77], or even sudden death by auditory stimulation [86].
Although KO mice lacking GlcCer synthase [87] showed embryonal lethality [88], conditional KO
mice in which GlcCer synthase was deleted after birth also showed neurodegeneration [36]. These
results indicate that ganglioside deficiency causes abnormality in the maintenance of integrity of
the nervous system, leading to neurodegeneration. However, it remains unclear how ganglioside
deficiency causes neurodegeneration.

Among various features indicating inflammation in the nervous tissues, abnormal proliferation
of astrocytes and assembly of microglia were markedly and characteristically found in the cerebella
of ganglioside deficient mice [80]. Furthermore, these inflammatory reactions were confirmed by
immunohistochemistry, such as GFAP-positive astrocytes and F4/80 antibody-reactive microglia
(Figure 3). GFAP+ cells increased at 15 weeks after birth in DKO mice, and further increased with
aging. At 50 weeks after birth, GFAP+ cells increased even in single gene KO mice, such as GD3
synthase KO or GM2/GD2 synthase KO. Microglia cells also showed increased assembly at 15 weeks
after birth in DKO mice, and further increased with aging. This microglia assembly could also be
found at 50 weeks after birth in single gene KO mice [80].

As for inflammatory cytokines, increased expression levels of IL-1β and TNFα genes were detected
in RT-PCR of mRNA from the cerebella of DKO mice. Expression levels of these genes tended to
increase with aging in DKO mice, while no apparent changes in those gene expression could be found
in WT or single gene KO mice.

4.3. Involvement of Complement System in the Inflammatory Reaction

From the results of gene expression analysis in DKO mice, it was demonstrated that
complement-related genes were generally upregulated in the cerebella of DKO mice. Therefore,
it was suggested that wide-ranging consumption of complement components was induced due to
activation of the complement system [80]. Actually, the deposition of C1q, a complement component,
could be found in the cerebella of DKO mice, and it was also the case in KO mice of GM2/GD2
synthase. [80]. In order to investigate whether complement activation detected in the cerebella of
DKO mice exacerbates with aging, expression levels of C1qα, C3, and C4 were examined along
with aging, resulting in increased expression of the C1q gene between 15 weeks to 50 weeks after
birth, and in differences from WT mice with aging. In GM2/GD2 synthase KO mice, expression of
complement-related genes moderately increased. Similar inflammatory reactions were also observed
in spinal cords of these KO mice [89].

To clarify the roles of complement activation in neuro-inflammation and neurodegeneration,
triple KO mice lacking the complement C3 gene, as well as GM2/GD2 synthase and GD3 synthase
genes, were established as shown in Figure 4 [83]. In these TKO mice, it was shown that complement
activation is involved in complement deposition and secretion of inflammatory cytokines and also in
neurodegeneration, as demonstrated by the alleviation of brain degeneration indicated by a reduction
in brain weights. In neurological disorders such as Guillan–Barre syndrome and Miller syndrome
caused by anti-ganglioside antibodies, it has been reported that complement systems are closely
involved [90,91]. Therefore, inhibitors of complement-related components have undergone therapeutic
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application for the control of these diseases, showing beneficial effects in mouse disease models [92]
and human cases [93].
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Figure 4. Inflammatory reactions in DKO mice were suppressed by genetic disruption of complement
system. (A) Triple KO (TKO) mice were generated by mating DKO mice with C3 KO mice to clarify the
roles of complement systems in brain disorders in DKO mice. (B) Expression levels of inflammatory
cytokines were reduced in TKO mice. Relative mRNA levels of TNFα and IL-1β were compared
using RT-qPCR.

5. Microdomains on Cell Membrane and Gangliosides

Generally speaking, membrane microdomains such as lipid rafts, glycolipid-enriched microdomain
(GEM)/rafts, or detergent-insoluble microdomains (DIM) are considered to be a platform of cell signaling,
and roles of glycosphingolipids in lipid rafts have been increasingly recognized [94]. In particular,
the molecular composition of gangliosides that consist of polymorphic sugar chains and heterogenous
lipid moieties has led to the expectation that gangliosides could be one of the main regulators of
biological properties of microdomains.

5.1. Gangliosides Regulate Cell Signaling in Microdomains

Various extrinsic stimulations are transduced via receptors and their adjacent molecules on the
cell membrane, and these molecules often form molecular complexes in microdomains, such as lipid
rafts or GEM/rafts [9,95] (Figure 5). With a number of experiments using cell lines and KO mice, it has
been shown that changes in ganglioside expression largely affect lipid rafts and control the cell signals,
and finally cellular phenotypes [94]. Therefore, the integrity of lipid rafts has been investigated by
analyzing changes in the intracellular localization of membrane molecules depending on the conditions
of glycosphingolipids and cells [96,97]. Immunocytostaining of these membrane molecules has been
an efficient approach for the localization of the same membrane microdomains. Furthermore, it seems
extremely important to substantially reveal physical interactions among these molecules on the living
cell membrane, which would become a prerequisite to clarify the roles of gangliosides and their
associated molecules on the cell membrane [98].
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Figure 5. Destruction of the GEM/raft induced changes in the architecture and functions of raft-localizing
molecules. Localization of GPI-anchored proteins including complement-regulatory molecules changed,
leading to functional abnormalities and subsequent complement activation and inflammation in
ganglioside-deficient mouse brain. GPI-anchored molecules such as DAF and NCAM as well as
GEM/raft markers shifted from GEM/rafts to non-rafts domains. A part of a figure in Ref. 81 was
presented after modification. Among isoforms of NCAM, only the GPI-anchored one was detected in
GEM/rafts.

5.2. Microdomain on the Cell Membrane of Nervous Systems and Gangliosides

Glycosphingolipids are generally considered to be concentrated and localized in GEM/rafts [99],
and intense localization is found in highly differentiated neurons. However, they are dispersed from
lipid rafts in particular environments [100]. In addition, changes in relevant molecules such as caveolin-1
affect the intracellular localization of glycosphingolipids [101]. Furthermore, fine distribution analysis
of gangliosides using immunoelectron microscopy revealed that different ganglioside species (e.g.,
GM1 and GM3) showed distinct distribution patterns on the cell membrane, suggesting the presence
of heterogeneous microdomains, and that individual gangliosides form specific microdomains [102].

Surprisingly, GPI-anchored proteins and GEM/raft markers dispersed from GEM/rafts in
the cerebella of ganglioside-deficient mice, and marked cell damage was induced [80,81,103].
Analysis of altered floating patterns of GPI-anchored proteins and GEM/rafts markers in various
ganglioside-deficient mouse lines by immunoblotting revealed that flotillin-1 and caveolin-1 were
dispersed from GEM/rafts (Figure 5). DAF and NCAM showed marked dispersion from GEM/rafts
in DKO mice, and DAF shifted to the non-GEM/raft fraction in GM2/GD2 synthase KO mice. Total
protein amounts showed no differences among these lines. Generally, gangliosides are essential in
the architecture of GEM/rafts, and it is suggested that more marked abnormalities of GEM/rafts are
exhibited in DKO mice than in single gene KO mice.

5.3. Complement Activation and Destruction of Lipid Rafts

The results of the analysis of DKO mice revealed that there were many examples of molecular
dispersion of GPI-anchored proteins and GEM/raft markers even in single gene KO mice, suggesting
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that disordered GEM/rafts in brain tissues induce dysfunction of GPI-anchored proteins. In GM2/GD2
synthase gene KO and DKO mice, localization of GalCer, phospholipids, and cholesterol tended
to decrease [81], suggesting that the abnormal composition of gangliosides could induce abnormal
distribution patterns of GPI-anchored proteins and raft marker proteins, and also of other lipids.

One of the most important factors involved in the complement activation and resulting neurological
disorders should be complement-regulatory proteins. In fact, it is well known that expression levels
of CD59 are lower at the sites of Alzheimer’s disease [104]. DAF is also a crucial molecule for
the maintenance of tissue integrity [105]. Many of these complement-regulatory factors belong to
GPI-anchored proteins and are concentrated in the GEM/raft fraction [106]. Therefore, it is suggested
that destruction of the GEM/raft induced changes in the localization of GPI-anchored proteins and
their functional abnormalities, leading to complement activation and inflammation. These processes
are summarized in Figure 5.

6. Human Diseases Caused by Congenital Deficiency of Gangliosides

Following the analysis of ganglioside functions using KO mice of glycosyltransferase genes,
human cases of congenital defects of ganglioside synthase genes have been reported in this century.

6.1. GM3 Synthase Deficiency Causes Severe Clinical Features

Although there have been a number of studies on deficiency of ganglioside catalytic enzyme
genes, no reports on congenital deficiency of ganglioside synthase genes were published until 2004.
Simpson et al. reported “infantile epilepsy” in Amish families due to deficiency of GM3 synthase
(ST3GAL5) as the first case of genetic mutation in ganglioside synthase genes [107].

As described above, the majority of gangliosides are synthesized through GM3, and diverse
carbohydrate structures are generated from a common precursor, lactosylceramide, along with several
major synthetic pathways [25]. Therefore, defects of the GM3 synthase gene in the Amish families
actually resulted in the complete loss of ganglio series and the patients exhibited serious infantile
epileptic disorders [107] and skin abnormalities [108,109], suggesting that gangliosides are essential
in the regulation of nervous tissues and other organs. Thus, patients lacking GM3 synthase activity
exhibited severe neurological disorders such as infantile epilepsy, mental retardation, visual disorders,
and also skin pigmentation abnormalities, while no definite abnormal phenotypes were found in KO
mice of the GM3 synthase gene (St3gal5) in any sites of the body except for the auditory system [110].

6.2. GM2/GD2 Synthase Gene Deficiency Causes Hereditary Spastic Paraplegia

B4GALNT1 is an essential enzyme for the synthesis of complex gangliosides, the lack of which
resulted in progressive neurodegeneration with aging in mice [84]. Recently, 11 cases of hereditary
spastic paraplegia (HSP) due to mutation in the coding region of B4GALNT1 were reported [111–113].
We examined the enzyme activities using a cell-free enzyme assay with cell extracts, and by flow
cytometry of transfected cells with mutant cDNA expression plasmids [114]. Among them, almost
all mutant genes showed the complete loss of B4GALNT1 activity, while two mutants showed low
activity, indicating that the clinical findings of these patients were derived from the loss of B4GALNT1
enzyme activity, and that mutations were responsible for the clinical features of HSP. As expected from
KO mice phenotypes of the B4galnt1 gene, the intensity of their neurological disorders was milder
than expected. These clinical features of patients including male hypogonadism are very similar to the
abnormal phenotypes detected in B4galnt1-deficient mice [115]. In contrast to GM3 synthase mutation,
B4GALNT1 mutations brought about much milder clinical features with slower progression.

7. Future Scope of Ganglioside Research

Recent advances in methodologies and technologies have enabled us to further investigate modes
of action of gangliosides. Fine heterogeneity in either the sugar moiety or ceramide portion has been
demonstrated, leading to further understanding of the mechanisms by which gangliosides play their
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roles or interact with their recognizing molecules. For example, further analysis of derivatives of sialic
acids such as deaminoneuraminic acid (KDN) [116], O-acetylated GD3/GD2 [117] as sugar modifications,
and long fatty chain-containing glycolipids in lactosylceramide [118], saturated/unsaturated fatty
acid-containing Gb4 [119], or hydroxylated ceramide-containing gangliosides [120], remain to be
promoted. It is also important to identify the cell lineages that more critically need gangliosides between
neurons and glia [121], although few studies have been reported to date. Ultrahigh-resolution imaging
of gangliosides in GEM/rafts has enabled us to understand the actual formation of microdomains [122]
and to generate new concepts regarding the gradual formation of GEM/rafts with different sizes
and compositions [123]. Identification of novel ligand molecules for gangliosides should also be
promoted to further understand the molecular functions of gangliosides [98], although few studies in
the neurology field have been reported to date.

8. Conclusions

It is difficult to clearly answer the fundamental question, i.e., “What are the roles of gangliosides
in nerve functions?” Many of the “functions” presented here are results drawn from observation of
abnormal situations brought about by artificially enhanced expression of particular glycosyltransferases
or suppression of their functions to speculate on the normal functions primarily exerted. Therefore,
they represent a part of “functions”, but not all. The main limiting factor is the technical restriction
in the manipulation of key glycosyltransferase genes, observing some phenotypes as functions of
many structures belonging to one group all together. However, clarification of the roles of individual
gangliosides by collecting experimental data with various limitations is essential to understand the
polymorphism of carbohydrates.
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