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  Introduction

  Since its discovery as a vasoconstrictor substance in 
the blood  [1] , serotonin (5-hydroxytryptamine, 5-HT) 
has been revealed to be of importance in a broad range of 
physiological processes as it has been shown to be in-
volved in the control of smooth muscle tone and vascular 
function  [2–4] , hemostasis and platelet function  [5, 6] , 
hepatitis and liver regeneration  [7–10] , mammary gland 
plasticity  [11] , insulin secretion  [12] , development and 
wiring of neurons  [13] , as well as regulating sleep/wake-
fulness, appetite, gastrointestinal motility, temperature, 
pain sensation and nociception, mood, stress, maternal 
or sexual behavior and aggression  [14–16] .

  The biosynthesis of the monoamine 5-HT starts with 
the essential amino acid tryptophan, which is metabo-
lized to 5-hydroxytryptophan (5-HTP) by tryptophan 
hydroxylase (TPH) in an initial, rate-limiting step; 5-
HTP is then further decarboxylated to 5-HT by aromatic 
amino acid decarboxylase ( fig. 1 ). TPH belongs to the su-
perfamily of aromatic amino acid hydroxylases which 
also includes tyrosine hydroxylase and phenylalanine hy-
droxylase (PAH). These are iron (Fe 2+ )- and tetrahydro-
biopterin-dependent monooxygenases with substantial 
similarities in structure and catalytic mechanism  [17] . 
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  Abstract

  Serotonin (5-HT) is a monoamine implicated in a variety of 
physiological processes that functions either as a neuro-
transmitter or as a peripheral hormone. Pharmacological 
and genetic studies in humans and experimental animals 
have shown that 5-HT is important for the pathophysiology 
of depressive disorders. The 5-HT system is thus already a 
main target for the therapy of these diseases. The peripheral 
and cerebral biosynthesis of 5-HT is initiated by two distinct 
tryptophan hydroxylases: TPH1 and TPH2. This duality of the 
serotonergic system and the existence of a brain-specific 
TPH isoform provide a promising new target for pharmaco-
logical intervention with higher selectivity and specificity 
and, therefore, possibly with reduced side effects and in-
creased efficiency. This paper summarizes the data which 
support TPH2 as novel drug target and discusses strategies 
for its pharmacological exploitation.
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All aromatic amino acid hydroxylases are composed of 3 
functional domains, a regulatory N-terminal domain, a 
catalytic domain and a C-terminal oligomerization do-
main  [17, 18] .

  The identification of a second  Tph  gene in 2003, named 
 Tph2 , unravelled the existence of two independent 5-HT 
systems in vertebrates ( fig. 2 ). Whereas TPH2 is specifi-
cally expressed in the brain, TPH1 is responsible for 5-
HT synthesis in peripheral tissues  [19] . Within the last 
years, different studies of mRNA and protein levels in 
rodent and human tissues confirmed TPH2 to be the cen-
tral isoform, predominantly expressed in the neurons of 
raphe nuclei in the brain stem  [20–22]  and in peripheral 
myenteric neurons in the gut  [23, 24]  but not in periph-
eral organs (lung, heart, kidney or liver)  [25, 26] . On the 
other hand, TPH1 is mainly expressed in the enterochro-
maffin cells of the gut and also in the pineal gland, where 
it produces 5-HT as a precursor of melatonin synthesis 
 [19, 27]  ( fig. 1 ).

  5-HT System and Depression

  Based on its functions as a neurotransmitter influenc-
ing various neurological and behavioral processes in the 
central nervous system, 5-HT has also been suggested to 
play a role in different diseases of the central nervous sys-
tem  [15, 28] . The biosynthesis and release of neuronal 5-
HT depend on circulating levels of free tryptophan in the 
blood and brain. Experimental tryptophan depletion was 
associated with increased symptom severity in depressed 
patients  [29–31]  and lowered 5-HT and/or 5-hydroxyin-
doleacetic acid, its degradation product ( fig. 1 ), have been 
found in the cerebrospinal fluid of suicidees and de-
pressed suicide attempters  [32, 33] . Disturbed social be-
havior, increased irritability or lack of impulse control 
could also be observed in inflammatory and other dis-
eases that are accompanied by low tryptophan levels  [34] . 
The fact that the 5-HT system also became an efficient 
target for antidepressant therapies confirms that altera-
tions in the 5-HT system may be related to the develop-
ment and pathophysiology of affective disorders  [15, 35–
38] . Affective disorders are a group of psychiatric condi-
tions among which major (unipolar) depression and 
bipolar disorder (major depression plus mania) are the 
most prevalent types  [39, 40] . Patients with major depres-
sion suffer predominately from mood disturbances, but 
also from psychomotor retardation, sleep disorders, fa-
tigue or thoughts of death  [41] . This paper intends to give 
an overview on recent genetic studies in humans and an-

imals investigating a possible connection of TPH and 
psychiatric disorders, with particular emphasis on affec-
tive disorders.

  Genetic Studies on TPH in Humans

  In recent years, there has been a dramatic increase in 
the number of publications dealing with molecular vari-
ants of genes that are involved in 5-HT synthesis (TPH), 
5-HT neurotransmission (5-HT receptors and 5-HT 
transporter, SERT) and 5-HT catabolism (monoamine 
oxidases) ( fig. 1 ) to identify alterations that may contrib-
ute to a dysfunction within the serotonergic system. A 
huge amount of data has accumulated; in the following 
we will only focus on genetic studies on  TPH  ( table 1 ).

  It has been shown that the prevalence of affective dis-
orders is affected by gender, age and genetic background. 
Depressive disorders have been found to be more fre-
quent in women, and twin studies suggest a heritability 
of up to 50%  [42, 43] . But at present the results on  TPH  
polymorphisms remain inconclusive. Several single nu-
cleotide polymorphisms (SNPs) in the  TPH2  gene have 
been found to be associated with depression  [44–49] , sui-
cidal behavior  [46, 47, 50–55]  and bipolar disorder  [48, 
50–56] . On the other hand, a number of publications 
found no association between  TPH2  SNPs and major de-
pression or suicide  [57–62] . These discrepant results may 
reflect the heterogeneous nature of neuropsychiatric dis-
eases and populations as well as methodological differ-
ences, sample size and statistical power.

  In particular, the nonsynonymous SNP (G1463A) 
published by Zhang et al.  [44]  in 2005 seemed to be a 
promising step towards identifying a link between TPH 2  
and depressive disorders. The resulting missense muta-
tion in the TPH2 protein (R441H) that they found in an 
elderly cohort of unipolar depressed patients showed an 
80% decrease in 5-HT production in PC12 cells. The fact 
that the mutation is located within the part of the oligo-
merization domain that has previously been shown to be 
pivotal for TPH 2  activity  [63]  together with the descrip-
tion of a corresponding severe pathogenic mutation in 
PAH (R408W) led to the expectation that the first loss-
of-function mutation in human  TPH2  had been identi-
fied  [64] . However, this functional polymorphism could 
not be confirmed in any other study  [62, 65–72] . Thus it 
is either a rare mutation within a very unique cohort with 
unipolar depression or the result of a genotyping error.

  As the coding sequence of  TPH2  represents less than 
2% of the gene, coding sequence variants are expected to 
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 Fig. 1.  5-HT metabolism. AAAD = Aro-
matic amino acid decarboxylase; SNAT = 
se rotonin N-acetyltransferase; HIOMT = 
hydroxy-indole-O-methyl transferase; 
MAO = monoamine oxidase; ADH = alco-
hol dehydrogenase. The other abbrevia-
tions are explained in the text.
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    Fig. 2.  Duality of the 5-HT system. Func-
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confirmed in  Tph1 - and  Tph2 -deficient 
animals are shown. 
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SNP Location Function Allele Protein residue Disorder Association Reference

G1463A exon 11 missense G/A Arg/His major depression yes [44]

rs1386494 intron 5 A/G – major depression yes [45]1, 2

rs17110747 3� UTR A/G – major depression yes [49]2

rs17110563 exon 6 missense C/T Ser/Pro major depression yes [46]1

rs11179003 intron 4 C/T – suicidal behavior
rs1386494 intron 5 A/G –
rs1007023 intron 8 G/T –
rs1473473 intron 8 A/G –
rs17110747 3� UTR A/G –

g.22879 exon 63/intron 54 A/G – major depression yes [47]1, 2

rs1386493 intron 5 C/T – suicidal behavior
rs1386494 intron 5 A/G –

rs11178997 5� near gene synonymous A/T – major depression yes [48]1, 2

rs4131348 upstream 5� region C/T – bipolar disorder

rs4290270 exon 9 synonymous A/T – bipolar disorder yes [51]1

rs17110563 exon 6 missense C/T Ser/Pro bipolar disorder yes [50]1, 2

rs11178997 5� near gene synonymous A/T –

rs1386482 intron 8 A/C – bipolar disorder yes [54]1

rs1386486 intron 8 C/T –

rs7305115 exon 7 synonymous A/G – bipolar disorder yes [52]1

rs17840794 intron 7 C/T –
rs1007023 intron 8 G/T –
rs11615016 intron 8 A/G –
rs4290270 exon 9 synonymous A/T –

rs1386494 intron 5 A/G – bipolar disorder yes [53]1

rs1007023 intron 8 G/T – suicidal behavior
rs9325202 intron 8 A/G –

rs7305115 exon 7 synonymous A/G – suicidal behavoir yes [191]

rs4448731 5� near gene C/T – suicidal behavoir yes [192]1

rs4641527 intron 1 G/T –

rs1386494 intron 5 A/G – suicidal behavoir yes [55]1, 2

rs11178997 5� near gene synonymous A/T – suicidal behavoir yes [193]

rs4570625 5� near gene G/T – suicidal behavoir yes [194]

rs1843809 intron 5 G/T – ADHD yes [84]1, 2

rs4570625 5� near gene G/T – ADHD yes [85]1

rs11178997 5� near gene synonymous A/T –

rs4341581 intron 1 G/T – autism yes [86]1

rs11179000 intron 4 A/T –

rs4570625 5� near gene G/T – OCD yes [87]1, 2

rs4565946 intron 2 C/T –

rs4570625 5� near gene G/T – panic disorder yes [88]2

G1463A exon 11 missense G/A Arg/His major depression no [62, 65–72]

Table 1. TPH2 SNPs and association with affective disorders
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be rather rare  [73] . Therefore, most of the  TPH2  SNPs 
known so far are located in introns and promoter regions. 
Although they are not likely to be of importance for pro-
tein function, they could affect gene expression on the 
transcriptional level, e.g. via mRNA stability or splicing 
processes  [74] . The T allele of the  TPH2  promotor poly-
morphism rs4570625 (–703G/T) has been shown to be 
involved in increased prefrontal brain activity  [75] , anxi-

ety-related personality disorders  [76]  and amygdala reac-
tivity  [77, 78]  and therefore might show an impact on 
heightened stress responsivity and anxiety due to altera-
tions in TPH2 expression  [79] . Another intronic  TPH2  
SNP has been reported to reduce promoter activity by re-
duced binding of transcription factor POU3F2  [56, 80] . 
Evidence for an inhibitory effect of the  TPH2  5 � -UTR on 
gene expression has been derived from studies on com-

SNP Location Function Allele Protein residue Disorder Association Reference

rs7488262 exon 11 missense T/G – major depression no [62]

rs1386494 intron 5 A/G – major depression no [60]

rs10748185 intron 2 A/G – major depression no [57]1, 2

rs2129575 intron 4 G/T –
rs1386495 intron 5 C/T –
rs1386494 intron 5 A/G –
rs7305115 exon 7 synonymous A/G –

rs4131347 upstream 5� region C/G – major depression
bipolar disorder
suicidal behavior

no [61]

rs1487280 intron 9 A/G – bipolar disorder no [58]1, 2

rs4760816 intron 6 C/T – suicidal behavior
rs10784941 intron 6 A/G –

rs6582071 5� near gene A/G – suicidal behavior no [59]1, 2

rs4570625 5� near gene G/T –
rs11178997 5� near gene synonymous A/T –
rs11178998 5� UTR A/G –
rs11178999 intron 1 A/G –
rs1386494 intron 5 A/G –
rs1386493 intron 5 C/T –
rs1386491 intron 5 C/G –
rs7305115 exon 7 synonymous A/G –
rs1386498 intron 8 A/G –
rs1487278 intron 8 C/T –
rs11179044 intron 8 C/T –
rs4290270 exon 9 synonymous A/T –
rs11179064 intron 9 A/G –
rs17110747 3� UTR G/A –

rs4570625 5� near gene G/T – panic disorder no [90]1, 2

rs4565946 intron 2 C/T –

rs11178997 5� near gene synonymous A/T – suicidal behavior no [89]1, 2

rs10784941 intron 2 A/G – schizophrenia

rs11178997 5� near gene synonymous A/T – suicidal behavior no [91]
rs4131347 upstream 5� region C/G –

1 Haplotype analysis. 2 Single SNP analysis. 3 TPH2 short transcript isoform (ENST00000266669). 4 TPH2 long transcript isoform 
(ENST00000333850). ADHD = Attention-deficit hyperactivity disorder, OCD = obsessive-compulsive disorder.

Table 1 (continued)
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mon polymorphisms and haplotypes in this region  [81] . 
From the  TPH2  missense mutations known so far, 4 have 
been reported in patients with clinical symptoms  [82] . 
Nevertheless, there is still a great demand for functional 
and clinical data to define the role of  TPH2  polymor-
phisms in particular phenotypes of depressive disorders 
 [83] .

  Furthermore, discrepant results have been published 
on other types of affective disorders. Some studies showed 
 TPH2  polymorphisms to be related to schizophrenia, ob-
sessive-compulsive disorder, attention-deficit hyperac-
tivity disorder, and autism or panic disorder  [84–88]  
while others did not observe any association  [89–91] .

  Concordant response rates from several studies on rel-
atives suggest that antidepressant treatment response is 
also an inheritable trait possibly influenced by  TPH2  
polymorphisms  [92, 93] . However, whereas some studies 
show a significant link between a  TPH2  SNP haplotype 
and specific responses to 5-HT reuptake inhibitors 
 (SSRIs)  [49, 94, 95],  others, here again, do not confirm any 
association between this trait and  TPH2  SNPs in various 
ethnic groups  [60, 62, 72] .

  Although TPH1 is responsible for peripheral 5-HT 
synthesis, there are several studies on the influence of 
 TPH1  polymorphisms A218C and A779C in affective dis-
orders, with contrasting outcomes. Both SNPs are pro-
posed to be involved in suicidal behavior  [16, 96–100] , 
depression  [101–103] , bipolar disorder  [104–106]  or al-
tered antidepressant drug response  [107–109] . But other 
studies could not find any association of  TPH1  SNPs and 
suicidal behavior  [110–114] , major depression  [113, 115–
118] , bipolar disorder  [113, 119]  or antidepressant treat-
ment response  [115, 120] . It is not clear whether 5-HT 
synthesis through TPH1 in the brain just serves for mel-
atonin synthesis or whether there might be some con-
tribution to the neurotransmitter pool  [121] . Effects of 
TPH1 on central 5-HT synthesis can be caused by altered 
enzyme activity during ontogeny as an impact of TPH1 
on the development and maturation of 5-HT neurons has 
been suggested by studies in mice  [122–124] , which was 
contradicted by others, however  [125] .

  Affective disorders are known to be complex and het-
erogeneous disorders characterized by polygenic influ-
ences, different clinical profiles and different responsive-
ness to drugs  [28, 126] . It is also known from studies on 
multifactorial disorders that different mutations within a 
single gene may be linked to a spectrum of clinical phe-
notypes  [82] . As the 5-HT system exhibits an extensive 
network of different genes involved in the development, 
function and plasticity of 5-HT neurons as well as sev-

eral 5-HT receptors and 5-HT transporter-associated 
proteins, contributions from many points in this network 
in a disease as complex as depression should be expected 
 [68] . In order to improve the success of genetic studies of 
depression and optimize the phenotypic definition of de-
pression, there is a need to dissect possible psychopatho-
logical and biological endophenotypes  [127] .

  Studies in Mouse Models

  Validity of Mouse Models of Depression
  Studies in genetically modified laboratory animals 

have an important impact on our understanding of de-
pressive disorders and are necessary to test new pharma-
cological tools that could be further used in treating these 
diseases in humans. The mouse – a species in which hu-
man mutations can be easily mimicked by genetic modi-
fications of its genome – is especially valuable in this re-
spect. However, the usefulness and validity of mouse 
models in evaluating human depression has always been 
a subject of debate. As there are differences in brain anat-
omy and capacity for processing complex psychological 
concepts between humans and mice, it is impossible to 
model certain aspects of disease symptoms, such as low 
self-esteem, suicidal ideation or ‘fear of going crazy’ in 
mice. On the other hand, the brains of mammals have a 
common structural organization, similar circuits con-
necting these structures, and conserved physiological 
and behavioral responses. Therefore, to a certain extent, 
the mouse can be used as a model for understanding hu-
man behavior and disease, but the results of such studies 
must be interpreted with caution  [128] .

  Current models gauge an animal’s ‘depression-relat-
ed’ responses to acute or chronic inescapable stress. These 
include the forced swimming test (FST) which quantifies 
immobility in a water bath, and the tail suspension test 
(TST), which measures periods of agitation and immo-
bility of a mouse suspended by the tail; these periods of 
agitation and immobility resemble ‘behavioral despair’ 
observed in depressions. Other assays include measure-
ment of social interaction (model of social estrangement 
in depression-related conditions), the learned-helpless-
ness test (measures the passive responses to inescapable 
foot shock), and intracranial self-stimulation (evaluation 
of the animal’s effort to stimulate the cerebral reward cir-
cuit electrically)  [129–132] . These assays are usually ac-
companied by a battery of tests evaluating activity and 
anxiety, such as open field and elevated plus maze to ex-
clude the misinterpretation of results. 
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  Pharmacological Mouse Models of Depression
  The first studies to investigate the role of TPH in de-

pressive disorders were pharmacological models in which 
enzyme activity was specifically blocked with  p- chloro-
phenylalanine (PCPA), an irreversible TPH inhibitor 
( fig. 1 )  [133] . Mice prenatally exposed to PCPA show in-
creased depression-related behavior in FST and TST, de-
creased anxiety and increased activity in open field  [134–
136] . Another pharmacological tool to study the relation 
between depressive behavior and TPH is local intracere-
broventricular application of the neurotoxin 5,7-dihy-
droxytryptamine (5,7-DHT), which selectively kills sero-
tonergic neurons, and was shown to cause significant de-
pletion of 5-HT levels in the brains of mice  [137, 138] . Due 
to the complicated procedure of intracerebroventricular 
injection, most of the studies with neurotoxins were done 
on rats; they showed that 5,7-DHT treatment induces a 
depressive-like behavior  [139, 140] . The few studies in 
mice demonstrated that 5,7-DHT injections in the stria-
tum significantly decrease locomotor activity  [138] . How-
ever, these pharmacological models have a number of 
limitations: (1) PCPA is not specific for a certain form of 
TPH; therefore it is difficult to distinguish effects caused 
by TPH1 or TPH2 depletion; (2) 5,7-DHT is a neurotoxin 
that kills serotonergic neurons; hence, this model does 
not exclude behavioral abnormalities aroused by the ab-
sence of other components of the serotonergic system and 
cotransmitters of these cells; (3) PCPA and 5,7-DHT in-
duce partial but not complete 5-HT reductions in brain 
regions, and these approaches do not tell whether the re-
sidual amount of 5-HT is enough for normal brain func-
tioning. Therefore, it is more appropriate to use geneti-
cally modified mouse models to investigate the role of 
TPH isoenzymes in depressive disorders.

  Genetic Mouse Models of Depression: Role of Tph1
  Although several studies showed the discrete expres-

sion pattern of  Tph  genes, with neuronal localization of 
 Tph2  in dorsal raphe and myenteric neurons and non-
neuronal localization of  Tph1  in pineal gland and duode-
num, the presence and role of  Tph1  transcripts in the ra-
phe region remain a subject of controversy  [123, 125] . Ac-
cording to Nakamura   et al. [123], there is a peak of  Tph1  
expression in the brain stem at weaning in mice whereas 
in adulthood its level drops to nearly zero. Moreover, in 
these young mice both the affinity for tryptophan and 
enzymatic activity of TPH1 are higher than those of 
TPH2, partially due to the low tetrahydrobiopterin con-
centration in the developing brain stem and, therefore, 
TPH1 was considered as a main 5-HT-producing enzyme 

in the mouse brain at weaning  [123] . In the search for the 
linkage between  Tph1  and murine behavior, two poly-
morphisms – in the promoter region and in the 3 �  UTR 
of the  Tph1  gene – were recently identified in New Zea-
land white and SWR mice  [123]  .  Due to these mutations, 
both strains were shown to have lower  Tph1  expression in 
the brain stem at 21 days of age in comparison to other 
laboratory mouse lines and, as a consequence, decreased 
brain 5-HT levels at this time point, but normal 5-HT 
levels in adulthood. Interestingly, both strains have shown 
an increased depression-like behavior in FST and TST 
tests. However, further studies, on congenic lines carry-
ing the above-mentioned mutations, as well as evaluation 
of this behavior in  Tph1 -deficient mice, have to be con-
ducted in order to clarify whether impairment in  Tph1  
expression can contribute to depressive disorders. 

  Moreover, other studies did not find considerable 
TPH1 activity in the mouse raphe nuclei during embryo-
genesis, postnatal development and in adulthood  [19, 
125] . Furthermore,  Tph1  remained undetectable even in 
raphe of  Tph2- deficient mice, in which compensatory up-
regulation may have been expected  [125] . In addition, 
studies in  Tph1- knockout mice did not reveal any chang-
es in 5-HT-related behavior in anxiety tests  [19, 141] , ren-
dering the contribution of TPH1-produced 5-HT to 5-HT 
signaling in the brain unlikely.

  A second way by which TPH1-derived 5-HT can influ-
ence behavior is via its transformation to melatonin in 
the pineal gland. Melatonin mediates photoperiodic ef-
fects on reproduction and may influence a variety of cir-
cadian activities. However, most laboratory mouse strains 
cannot synthesize melatonin due to a lack of 5-HT-N-
acetyltransferase (SNAT) that converts 5-HT to an inter-
mediate precursor of melatonin, N-acetylserotonin  [121]  
( fig. 1 ). Thus, at least in laboratory mice,  Tph1  cannot in-
fluence behavior via melatonin.

  Genetic Mouse Models of Depression: Role of Tph2
   Tph2  Polymorphism
  It is known that certain mouse strains markedly differ 

in depression-like behavior. Zhang et al.  [142]  first sur-
mised that such a difference between 129X1/SvJ and 
BALB/cJ mice may be caused by altered TPH2 activity. 
Indeed, sequencing analysis revealed an (C1473G) SNP in 
the coding region of  Tph2  between these two lines result-
ing in the substitution of a highly conserved proline resi-
due with an arginine at position 447 and, as a conse-
quence, lowering of enzyme activity in in vitro experi-
ments  [142, 143] . Afterwards, it was found that the 5-HT 
content in the brain was reduced by approximately 50% 
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in the mouse strains carrying only the 1473G allele in 
comparison to mice homozygous for the 1473C allele; an 
observation that was also confirmed in an F2 intercross 
 [142, 144, 145] . This led to the hypothesis of a direct link 
between the  Tph2  polymorphism and the development of 
a depressive state in those mice. However, attempts to cre-
ate congenic lines only differing in the mTPH2 1473  poly-
morphic allele yielded controversial results and put this 
hypothesis into question. Osipova et al.  [144]  showed that 
transfer of the 1473G allele into the C57BL/6J genome 
over 3 generations [B6–1473G (G/G)] significantly de-
creased TPH2 activity in the brain and led to shorter im-
mobility time in the FST. However, we created two con-
genic lines carrying homozygous 1473G or 1473C alleles 
obtained from breeding the 1473G allele from DBA/2 
mice over 8 generations to the C57BL/6 background and 
did not find any differences in the 5-HT content of brain 
regions or changes in depression-related behavior  [146] , 
indicating that not  Tph2 , but other variations in the ge-
netic background are responsible for the interstrain dif-
ferences. Moreover, no association was found between 
the murine  Tph2  C1473G polymorphism and depressive 
state in TST  [147] . This discrepancy in the results from 
different investigators can be explained by different ex-
perimental protocols or by the degree of genetic back-
ground homogeneity of the mice. Furthermore, it cannot 
be ruled out that  Tph2  is closely linked to some other 
genes that directly influence FST immobility in mice. 

   Tph2  Knockin
  Beaulieu et al.  [148]  generated knockin mice express-

ing a mutant form of TPH 2  that contains the rare human 
mutation R441H identified in few individuals with uni-
polar depression (see above). TPH2 activity in R439H 
 Tph2 -knockin mice was reduced by 80% in the brain 
while the expression of SERT, a target of most antidepres-
sants, was unchanged. Expression of the mutant  Tph2  re-
sults in increased anxiety, depression-related behavior in 
TST and enhanced intermale aggression. The pharmaco-
logical or genetic inhibition of GSK3 �  prevented the be-
havioral changes, suggesting that drugs that enhance 5-
HT transmission may exert some of their actions through 
GSK3 � . 

   Tph2  Knockout
  Several groups recently reported the generation of 

 Tph2 -knockout mice  [22, 141, 149] . We showed increased 
aggressive behavior in  Tph2 -deficient female mice that 
cannibalized their pups in contrast to wild-type mice 
that never ate the whole litter  [149] . Female aggression is 

directly linked to anxiety and depressive disorders  [150] . 
Surprisingly, female  Tph2 -deficient mice behaved nor-
mally in the FST in contrast to the TST in which they 
showed longer immobility times  [141] .  Tph2 -deficient 
males did not show any significant behavioral changes in 
a standard TST; however, decreased immobility times 
were recorded in the FST  [141] . Different results obtained 
on the TST and FST are likely due to the different neuro-
chemical and neuroanatomical pathways involved in the 
modulation of the response to different stress stimuli 
 [132] . Testing  Tph2 -deficient mice for the anxiety-related 
phenotypes also yielded inconsistent results: open field 
did not reveal any linkage between TPH2 and anxiety 
while the buried-marble test showed an increased level of 
anxiety in these mice  [141] . However, it cannot be exclud-
ed that increased marble burying is an indication of ob-
sessive/compulsive behavior rather than anxiety-like be-
havior in these animals  [151] . Interestingly, differences 
observed in depression- and anxiety-like behavior were 
more pronounced in  Tph2/Tph1  double-knockout mice 
than in  Tph2 -deficient mice, which may be due to periph-
eral and developmental discrepancies caused by the ad-
ditional absence of  Tph1   [141] .

   Pah- Deficient Mice
  PAH is a hepatic enzyme which metabolizes phenyl-

alanine to tyrosine. Deficiency in this enzyme leads to 
the accumulation of phenylalanine and its conversion 
into phenylpyruvate and causes a severe disease in hu-
mans: phenylketonuria, which is accompanied by post-
natal brain damage and mental retardation.  Pah -de-
ficient mice ( Pah  Enu2–/–  mice  [152] ) exhibit behavioral 
 alterations  [153–155] ; however, no evaluation of depres-
sion-like behavior was made. Interestingly, it was recent-
ly shown that PAH ablation in the mouse causes 70% re-
duction in 5-HT production in the brain without a loss of 
the 5-HT precursor tryptophan  [156] . Nonetheless, a dra-
matic reduction in brain 5-HTP levels as well as in the 
5-HTP/tryptophan ratio was observed in  Pah  Enu2–/–  mice, 
suggesting that accumulation of phenylalanine leads to 
the inhibition of  Tph2  activity in vivo, corresponding to 
its effect on TPH2 activity in vitro  [156, 157] . Therefore, 
the behavioral phenotype observed in  Pah -deficient mice 
can be partially attributed to lower TPH2 activity in the 
brain. Interestingly, administration of 5-HTP to  Pah -de-
ficient mice restored the cortical release of several mono-
amines in a model of restraint stress  [157] .

  For the same reason, a lack of PAH in  Drosophila me-
lanogaster , Henna, leads to a dramatic decrease in 5-HT. 
Therefore, for a long time Henna has been considered to 
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be the PAH and the TPH of insects until the main TPH, 
CG9122, was discovered  [158] . 

  Serotonergic Neuron Ablation
  Ablation of TPH2-producing neurons is another pos-

sibility to study the association between TPH2 and de-
pressive disorders. Hendricks et al.  [159]  demonstrated 
that expression of the transcription factor Pet-1 is re-
stricted to serotonergic neurons and its disruption in 
mice leads to abnormal development and loss of these 
cells but does not influence brain morphology and other 
monoamine systems  [159] .  Pet-1  null male mice show 
dramatically increased anxiety and intermale aggressive 
behavior supporting the link between aggression and se-
rotonergic hypofunction. Moreover, a profound deficit in 
offspring survival born from  Pet-1  –/–  dams was reported 
as a result of deficient maternal behavior  [160] . However, 
the level of female anxiety and aggressiveness that could 
contribute to offspring mortality was not assessed in 
these studies.

  Another mouse model, in which    Lmx1b  (LIM homeo-
box transcription factor 1 � ) was only deleted in  Pet-1 -ex-
pressing   cells, i.e. Lmx1b(f/f/p) mice, lack nearly all sero-
tonergic neurons but do not show any alteration in other 
monoamine systems  [161] . These animals display normal 
locomotion in Rotarod and open field tests  [161] , but 
show reduced basal sensitivity to mechanic stimuli and 
exhibit enhanced inflammatory pain response  [162] . 
Moreover, this model was used to study the mechanism 
of analgesic actions of antidepressants, including SSRIs, 
5-HT-norepinephrine reuptake   inhibitors, and tricyclic 
antidepressants  [162] . The results revealed that the anal-
gesic effect of antidepressant drugs, including those   af-
fecting both norepinephrine and 5-HT levels, was abol-
ished in the acute thermal pain   model.

  Pharmacological Targeting of TPH2

  The actual treatment strategies for depressive disor-
ders enhance the general serotonergic tone either by in-
hibition of the 5-HT transporter by SSRIs, or tricyclic 
antidepressants or by prevention of 5-HT degradation 
using monoamine oxidase inhibitors  [15, 35] . Also the 
intermediate product in 5-HT synthesis, 5-HTP ( fig. 1 ), 
has been successfully used for antidepressive therapy 
 [163–165] . Upon oral administration 5-HTP can reach 
the brain due to its ability to cross the blood-brain bar-
rier and effectively increase central 5-HT synthesis. The 
onset of any antidepressant drug effect usually takes up 

to 4 weeks. Therefore, it is suggested that not just neuro-
chemical but also structural changes, like the stimulation 
of neurogenesis in the hippocampus  [166]  or other long-
term adaptive changes in 5-HT neurotransmission, may 
be responsible for behavioral effects of chronic antide-
pressant treatment  [167] .

  All of the currently applied antidepressant drug thera-
pies show wide variability among patients in treatment 
response  [49] . While 30–40% of patients with major de-
pression do not respond to SSRI treatment  [95] , just about 
one third of patients gains full remission after antidepres-
sant therapy  [168] . The nonspecific inhibition of the 5-HT 
transporter can cause peripheral side effects, like a high 
risk of bleeding  [169, 170]  or skeletal changes  [171] . Further 
adverse effects, such as weight gain, insomnia and sexual 
dysfunction, are another problematic issue in humans and 
have been reported to be the main reason for noncompli-
ance, discontinuation or premature termination of treat-
ment by depressed patients  [172]; these adverse effects 
 stress the need for better treatment strategies. Therefore, 
the duality of the serotonergic system and the existence of 
a brain-specific TPH isoform constitute a promising new 
target for pharmacological intervention in the treatment 
of neuropsychiatric diseases. Instead of acting on already 
produced 5-HT, the opportunity to specifically influence 
the initial enzyme of 5-HT synthesis, TPH2 might enable 
selective manipulation of central 5-HT synthesis with less 
side effects and a better response rate.

  Inhibitors of both TPH enzymes, such as PCPA ( fig. 1 ), 
have been known for a long time and others have recent-
ly been published; however, they act only on  Tph1  due to 
permeability barriers  [173, 174] , and the treatment of cen-
tral diseases needs specific activation of TPH2.

  Despite their 70% sequence homology, TPH1 and 
TPH2 show some remarkable differences which might al-
low specific modulation of the two isoenzymes. The in 
vitro expression of recombinant fusion proteins indicat-
ed that TPH2 is more soluble than TPH1, and exhibits 
less substrate inhibition by tryptophan and tetrahydrobi-
opterin  [175, 176] . In addition, these enzymes seem to dif-
fer in their substrate specificities: TPH2 showed lower 
catalytic efficiency towards phenylalanine in vitro  [175, 
177, 178] . The most important difference is an additional 
N-terminal regulatory domain in TPH2 consisting of 44 
amino acids, which is absent in TPH1  [179] . We have 
shown that this domain is associated with an inhibitory 
effect on TPH2 activity  [63] . Other studies reported a 
negative effect of this domain on translational efficiency, 
stability and solubility of TPH2 compared to tyrosine hy-
droxylase and PAH  [180–183] .
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  Aromatic amino acid hydroxylases share several con-
served phosphorylation sites. However, the serin 19 resi-
due in the N-terminal domain of TPH2 is a unique phos-
phorylation target for protein kinase A and calcium/
calmodulin-dependent protein kinase II  [184, 185] . This 
phosphorylation seems to stabilize the protein  [184, 186, 
187]  and is also thought to be relevant for enzyme activa-
tion and 14-3-3 protein binding  [184, 188] . However, re-
cent studies did not confirm an alteration in the catalyt-
ic function of TPH2 upon phosphorylation  [185]  or bind-
ing to the 14-3-3 protein BMH1  [175] . 

  Its unique structural properties, in particular its in-
hibitory N-terminal domain, may allow specific activa-
tion of TPH2 by low molecular-weight substances. Such 
drugs can be tested either by fluorescence-based activity 
assays in test tubes  [189]  or in a cell-based system, for ex-
ample using the suicide pro-drug 7-hydroxytryptophan, 
which kills cells depending on their intrinsic TPH activ-
ity  [190] . Furthermore, identifying the still missing X-ray 
structure of TPH2 will be another important step in un-
derstanding the catalytic mechanism of the enzyme in 
order to develop novel drugs by virtual design.

  Conclusions

  In this review, we have shown that variations in the 
genes for TPH1 and TPH2, the rate-limiting enzymes in 
5-HT synthesis, were linked to neuropsychiatric diseases, 
such as bipolar disorder and major depression in humans, 
and to depression-like behavior in mice. However, these 
data are not always reproducible and in particular it is not 
obvious how alterations in the peripheral enzyme TPH1 
may influence functions of the central nervous system. 
Nevertheless, genetically altered animal models with 
changes in TPH2 expression support a role of this en-
zyme in brain function and depression-like behavior. 
Thus, activation of TPH2 may open new perspectives in 
the treatment of neurological and psychiatric disorders 
caused by alterations in brain 5-HT levels. Since TPH2 
carries an internal inhibitory domain, activation by small 
molecules should be feasible. The discrimination be-
tween TPH1 and TPH2 is a major task in the search for 
such compounds since some peripheral actions of 5-HT 
are deleterious and should not be stimulated. TPH2-acti-
vating drugs may exhibit higher efficiency and specific-
ity with less side effects than existing therapies for the 
treatment of depressive disorders, which are increasingly 
relevant for public health. 
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