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Abstract: Computational prediction has become an indispensable aid in the processes of engineering
and designing proteins for various biotechnological applications. With the tremendous progress in
more powerful computer hardware and more efficient algorithms, some of in silico tools and methods
have started to apply the more realistic description of proteins as their conformational ensembles,
making protein dynamics an integral part of their prediction workflows. To help protein engineers
to harness benefits of considering dynamics in their designs, we surveyed new tools developed for
analyses of conformational ensembles in order to select engineering hotspots and design mutations.
Next, we discussed the collective evolution towards more flexible protein design methods, including
ensemble-based approaches, knowledge-assisted methods, and provable algorithms. Finally, we
highlighted apparent challenges that current approaches are facing and provided our perspectives on
their further development.

Keywords: protein dynamics; protein engineering; hotspot prediction; mutational analysis;
computational design; ligand transport; ensemble-based approach; flexible backbone; de novo
design; rational design

1. Introduction

Due to their unique structural and functional properties, proteins constitute an essential element
of life as well as various branches of the emerging sustainable economy [1–5]. However, only a few
proteins are natively equipped with functional parameters and sufficient stability that are required
for their industrial and medical utilization. Hence, protein engineering methods gained popularity
as an efficient way to deliver new protein variants with desirable properties for a diverse range of
tasks [6,7]. Directed evolution and rational design represent the mainstream approaches introduced in
the last decades to deliver enhanced protein variants [8]. In essence, the directed evolution enables the
generation of rather extensive mutant libraries by randomly introducing mutations in gene-encoding
proteins. Generated variants are then evaluated, focusing on the property of interest [9,10]. The rational
design originally incorporated expert knowledge and models of proteins from X-ray crystallography
to successfully design a handful of mutations enhancing protein stability, function or solubility [11–13].
With the advent of high-performance computing, rational design processes have progressively relied
on computational analyses of these static structures [14–16]. So far, computational protein designs
have managed to predict not only smart libraries of improved proteins but also massive modifications
of proteins towards novel functions [17–19].
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However, proteins are known to be dynamical entities, performing their function as an ensemble
of diverse conformations rather than a single static structure. Protein dynamics is a highly complex
phenomenon comprising numerous contributions from motions with different mechanisms of action
and happening with diverse timescales and amplitudes (Figure 1) that highly depend on the system
and the local environment [20,21]. Subangstrom vibrations of covalent bonds represent the fastest
of those movements. The exploration of various rotamers of side-chains and fluctuations of the
protein backbone involve nontrivial moves that span the space of several angstroms. In protein
cores, such moves can require several nanoseconds to execute due to the necessity to synchronize
with changes in surrounding residues [22–24]. Many conformational changes involve slower and
more prominent coordinated movements of several residues in a sequence that manifests as, for
example, gating movement executed by loops surrounding the active sites of many proteins [25].
In ligand binding and unbinding events, especially when the binding site is deeply buried in the
protein structure, ligands often have to travel tens of angstroms. Such a transport process requires a
series of systematic adjustments of protein side-chains and backbones along the traversed paths that
might take up hundreds of milliseconds to occur [26]. Among the slowest principal motions performed
by proteins are highly organized collective translocations of whole domains, starting on microsecond
timescales and with amplitudes reaching nanometers. Finally, the most extensive conformational
change transpires during the protein (un)folding processes, which can take hours and even days, and
as such, is out of the scope of this review [22–24].
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Figure 1. Hierarchy of principal motions in protein dynamics. From left to right: bond vibrations
(fs–ps), side-chain rotations (ps–ns), backbone fluctuations (ns), loop motion/gating (ns–ms), ligand
binding/unbinding events (>100 ns), and collective domain movement (>µs).

When we consider the reliable treatment of protein dynamics as an essential component of a
successful protein design, it is natural to resort to the molecular dynamics (MD) simulation technique
as a golden standard to investigate the conformational behavior of a protein. Nowadays, various MD
simulation protocols can be utilized to deliver insights into protein dynamics on millisecond timescales
with the growing utilization of graphics processing unit (GPU)-enabled parallelism and the development
of more efficient software, gradually making such simulations even more affordable [27–31]. Despite
all these improvements, MD simulations are not without errors in reproducing a realistic protein
ensemble and, hence their experimental confirmation is necessary. Among the major limitations is
the accuracy of force fields used to calculate interatomic interactions and the tractable sampling of
the ensemble discussed above. The quality of traditionally applied force fields is intrinsically limited
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by numerous approximations like the lack of particular interaction types [32], neglect of electronic
polarizability [33], and fixed protonation states of titrable residues [34]. At the expense of increased
computational demands, some of those limitations can be partially overcome by improving potential
models [35], resorting to polarizable force fields [36], and constant pH simulations [37]. Nonetheless,
even without these advances, MD simulations relying on the latest force fields have been shown to
reach chemical accuracy in their predictions for many different scenarios [38–40].

Regarding their utilization for protein engineering, MD simulations are commonly incorporated
into different stages of the design process in order to modulate protein stability, alter interactions
of proteins with cognate ligands or perturb dynamics of functional sites [41]. Next, the behavior of
protein variants can be closely followed by MD simulations, allowing for the identification, ranking,
and selection of promising candidates for experimental validation [42]. In recent years, efforts towards
the possibility of also exploiting more distal positions during protein engineering have been gaining
momentum [43–47]. By allosteric action, mutations at these positions often affect the preference of
proteins to adopt a dominant conformational state, enabling the engineering of proteins with altered
selectivity [48,49] or even adopting novel functions [50,51]. As showcased by those mentioned above
and other studies [52–57], the crucial role of more comprehensive treatments of protein dynamics for
the success of de novo designs, as well as the modification of existing proteins, is well recognized
by now.

In this review, we focus on the recent developments in computational methods and tools, which
aim to overcome significant challenges brought by integrating protein dynamics into predictions. First,
we discuss tools developed for analyzing the fluid nature of interactions in protein ensembles and the
elusive transport of ligands in a user-friendly way. In the second part, we critically review the efforts
towards the efficient integration of protein flexibility on the backbone level into protein designs and
engineering algorithms that are available in established software packages.

2. Tools to Facilitate Analyses of MD Simulation

Accessing information embedded in trajectories produced by MD simulations is a nontrivial task,
especially when we focus on phenomena as complex as the networks of interacting residues and their
correlated motions or as rare as the events connected with small molecules permeating through protein
structures. To alleviate these challenges, we provide an overview of four recently developed tools
aiming at understanding and controlling protein allostery and two tools that provide insights into the
transport of small molecules (Table 1).
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Table 1. Computational tools to extract valuable information for protein engineering from molecular dynamics (MD) simulations.

Tool Target
Property

Availability
Code Core Method(s)

Input
Link Reference

Web Server Standalone Structure Trajectory

Residue interaction network in
protein molecular dynamics

(RIP-MD)

Interaction
network + + Python Residue interaction

network + + http://dlab.cl/ripmd/ [58]

Java-based Essential Dynamics
(JED)

Essential
dynamics - + Java Principal component

analysis (PCA) - +
https://github.com/
charlesdavid/JED [59]

DynaComm Allostery - + Python
Distance and

correlation-based graphs,
Dijkstra algorithm

+ +
https://silviaosuna.

wordpress.com/tools/ [43]

Computation of allosteric
mechanism by evaluating

residue–residue associations
(CAMERRA)

Allostery - + Perl, Python, C PCA, contact analysis - +
shenlab.utk.edu/camerra.

html [60,61]

AQUA-DUCT Ligand
movement - + Python Geometry analysis - + www.aquaduct.pl [62,63]

CaverDock Ligand
movement + + Python Molecular docking + +

https://loschmidt.chemi.
muni.cz/caverdock/

[64,65]

http://dlab.cl/ripmd/
https://github.com/charlesdavid/JED
https://github.com/charlesdavid/JED
https://silviaosuna.wordpress.com/tools/
https://silviaosuna.wordpress.com/tools/
shenlab.utk.edu/camerra.html
shenlab.utk.edu/camerra.html
www.aquaduct.pl
https://loschmidt.chemi.muni.cz/caverdock/
https://loschmidt.chemi.muni.cz/caverdock/
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2.1. Interaction Network and Correlated Motion Analyses

Protein stability and function are dependent on their three-dimensional structures and are
frequently conditioned by elaborate networks of noncovalent interactions between numerous
residues [66]. Those networks undergo continuous dynamic changes by conformational rearrangement,
which can be captured at atomic resolution using MD simulations [67–69] (Figure 2). Due to the
inherent complexity in the detection and analysis of those changes, the simultaneous applications of
several tools are frequently required. When enumerating a residue interaction network in an ensemble
of protein structures from MD simulations, most of the available tools focus on coarse-grained networks
consisting of Cα or Cβ atoms only [70,71]. To quantitatively explore the coordinated motions in the
network, the use of principal component analysis (PCA)-based methods is considered an efficient
strategy [72,73].
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Figure 2. Predicting engineering hotspots for protein dynamics based on analyses of interaction
networks and coordinated movements. (A) Functional protein dynamics can be represented by a
conformational ensemble of a given protein. (B) This ensemble can be subjected to contact analysis to
identify residue–residue interaction networks (left) or subjected to PCA to reveal coupled movements
indicated by blue arrows right). (C) Either of these two approaches or their combination and
hotspot residues (blue spheres) essential for the dynamics or allosteric communication can be selected
for engineering.

To provide a comprehensive view of interactions, the residue interaction network in protein
molecular dynamics (RIP-MD) tool was developed [58]. RIP-MD can detect different nonbonded
interactions including hydrogen bonds, salt bridges, van der Waals, cation–π, π–π, arginine–arginine,
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and Coulomb interactions. As an input, RIP-MD requires a static protein structure in a PDB format
(web server) or MD trajectory in a DCD binary format (standalone and VMD plugin). The input is
initially processed by removing heteroatoms, adding missing protein atoms and extracting parameters
such as partial charges, Lennard-Jones parameters, secondary structure classification, and solvent
accessibility. As an output, network files, including residue interaction networks for each interaction
type and a combined network, are provided. The network files also store information about the
secondary structure and the solvent accessibility. Furthermore, Pearson correlation plots are generated
to detect possible behavior relationships between interacting residues. In a case study of the soluble
myeloid differentiation-2 protein, RIP-MD was able to detect differences in interactions occurring in
different conformational states, suggesting that the closing process increases the number of interactions
and reduces the interaction correlations in the closed state. Further work is ongoing to broaden the
capabilities of RIP-MD by accounting for interactions with nonprotein species [58]. This addition to the
analysis will capture the effect of the environment and interactions with cognate ligands on proteins,
which may be beneficial for protein engineering in particular.

A new software package, Java-based Essential Dynamics (JED), was developed to facilitate
comparative PCAs of MD simulations of different proteins [59], including their apo- and holoforms, as
well as wild-type and mutant variants. In the initial stage, the coarse-grained Cα atoms analysis of
an ensemble, provided as PDB files, is performed to generate a pre-PCA output comprising a matrix
of atomic coordinates, an overall root-mean-square deviation (RMSD), and an RMSD per residue.
Then, the PCA of Cartesian-based coordinates, the PCA of internal distance pairs, or both analyses
can be performed, optionally having less relevant modes and outlying PCA variables removed based
on user-specified cutoffs. The output consists of files containing displacement vectors, covariance,
correlation and partial correlation matrices, eigenvalues, and the most relevant principal components
derived from the matrices. The analyses of both covariance and correlation are highly recommended,
since they vary in the descriptions of collective motions concerning their amplitudes that are often
sensitive to the mutation to a different degree. Finally, essential motions based on the matrices
can be visualized, approximating the protein motions at various timescales. To compare dynamics
among different proteins or different variants of the same protein, JED can compute cumulative
overlaps, root-mean-square inner products, and principle angles. Depending on the degree of the
overlaps in these features, the similarity in the protein dynamics can be established. As a case study,
the authors analyzed 100 ns long simulations of a single-chain variable-fragment (scFv) antibody
and its single-point mutant [59]. The detected disparities in correlation matrices, the PCA results,
and the correlated residue pairs indicated that JED is sensitive enough to compare protein design
evaluations [59].

Romero-Rivera and coworkers proposed a promising protocol combining information on residues
proximity and their correlated movements into the so-called shortest path map (SPM), which can be
applied to infer allosteric communication within a protein structure [43]. The first step in generating
an SPM is the construction of a graph, in which Cα atoms of residues represent nodes and edges
are drawn between pairs of nodes maintaining their distance below 5 Å in the whole MD trajectory.
The edge lengths are then assigned based on the correlation coefficient between the connected Cα

atoms in an inversed manner, i.e., larger coefficients result in shorter edges and vice versa. Next, the
Dijkstra algorithm [74] is used to simplify the graph by identifying the shortest paths throughout the
whole protein. Finally, pairs of residues that contribute the most to these paths are located representing
central points for the communication. The SPM approach has been implemented in the DynaComm
tool, and the development of a web server is ongoing [43]. By combining the SPM approach with
PCA, the authors were able to identify the key positions that were previously mutated during the
laboratory optimization of a computationally designed retro-aldolase by directed evolution [43]. This
indicated rational design guided by SPM and PCA could help to identify distal mutations important
for engineering of more efficient proteins akin to those produced by directed evolution experiments.
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Similarly, by combining network analyses with PCA, the computation of allosteric mechanism by
evaluating residue–residue associations (CAMERRA) tool aims to capture allosteric motions based
on the residue–residue contact analysis of protein dynamics [60,61]. The CAMERRA tool is freely
available as a set of Perl scripts. The required input for CAMERRA operation is an all-atom ensemble of
diverse conformations of the investigated protein supplemented as a set of PDB files. In the beginning,
residue–residue and residue–ligand contact matrices describing electrostatic, van der Waals, and
hydrogen bond interactions are computed, resulting in contact matrices that are further condensed
to form a mean contact matrix. Consequently, the mean contact matrix is exploited to generate a
covariance matrix by computing the correlation between a pair of relevant contacts using a four-point
correlation. Such an analysis may be able to capture crosstalk between the residues that lead to the
formation or disruption of other contacts, therefore providing insight into the mechanisms of an
allosteric network. Finally, a PCA is performed on the covariance matrix of the contacts, directly
uncovering the displacement modes of the contacts (creations and disruptions), which is advantageous
for understanding essential motions of biopolymers. This method was successfully applied to study
several novel allosteric mechanisms including a frustrated fit mechanism and negative allostery in a
retinoid X receptor complex [75] or the pressure activation of a lipase [76].

2.2. Analyses of Ligand Transport

Detailed tracking and analysis of ligand behavior across MD trajectories of biomolecular systems
represent another strategy to enrich the protein design process by highlighting regions crucial for
the transport of ligands, i.e., molecular tunnels, channels, and gates [25,77], which determine ligand
associations and dissociation mechanisms [78,79]. In such a way, structural hotspot residues can be
detected and considered during the protein engineering process to improve protein activity, change
selectivity, or stability [80]. Readers interested in current approaches to simulations of ligand transport
can refer to the recent expert review by Nunes-Alves and coworkers [81].

AQUA-DUCT [62,63] aims to provide detailed insights into the process of how a given type of
molecules, such as water, ions, gasses, or any other kind of ligand, penetrates through the selected
region of a protein (Figure 3A). As a minimal input, the user has to provide an MD trajectory and a
configuration file describing two important regions for the analysis and defining the traced ligand.
The first region is called a scope, which usually covers the whole protein. The second region is called
an object and represents a functionally relevant region of interest, for example, the active site of an
enzyme. An initial step in the workflow is to detect all traceable residues that reach the object and track
their motions within the scope along the trajectory producing the so-called raw paths of ligands. Each
path is then analyzed to identify possible repetitive events of a given ligand transiting between the
object, scope, and surroundings, thereby dividing the raw paths to separate three types: (i) incoming
path, (ii) outgoing path, and (iii) object for paths of ligands residing within the protein. In the
following step, separate incoming and outgoing paths are assigned as inlets, i.e., paths connecting the
exterior of the scope with the object region in any direction. Finally, the identified inlets are clustered,
resulting in the pathways of the protein structure. Additionally, a statistical analysis is performed
for all clusters, enumerating the number of the evaluated molecules, paths, inlets, and clusters, and
several more specific statistics, including the lengths of the paths or the durations of the transport
events. To illustrate the computational demands, the AQUA-DUCT analysis of 100 ns long MD
simulations of murine epoxide hydrolase (4992 protein atoms) surrounded by 8488 water molecules
requires 8–12 h to execute on a powerful workstation (Intel Core i7 CPU @ 3.50GHz machine, 64 GB
RAM) [62]. For visualization purposes, a PyMOL [82] script or session can be generated according to
user specifications. The presented method provides an efficient and robust way of detecting the usage
of transport pathways in protein structures, including the detailed tracing of a specified ligand type,
which is a challenging task, especially when considering thousands of water molecules in a trajectory
composed of thousands of snapshots. In a follow-up study, the authors used MD simulations with
AQUA-DUCT to examine the internal architecture of epoxide hydrolase from Solanum tuberosum, and
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based on their experience, they designed a relatively straightforward protocol for the detailed analysis
of cavities networks and tunnels capable of pinpointing hotspots for engineering experiments [83].
Such an approach was integrated into the engineering workflows of Subramanian and coworkers
on cupin-type phosphoglucose isomerase from Pyrococcus furiosus [84] and d-amino acid oxidase
(DAAO) [85]. In these studies, the tracking of ligands and water molecules with AQUA-DUCT helped
to detected important features related to transport phenomena and to identify remote mutations
governing the specificity and activity of these enzymes [84,85].
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Figure 3. Hotspot detection based on ligand transport analyses. (A) AQUA-DUCT tool traces the
movement of ligands via void spaces (blue lines) inside the scope region (dotted orange shapes) of the
protein moiety throughout an MD trajectory. Only the ligands that reach the functionally important
object region (dotted violet ellipses) are considered. The significance of the interactions of transported
ligands with residues (grey spheres) along the ligand trajectory (black arrows) can be evaluated to select
relevant hotspots (blue spheres) for the modification of the transport kinetics. (B) By iteratively docking
the ligand along a molecular tunnel, CaverDock estimates the energy profile of a ligand transport,
indicating residues that are most likely responsible for energy barriers in the path. These residues
represent hotspots (blue spheres) for the design of new protein variants with altered ligand transport.

As an alternative to very costly explicit MD simulations, the passage of ligands through
biomolecules can be explored by docking these ligands to an ensemble of precomputed molecular
tunnels with CaverDock software [64,65] (Figure 3B). Benefiting from the fast operation of CaverDock
calculation, it is possible to run the calculations over such an ensemble for multiple different ligands.
For CaverDock operation, tunnels must be represented as sequences of spheres for each given
conformation of a macromolecule. Such input data can be easily generated by CAVER 3.0 software [86].
The input spheres of each tunnel are then discretized into a set of discs, which represent planar constrains
for the subsequent placement of a ligand with the AutoDock Vina molecular docking tool [87]. Such
an approach is, however, inherently noncontinuous, as some bottlenecks can be avoided by the ligand
abruptly changing its orientation and/or conformation. A solution to generate a fully continuous
trajectory adopted by CaverDock is to restrict conformational changes of the ligand during its transition
from one disk to the next. Since the more advanced approach accentuates unrealistically high-energy
barriers due to the rigid-protein docking approach, CaverDock can also utilize the flexible docking
procedure available in AutoDock Vina. Such flexibility is capable of opening the narrowest sections
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of the investigated tunnels connected with the high-energy barriers, enabling the passage of various
ligands via tunnels in cytochrome P450 17A1 and leukotriene A4 hydrolase/aminopeptidase [88].
Dealing with flexible residues during docking is more computationally demanding and should
be used cautiously, as it can lead to the generation of the unrealistic conformation of flexible
residues [65]. Marques et al. benchmarked the capabilities of CaverDock for protein engineering
against predictions from sophisticated metadynamics, adaptive sampling, and funnel-metadynamics
techniques [89]. In this detailed comparative study, the transport of ligands in two variants of
haloalkane dehalogenase was investigated, and based on the analysis of energetic and structural
bottlenecks, several residues playing a crucial role in the ligand-transport process were identified, some
of them were previously mutated to engineer a very proficient biodegradator of a toxic anthropogenic
pollutant 1,2,3-trichloropropane [90,91]. Overall, CaverDock reached good qualitative agreement with
the rigorous MD simulations in this model system attesting its applicability for the engineering of
ligand transport phenomena [89].

3. Advances in the Integration of Protein Flexibility into Protein Design and Redesign Methods

During the past few years, we have witnessed a surge in the efforts to develop novel design
methods capable of robust treatments of protein dynamics (Table 2). These methods can be divided into
the following three categories: (i) methods utilizing pregenerated molecular ensembles (Section 3.1;
Figure 4A), (ii) knowledge-based approaches to generating more pronounced backbone perturbations
effectively (Section 3.2; Figure 4B), and (iii) provable design algorithms with extended backbone
flexibility (Section 3.3).
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Figure 4. Flexible-backbone approaches facilitating the successful design of more diverse protein
variants. (A) By employing a structural ensemble of a given protein, a larger variety of residues can be
introduced to additional positions (green ticks), including those buried in the protein core, which would
otherwise cause steric clashes (orange explosion-like shapes). (B) Data on protein dynamics encoded in
different experimental structures or predicted ensembles can be extracted in the form of tertiary motifs
(grey dotted circle) of interacting residues (pink arrows). Analogously, machine learning methods
can learn and generalize the data to inspire novel backbone movements (grey arrows). The derived
knowledge then enables the efficient application of more pronounced, yet physically correct, backbone
perturbations during the design procedure.
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Table 2. Computational protocols implementing protein flexibility for protein design and redesign.

Primary
Package Category Method Short Description Input Sampling of Side-Chain and

Backbone Flexibility Package Add-Ons Reference

Rosetta

Ensemble-
based

Flex ddG
Estimating interface

∆∆G values upon
mutation

Static structure Backrub, torsion minimization,
side-chain repacking

https://www.
rosettacommons.

org/software/

https://github.com/
Kortemme-Lab/

flex_ddG_tutorial
[92]

Rosetta:MSF
Multistate framework

using single-state
protocols

Ensemble
Genetic algorithm based sequence

optimizer and user-defined evaluator
from Rosetta protocols

https://www.
rosettacommons.

org/software/
- [93]

Meta-multistate
design (meta-MSD)

Engineering protein
dynamics by

meta-multistate
design

Set of ensembles

Fast and accurate side-chain topology
and energy refinement algorithm for

sequence optimization;
backbone-dependent rotamer library

optimization for side-chains

https://www.
rosettacommons.

org/software/

PHOENIX scripts
upon request [94]

Knowledge-
based

Flexible backbone
learning by Gaussian

processes
(FlexiBaL-GP)

Learning global
protein backbone
movements from

multiple structures

Ensemble

Markov Chain Monte Carlo
sampling—95% time spent on the

side-chain selection and 5% time spent
on the generation of the backbone

movement

https://www.
rosettacommons.

org/software/
- [95]

Structural homology
algorithm for protein

design (SHADES)

Protein design guided
by local structural

environments from
known structures

Static structure

Sequence assembly from fragments
followed by backbone optimization,
side-chains repacking, and structure

relaxation

https://www.
rosettacommons.

org/software/

https://bitbucket.
org/satsumaimo/

shades/src/master/
[96]

OSPREY 3.0 Provable
Coordinates of atoms

by Taylor series
(CATS)

Enabling progressive
backbone motions

during protein design
Static structure

Continuous, strictly localized
perturbations of the given segment of

the backbone using a new internal
coordinate system compatible with
dead-end elimination workflows

https://github.
com/donaldlab/

OSPREY3
- [97]

https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://www.rosettacommons.org/software/
https://bitbucket.org/satsumaimo/shades/src/master/
https://bitbucket.org/satsumaimo/shades/src/master/
https://bitbucket.org/satsumaimo/shades/src/master/
https://github.com/donaldlab/OSPREY3
https://github.com/donaldlab/OSPREY3
https://github.com/donaldlab/OSPREY3
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3.1. Ensemble-Based Approaches

The generation of molecular ensembles by using MD and Monte Carlo (MC) simulations has
become more affordable for a wider group of users, creating a means to face novel protein design
challenges. By utilizing conformational ensembles, protein design algorithms can take the dynamic
nature of the protein structures into account, providing a biologically sound strategy and frequently
improving the performance of the employed methods [98,99].

We start this section by reviewing insights from two studies aiming at benchmarking generic
procedures for ensemble generation on the success of protein design or redesign tasks. In the
first comparative research by Ludwiczak and colleagues, 10 protocols combining methods from
Rosetta software [100] with MD simulations were applied to 12 diverse proteins [54]. For protein
redesign, three distinct structural ensembles were obtained using MD simulation, MD simulation
followed by the introduction of small backbone perturbations with Rosetta Backrub [101], or Rosetta
Backrub alone. Subsequently, the protein sequences were redesigned using either the fixed backbone
(FixBB) or design-and-relax (D&R) methods on each ensemble [102,103]. We note here that the
employed simulations were run for four ns, although with 50 replicas, representing somewhat limited
sampling around the conformational minima even though the target proteins were relatively small
(up to 103 residues). The designed sequences were analyzed based on entropy, covariation, profile
similarity, and packing quality in the corresponding generated structures. The best performance
was observed for the protocol using MD simulation in combination with Rosetta Backrub for the
ensemble generation, followed by redesign with the D&R method. This time, analogous protocols
were tested for de novo design purposes using only the more efficient D&R method, confirming that
the procedure based on the MD simulation coupled with Rosetta Backrub yielded the best results.
In the second benchmarking study, Loshbaugh and Kortemme performed a comprehensive evaluation
of four different flexible backbone design methods available within the Rosetta software using six
datasets [104]. Comparing FastDesign [105,106], Backrub Ensemble Design [107], CoupledMoves with
Backrub [52], and CoupledMoves with kinematic closure, the authors concluded that the CoupledMoves
method performs better in recapitulating sequences of known proteins compared to the other two
alternatives. This finding highlights the importance of incorporating the side-chain and backbone
flexibility simultaneously during the design. Interestingly, all methods performed poorly on two deep
sequencing datasets, which should be taken with caution when applying Rosetta for such purposes.
Overall, both studies emphasize that flexible backbone approaches combined with side-chain flexibility
can significantly outperform methods utilizing only a single conformation.

The predictive performance of the Flex ddG method in estimating the change in binding free
energy after mutation (∆∆G) at protein–protein interfaces has also been boosted when using a structural
ensemble instead of a single static structure [92]. In this method, an ensemble of up to 50 structures
is generated by the conformational sampling in the surroundings of mutated sites with the Rosetta
Backrub program. Then, the wild-type ensemble is optimized by repacking side-chains and performing
energy minimization. To generate a mutant ensemble, the mutation of interest is introduced to each
structure before conducting the analogous side-chain repacking and minimization. Finally, both
ensembles are scored to calculate the ensemble-averaged ∆∆G. The method was validated using the
ZEMu dataset of 1240 mutations [108] derived from the SKEMPI database [109]. For this dataset, the
Flex ddG method reached a Pearson correlation coefficient (PCC) of 0.63 and an average absolute
error of 0.96 Rosetta energy units. The enhanced performance was especially prominent in the case of
small-to-large mutations, emphasizing that backbone flexibility constitutes a key factor during the
modeling of these mutations. Relevant improvements were also achieved for modeling stabilizing
mutations and mutating antibody–antigen interfaces. Interestingly, the enhanced performance over a
fixed backbone approach was observed already when averaging over 20–30 conformations, a relatively
low number in contrast to by previous ensemble-based methods, for which thousands of structural
models were required [110].
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Notably, the Flex ddG method was evaluated in three comprehensive benchmarking studies
focusing on different engineering scenarios. Aldeghi and coworkers evaluated alchemical free-energy
calculations and three Rosetta protocols including Flex ddG in combination with different force fields for
the prediction of changes in binding the affinity of ligands upon mutation [111]. In total, 134 mutations
were considered for 27 ligands and 17 proteins, showing that Flex ddG can reach quantitative agreement
with such experimental data with a root-mean-square error (RMSE) of 1.46 kcal/mol and a PCC of 0.25,
which was on par with the best performing alchemical calculations (an RMSE of 1.39 kcal/mol and a
PCC of 0.43) [111]. At this point, it is worth comparing the computational resources required for such
predictions. The alchemical calculations were reported to take two to five days using 20 CPU threads
and one GPU, while Flex ddG computations were usually finished within a day on a single CPU
core [111]. The same author collective also evaluated the utilization of these methods for the prediction
of 31 drug resistance-conferring mutations for eight tyrosine kinase inhibitors of human kinase
ABL [112]. For this dataset, Flex ddG was found to be highly accurate with an RMSE of 0.72 kcal/mol
and a PCC of 0.67, even outperforming the much more demanding alchemical calculations [112].
Interestingly, significant improvements in ∆∆G prediction could be reached with a consensus of
predictions from Flex ddG and alchemical calculations in both studies [111,112]. Another comparative
study investigated the performance of five predictive tools when applied for alanine scanning to
identify hotspot residues at protein–protein interfaces [113]. For a dataset of 748 single-point mutations
to alanine from the SKEMPI database, Flex ddG ranked the best (PCC of 0.51) from the tools that were
not trained using this database [113].

The advantages of incorporating conformational ensembles during design have also been noted
during the development of a multistate framework that enables the adoption of reliable methods
implemented in the Rosetta package for single-state design (SSD) and also for multistate design
(MSD) [93]. Briefly explaining the mode of action, the input for the framework consists of a set of
multiple states (structural conformations) and the population of sequences generated by randomly
introduced single-point mutations, which are processed and altered by a genetic algorithm. Next,
each sequence–state pair is evaluated and scored based on the Rosetta SSD protocol of the user’s
choice. The score of each sequence are communicated back to a sequence optimizer to perform the next
iteration, until the fitness criteria are satisfied, finally giving a population of the optimized sequences.
This is opposite to the standard SSD, which uses an MC algorithm and produces only a single sequence.
The performance of MSD was evaluated on several design perspectives. Firstly, the performances of
MSD and SSD in the task of recapitulating the binding site in the human intestinal fatty acid-binding
protein was compared utilizing its ensemble obtained by NMR spectroscopy. Here, the SSD approach
was used separately for each conformation, while the MSD was run on the whole ensemble at once.
The MSD procedure achieved higher average native sequence recovery (NSR) and native sequence
similarity recovery (NSSR) rates. Additionally, de novo ligand-binding design was performed for
16 proteins using SSD and MSD, where conformational ensembles of 20 and 1000 structures were
generated by the Rosetta Backrub algorithm and a 10 ns long MD simulation, respectively. In this
comparison, the MSD approach primarily produced sequences with higher NSR and NSSR rates and
slightly lower energies, proving the advantages of the ensemble utilization. Interestingly, the quality of
the designs originating from Rosetta Backrub and MD simulations were comparable, even though the
mean Cα RMSDs over the ensembles differed notably, which were 0.17 and 0.62 Å, respectively. Finally,
the multistate framework was tested by introducing retro-aldolase activity into protein scaffolds, which
revealed nine proteins with experimentally confirmed activities [93].

A similar idea of combining an ensemble-based design and a multistate approach was behind the
development of a meta-multistate design procedure (meta-MSD) to rationally design proteins that
spontaneously switch between conformational states [94]. In this case, the procedure started with the
generation of an ensemble of backbone templates with Rosetta Backrub and PertMin approaches [99,114]
to cover the conformational landscape, including all transition states of interest. Next, the whole
ensemble was split into microstates that were energy-minimized. Then, these microstates were assigned



Int. J. Mol. Sci. 2020, 21, 2713 13 of 23

to major, transition, and minor states based on their structural features. Finally, the sequences expected
to transit between the states were identified based on their relative energies. Based on meta-MSD,
several Streptococcal protein G domain β1 variants were engineered to obtain structures that can
exchange conformations between two states spontaneously, producing experimentally validated
protein exchangers capable of switching between the states on a millisecond timescale [94], thereby
highlighting the importance of the accurate modeling of a local energy landscape for designing
protein dynamics.

3.2. Knowledge-Based Approaches

Following the expansion of protein structure databases, which contain a considerable amount of
data related to structure–dynamics–function relationships in proteins, new methods to assess backbone
flexibility have been designed, benefiting from this wealth of knowledge. The methods introduced
here are implemented in the Rosetta software and represent an exciting direction for improving protein
design processes by more efficiently exploring alternative backbone conformations.

The first among the reviewed data-driven approaches is the flexible backbone learning by Gaussian
processes (FlexiBaL-GP) method [95] that uses multiple structures of a given protein to learn the most
probable global backbone movements specific for training structures using the Gaussian process latent
variable model as a machine learning method. These learned movements are then applied to guide the
search for proteins with alternative backbone conformations by Markov Chain Monte Carlo sampling,
where at each step 95% of the time is spent on the selection of the optimal side-chain rotamers and 5%
of the time is spent on the generation of the protein backbone movements. FlexiBaL-GP can utilize
various sources of training data including X-ray structures, NMR models, and MD simulations. When
learning from a set of 28 crystal structures of ubiquitin and using two latent variables, the FlexiBal-GP
method generated an ensemble of structures for native ubiquitin with an RMSD range of 0.5–0.65 Å
from a reference structure. Notably, the ensemble recovered over 40% of the conformational diversity
of the ensemble obtained by NMR spectroscopy. Moreover, the method’s ability to enrich a library
of ubiquitin variants towards those with improved affinity to ubiquitin carboxyl-terminal hydrolase
21 was evaluated. For this task, the FlexiBal-GP method was trained on two wild-type complexes
only or combined with either a structure of a tightly binding mutant or MD-based ensembles starting
from the two wild-type structures. All three derived models outperformed flexible designs with
Rosetta Backrub, as well as designs based on ensembles generated with MD simulations and the
constraint-based method, CONCOORD [115].

A different approach to harnessing knowledge from structural databases and to navigating
sequence space sampling with a flexible backbone has been explored by the structural homology
algorithm for protein design (SHADES) [96]. This approach relies on the libraries of In-contact amino
acid residue TErtiary Motifs (ITEMs) derived from curated protein structures, in which local contacts
were analyzed for each residue. Analogously, target ITEMs are then identified for each position in the
target structure in a position-specific manner and matched to the ITEMs database in order to generate
candidate ITEMs libraries. Finally, these libraries are exploited by an iterative population-based
optimization method that substitutes all residues in each target ITEM position with all residues from a
candidate ITEM. The structure of the altered fragment is then adjusted by optimizing its backbone
with the Rosetta Backrub method, repacking the side-chains and minimizing or relaxing the whole
structure with or without backbone restraints. Using a dataset of 40 proteins from different families, the
SHADES performance in recovering the native sequences of the proteins was evaluated, reaching a 30%
average sequence recovery and a 46% sequence similarity between the designed and natural proteins,
when candidate ITEMs derived from homologous proteins were excluded. When the homologs were
retained in the candidate libraries, the sequence recovery rate increased up to 93%. Notably, rather
large conformational diversity was observed for the successfully designed models, in some instances
exhibiting more than a 1 Å RMSD from their respective native structures. Overall, these tests indicated
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that SHADES could capture sequence–dynamics–structure relationships correctly while spending
about 25 times less CPU time than the redesign mode of the Rosetta FastRelax method [116].

3.3. Provable Algorithms

Due to the high complexity of protein design tasks, especially when employing ensemble-based
approaches (Section 3.1), the majority of the tools rely on heuristic algorithms as an expedient way to
obtain the desired constructs. For more complicated tasks, these approaches are often barred from
generating optimal solutions, which in turn can lead to the design of sequences that are not guaranteed
to have the lowest energy [117]. In response to those limitations, provable algorithms have been
developed, creating a promising alternative for reaching entrenched solutions [117,118]. Here, we
briefly outline some of the most compelling developments that led to an advanced description of
backbone flexibility. For a more comprehensive overview of provable algorithms and their evolution
and application, please see the very insightful reviews published recently [119,120].

The development of provable algorithms started with the adaptation of the dead-end elimination
(DEE) method [121] that was later improved by introducing rotamers’ minimization before pruning
to enable a more continuous description of side-chains, an essential component of several successful
designs [118,122]. The initial approach to backbone flexibility was introduced with the dead-end
elimination with perturbations (DEEPer) method [123], relying on a predefined set of small local
movements extracted from an experimental structure such as Backrub [124] or sheer. However, such
motions are mostly restricted to subangstrom dimensions to avoid disruptive changes propagated to a
distant region from the segment of the altered backbone. To enable more progressive motions in a
predefined contiguous part of the backbone such as the movement of a flexible loop, the coordinates of
atoms by Taylor series (CATS) approach was recently introduced [97]. The main idea of the approach
lies in the new definition of the backbone internal coordinate system, which enables physically sensible,
continuous, and strictly localized perturbations of the given segment of the backbone in a manner that
is compatible with the advanced DEE workflows. The CATS method was tested on 28 different proteins
with flexible backbone treatment enabled for five to nine-residue long segments. By introducing more
pronounced changes in backbone conformations, almost 0.2 Å on average, CATS reached a mean
improvement in design energies of 3.5 kcal/mol in comparison to the rigid-backbone approximation.
Such an improvement is nearly twice as large as what was observed previously for restricted backbone
perturbations introduced by the DEEPer method on the same set.

Owing to persistent optimization efforts [125–128], provable algorithms can nowadays be applied
for protein design while simultaneously employing both the continuous flexibility of side-chains and
enhanced backbone flexibility efficiently at similar computational costs to more rigid approaches. These
methods are available in OSPREY 3.0 [129], in which the analysis speed has been further promoted
by the newly supported use of GPUs and multicore CPUs for some of the modeling tasks, which
were prohibitively complicated for the previous version of the software. As underlined by several
studies featuring various applications of provable algorithms [130–133], these algorithms have matured
enough to be of practical utility for protein engineers. This trend will undoubtedly gain further
momentum with the recent developments discussed herein, even though their computational demands
might still be limiting for some applications.

4. Conclusions, Challenges, and Perspectives

In contrast with proteins evolved through directed evolution, constructs predicted by
computational protein engineering methods have so far been focusing mainly on hotspot residues close
to functional sites. By considering the proximity of relevant regions, mutations have the highest chance
of altering the target function, and at the same time, the number of variants to evaluate is kept tractable.
Unfortunately, this restriction often hampers the performance of rationally designed proteins. It is
clear that we need more efficient workflows and tools that can pinpoint hotspots at crucial distal sites
as well. One class of such hotspots involves residues forming allosteric networks capable of inducing a
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shift in populations of protein conformations to support their altered function upon mutation. Here,
we would like to highlight the availability of tools for rapid analyses of protein allostery focusing on
residue–residue interactions in a single static structure or employing normal mode analysis (NMA) to
approximate protein dynamics [134]. However, the performances of these approximate tools are often
impeded by two factors: (i) the quality of a single-input structure and the extent, to which this structure
represents essential interactions present in the conformational ensemble, and (ii) the limited sensitivity
of underlying NMA to mutations that do not produce substantial conformational changes [135]. Those
limitations are inherently overcome by ensemble-based approaches, in which network analyses of MD
simulations are facilitated by the tools discussed in Section 2.1. The second class of remote hotspots is
connected with ligand transport, a phenomenon that is hard to tackle due to its rare nature, which in
turn requires extensive sampling. Currently, there are tools suitable for robust analyses of transport
events captured by MD simulations and tools capable of the efficient exploration of a precomputed
ensemble of transport tunnels in proteins by multiple ligands (Section 2.2). However, there is still
a gap to close, before we can rationally design mutations enhancing ligand transport. In particular,
effective means to predict how the ligand presence alters the dynamics of transport pathways to factor
in ligand-specific effects of mutations [136] still have to be developed together with more efficient
methods to sample the passage of ligands through structural ensembles of proteins.

Throughout this review, we have witnessed a consistent success of methods incorporating different
degrees of protein dynamics in increasing the accuracy of their predictions owing to the innate ensemble
nature of the proteins. These methods frequently require user expertise in complicated computational
methods and protocols. Considering that some of fully automated and easy-to-use methods available
nowadays originate from very sophisticated and computationally extensive approaches [137–141]
and the ongoing rapid development of powerful technologies, in synergy with research on more
efficient algorithms, we perceive recent advanced methods and algorithms reviewed here as heralded
future automated methods accessible not only to specialists but also to researchers with much
broader expertise. As various flexible backbone approaches will, due to their upcoming maturity and
indisputable benefits, be gradually joining the mainstream protein design methods, the involvement of
dynamics in engineering processes is likely to reveal new challenges to overcome.

First, the successful utilization of molecular ensembles in protein design and redesign is dependent
on the quality of input ensembles emphasizing the importance of sufficient and representative sampling.
Since this is not a trivial task, but rather an art itself, the ensemble-based approaches reviewed
here employ limited sampling. Despite sampling somewhat restricts conformational changes in
protein backbones, these approaches achieve substantial advantages over the predictions relying
on a single structure. The systematic utilization of a more extensive sampling via much longer,
enhanced, or adaptive simulations will be required to thoroughly describe more global conformational
transitions [27–31]. Alternatively, with further expansion of the PDB database, the knowledge-based
methods similar to those reviewed in Section 3.2 might be trained from data on particular proteins
and families, hence providing more global, yet robust, moves compatible with a given fold to be
considered during the design. Additionally, there is still largely unexplored potential to derive such
system-specific moves from extensive MD simulations that have been shown to recapitulate the
conformational behavior of many structured proteins [40,142].

Second, with the increasing amplitude of introduced perturbations, the protein structures will
more frequently be drawn from the conformational space further away from the structures produced
by protein crystallography. Following the precedent of unsatisfactory performance observed for
simulations of intrinsically disordered proteins using standard force fields, which were developed for
folded and stable protein structures [143,144], to what degree all energy terms of currently employed
scoring functions will be applicable for the ranking of very flexible designs remains to be seen.
In parallel, it is evident that the flexible-backbone approaches are more successful in introducing
the bulkier and often more hydrophobic residues. This success, however, accentuates a well-known
tendency of design methods to improve hydrophobic packing but not polar interaction networks,
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since hydrophobic interactions are more straightforward to sample than directional polar ones [145],
which regularly results in the problematic solubility of the design proteins. To help to reverse this
trend, the utilization of methods for the efficient prediction of hydrogen bond networks, akin to the
recently developed MC HBNet protocol [146], would be required, especially when coupled with more
continuous descriptions of side-chains to increase the number of accessible solutions.
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Abbreviations

MD molecular dynamics
GPU graphics processing unit
PCA principal component analysis
RIP-MD residue interaction network in protein molecular dynamics
VMD visual molecular dynamics
JED Java-based Essential Dynamics
scFv single-chain variable-fragment
PDB protein data bank
RMSD root-mean-square deviation
SPM shortest path map
CAMERRA computation of allosteric mechanism by evaluating residue–residue associations
DAAO D-amino acid oxidase
MC Monte Carlo
FixBB fixed backbone
D&R Design-and-relax
PCC Pearson correlation coefficient
∆∆G change in binding free energy
RMSE root-mean-square error
SSD single-state design
MSD multistate design
NMR nuclear magnetic resonance
NSR native sequence recovery
NSSR native sequence similarity recovery
FlexiBaL-GP flexible backbone learning by Gaussian processes
SHADES structural homology algorithm for protein design
ITEM In-contact amino acid residue tertiary motif
DEE dead-end elimination
DEEPer dead-end elimination with perturbations
CATS coordinates of atoms by Taylor series
NMA normal mode analysis
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84. Subramanian, K.; Mitusińska, K.; Raedts, J.; Almourfi, F.; Joosten, H.J.; Hendriks, S.; Sedelnikova, S.E.;
Kengen, S.W.M.; Hagen, W.R.; Góra, A.; et al. Distant non-obvious mutations influence the activity of a
hyperthermophilic Pyrococcus furiosus phosphoglucose isomerase. Biomolecules 2019, 9, 212. [CrossRef]
[PubMed]
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