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Abstract

Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by
the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-
methyltransferase. The cytosolic calcium is elevated in pinealocytes following o;-adrenergic stimulation, through IPs-and membrane calcium
channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of
investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on
noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-
methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents
were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in
tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities.
Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction
of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for
the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Melatonin is the main hormone synthesized and released from
the pineal gland following sympathetic stimulation during the
night. Norepinephrine interacts with a-and -adrenoceptors in
the pinealocyte membranes and, consequently, elevates intracel-
lular cAMP and calcium levels (Sugden et al., 1986; Sugden,
1989). These two second messengers participate in some way in
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the synthesis and activation of the three most important enzymes
in the melatonin biosynthetic pathway (Sugden et al., 1986; Ehret
etal., 1989, 1991; Klein et al., 1970; Ribelayga et al., 1997, 1999;
Yu et al., 1993). Tryptophan hydroxylase (TPH, EC 1.14.16.4) is
the first enzyme, catalyzing the transformation of tryptophan into
5-hydroxytryptophan, and is the rate-limiting step in the serotonin
synthesis. Serotonin accumulates in the pineal gland during the
day and, only at night, due to the activation of the enzyme
arylalkylamine N-acetyltransferase (AA-NAT; EC 2.3.1.87), it is
converted to N-acetylserotonin, that is then transformed into
melatonin by the catalysis of hydroxyindole-O-methyltransferase
enzyme (HIOMT, EC 2.1.1.4) (Sugden, 1989; Simonneaux and
Ribelayga, 2003).


mailto:soafeche@butantan.gov.br
http://dx.doi.org/10.1016/j.lfs.2007.12.011

530 R. Barbosa et al. / Life Sciences 82 (2008) 529-535

In rat pineal gland, TPH synthesis and activity are
stimulated by norepinephrine. cAMP, through the activation
of cAMP-dependent protein kinase A (PKA), phospho-
rylates the transcription factor cAMP response element-
binding protein (CREB), which starts the enzyme synthesis
(Ehret et al., 1991). In addition, enzyme phosphorylation by
PKA, protein kinase C (PKC) and Ca**/calmodulin-dependent
protein kinase and its further association with 14-3-3 protein
promotes its activation (Ehret et al., 1989; Banik et al.,
1997; Ichimura et al., 1987; Johansen et al., 1995). It was
demonstrated that the predominant TPH isoform in the pineal
gland, that shows circadian rhythm peaking at night, is TPHI.
THP2 is also present, but in much less quantity and does not
show the typical daily pattern (Sugden, 2003; Patel et al.,
2004).

AA-NAT has its synthesis and activity stimulated by
norepinephrine at night. Differently from TPH, however, AA-
NAT activity is elevated by 150 times (whereas TPH activity is
increased twice at night), and although the same cAMP/PKA/
CREB pathway (Maronde et al., 1999; Roseboom and Klein,
1995; Roseboom et al., 1996) is involved in the synthesis of
both enzymes, for the AA-NAT this transcriptional process is a
pre-requisite for its activation. This, in turn, is accomplished by
PKA and PKC phosphorylation, and the subsequent complex
formation with 14-3-3 protein (Ganguly et al., 2001).

The HIOMT regulation is different from that of TPH and
AA-NAT. HIOMT gene expression is partly activated by nor-
epinephrine at night. In addition HIOMT activity is further
stimulated by neuropeptide Y (NPY) that promotes intracellular
calcium elevation (Ribelayga et al., 1999; Simonneaux et al.,
1999).

The cytosolic calcium level in the pinealocyte is increased
by a;-adrenergic activation, acting in both mobilization from
the endoplasmic reticulum by IP;-stimulation and through the
store-operated calcium channels (“SOCs”) (Gomperts et al.,
2002; Lee et al., 2006, Parekh and Putney, 2005). Moreover,
high voltage-activated calcium channels are also present in
the rat pineal gland (Afeche et al., 2006; Chik et al., 1995,
1997; Chin et al.,, 1992) and these seem to be activated
either by acetylcholine or norepinephrine (Afeche et al.,
2006; Darvish and Russell, 1998; Letz et al., 1997). We have
recently reported that the blockade of L-type calcium channel
with nifedipine, a specific L-type calcium channel antagonist
belonging to dihydropyridine class, reduced melatonin
synthesis (Afeche et al., 2006), but the mechanisms involved
were not resolved.

With the purpose of clarifying the modulation of melatonin
synthesis and secretion by the L-type calcium channels, we
studied the effects of nifedipine, in noradrenergic stimulated
cultured rat pineal glands. The results showed that both mela-
tonin synthesis and secretion stimulated by norepinephrine were
impaired by nifedipine and that TPH activity is the main step
involved. Neither AA-NAT nor HIOMT activities were affected
by nifedipine. The indoles 5-hydroxytryptophan (5-HTP), se-
rotonin (5-HT) and N-acetylserotonin (NAS) were all reduced
in pinealocytes by nifedipine, probably as a consequence of
TPH activity reduction.

Materials and methods
Animals

Young male Wistar rats were kept under a 12:12 light—dark
cycle (lights on at 7:00 am) in a temperature-controlled (21+
2 °C) room with water and food ad libitum.

All procedures were approved by the Institute of Biomedical
Sciences (University of Sdo Paulo, Ethical Committee for
Animal Research, Brazil; CEEA) and are in agreement with the
ethical principles in animal research adopted by the Brazilian
College of Animal Experimentation (COBEA).

Pineal gland culture

The animals (weighing 150-180 g) were decapitated
and their pineal glands were removed and immediately placed
in ice-cold Biggers, Gwatkin, Judah medium with Fitton—
Jackson modification (BGJ,, — Gibco, Grand Island, NY,
USA), with the addition of BSA (1 mg/ ml), 2 mM glutamine,
0.1 mg/ ml ascorbic acid, and penicillin (100 U/ ml)—
streptomycin (100 pg/ml). Pineal glands were cultured as
described by Parfitt et al. (1976). Briefly, pineal glands were
incubated (37 °C; 95% 0,—5% CO,) in BGJ, medium on 24-
well plates (2 glands/well; 200 pl/well) for 48 h (the time
needed for the occurrence of total degeneration of the
presynaptic elements) before treatments and the medium was
changed after the first 24 h. After 48 h of culture, the glands
were placed in fresh medium for 1 h and then submitted to one
of the treatments described below. After 5 h of treatment, the
glands were collected, frozen in dry ice and kept at —85 °C until
assayed.

Pinealocyte culture

Pineal glands were dissociated by papain digestion (Papain
Dissociation System, Worthington Biochemical Corporation,
Freehold, NJ). The glands were isolated (from rats with approx-
imately 100 g) and immediately placed in ice-cold Dulbecco’s
Modified Eagle’s Medium (DMEM) (glucose: 1000 mg/l,
HEPES: 5.9 g, sodium bicarbonate: 3.7 g) (St. Louis, MO,
USA). Then, the tissue was incubated at 37 °C for 50 min in
papain (0.01%) and DNase (0.01%) solution. After removal of
papain and its blockade with ovomucoid (2 mg/ml), the
pinealocytes were mechanically dispersed and resuspended in
DMEM supplemented with 10% fetal calf serum and 1%
penicillin—streptomycin to obtain the concentration of
2x10° cells/ml. Five ml of cells in a culture medium were
cultivated in 25 cm? culture flasks, at 37 °C, in 5% CO»/95%
air, for 24 h.

Melatonin and indole assays

Melatonin, NAS, 5-HT and 5-HTP contents were determined
by HPLC with electrochemical detection (Waters System,
Milford, MA, USA). The indolamines were separated on a
Resolve C18 column (5 pm, 3.9 x 150 mm). The chromatographic



R. Barbosa et al. / Life Sciences 82 (2008) 529-535 531

system was isocratically operated with the following mobile
phase: 0.1 M sodium acetate, 0.1 M citric acid, 0.15 mM EDTA,
30% (melatonin) or 10% (5-HT, NAS and 5-HTP) methanol, pH
3.7, at a flow rate of 1 ml/min. The electrochemical detector
potential was adjusted to +900 mV. Each gland was sonicated in a
solution of 0.1 M perchloric acid (120 pl) containing 0.02%
EDTA and 0.02% sodium bisulfate. After centrifugation, 50 pul of
the supernatant (or 50 ul of the 4:1 culture medium in 0.1 M
perchloric acid, 0.02% EDTA, 0.02% sodium bisulfate solution)
was injected into the chromatographic system (Injector Mod.
7125, 20 pl loop, Rheodyne Inc). The indoles were quantified
using the Millennium 32 Software (Waters System, Milford,
MA, USA).

TPH activity determination

Each pineal gland was sonicated in sodium phosphate buffer
(2 mM, pH 7, 100 pl). To each sample were added: HEPES
(50 mM, pH 7), catalase (100pg/ml), tryptophan (50 pM),
dithiothreitol (5 mM), Fe (NHy), (SOy4), (10 uM), 6-MPH,
(500 uM) and 1 ul of [*H]tryptophan (1 mCi/ml — previously
dried under nitrogen). The material was incubated at 37 °C for
10 min. After a charcoal activated solution has been added
(7.5% in 1 M HCI) to interrupt the reaction, 200 pl of the
supernatant were transferred to scintillation tubes, liquid
scintillation was added and radioactivity was evaluated with a
Beckman LS6500 3 counter.

AA-NAT activity determination

AA-NAT activity was measured by a radiometric assay
(Deguchi and Axelrod, 1972, modified by Parfitt et al., 1975).
Briefly, 100 pl of 0.1 M sodium phosphate buffer, pH 6.8,
containing 40 mM tryptamine and [*H]-acetyl coenzyme A
(2 mM, final specific activity=4 mCi/mmol) were added to a
microcentrifuge tube containing one gland kept at 4 °C. The
glands were sonicated and then incubated at 37°C for 20 min.
The reaction product N->[H]-acetyltryptamine was extracted
with chloroform (1 ml). Samples of 500 ul were evaporated
until dry in a scintillation vial and radioactivity was determined
with a Beckman LS6500 3 counter.

HIOMT activity determination

HIOMT activity was assayed as previously described
(Ribelayga et al., 1997; Axelrod and Weissbach, 1961). The
pinealocytes were sonicated in a phosphate buffer (0.05 M, pH
7.9, 50 ul) and soon afterwards 150 pl of a solution containing
!4C-S-adenosyl-L-methionine (activity 43.8 mCi) and N-
acetylserotonin (1 mM) was added. The homogenates were
incubated for 30 min at 37 °C. The reaction was interrupted by
adding 200 pl of sodium borate buffer (12.5 mM, pH=10) and
1 ml of chloroform saturated in water. The tubes were
centrifuged at 13,000g rotation for 5 min at 4 °C. The product
'4[C] melatonin was extracted in 800 pl of chloroform, which
was subsequently evaporated, and the radioactivity evaluated
with a Beckman LS6500 3 counter.

Protein assay

Protein content was measured in tissue homogenate as
described in Ribelayga et al (1999).

Drugs and reagents

(-) Arterenol bitartrate salt, (-) Isopropylarterenol hydrochlor-
ide, N® 2-O-dibutyryladenosine 3’-5’cyclic monophosphate,
nifedipine, 5-hydroxy-I-tryptophan, S5-hydroxytryptamine, N-
acetylserotonin and melatonin were purchased from Sigma
(St. Louis, MO, USA); culture products from Gibco (Grand
Island, NY, USA); salts and reagents were purchased from Merck
(Brazil). Radiochemicals were obtained from Amersham Bios-
ciences (Brazil).

Norepinephrine and isoproterenol were dissolved in 0.01 N
HCI and then in an ascorbic acid solution (50 mg/1). Nifedipine
was first dissolved in ethanol (the concentration was always
less than 0.1%) and dilutions were made in BGJb medium.
Dibutyryl-cAMP was prepared in BGJb medium.

Experimental procedures

The following experimental groups were made and the
experiments were replicated at least 3 times.

Pineal glands were stimulated with norepinephrine (NE)
(1 uM) in the absence or in the presence of several concentrations
ofnifedipine (NIF) (0.1 uM to 30 pM) and intracellular melatonin
was measured. NIF was added 10 min before the addition of NE
(at least n=30 for each NIF concentration).

Pineal glands were stimulated with NE (0.3 nM to 1 pM),
isoproterenol (ISO) (0.1 nM to 1 puM) or dibutyryl-cAMP
(DBcAMP) (0.1 mM to 3 mM) in the absence or in the presence of
NIF (10 pM added 10 min before gland stimulation) and
intracellular melatonin was measured (at least =120 for each
dose—response curve).

Pineal glands or pinealocytes were stimulated with NE
(1 nM—10 pM) in the absence (n=30) or in the presence of NIF
(10 uM, added 10 min before NE; n=30) and TPH, AA-NAT,
and HIOMT activities were measured.

Pineal glands were stimulated with NE (1 uM) in the absence
(n=30) or in the presence of NIF (10 uM, added 10 min before
NE; n=32) and indoles (5-HT, 5-HTP, NAS) were measured.

Pineal glands or pinealocytes were stimulated with NE
(1 uM) in the absence (n=16) or presence (n=14) of NIF (10
uM), and the serotonin and melatonin contents in the culture
medium were measured.

Statistical analysis

Data were always presented as mean+SEM. Indoles content
in pineal glands, pinealocytes and culture medium were ex-
pressed as ng/gland, ng/2 x 10°cells and ng/well, respectively.
AA-NAT, TPH, and HIOMT activities were expressed in pmol
or nmol of radioactive product/pg protein/hour. Statistical
analyses (GraphPad Prism 5.0) were performed using ANOVA
followed either by the Bonferroni post-hoc test (comparison
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Fig. 1. Effects of several concentrations of nifedipine on melatonin content of
cultured rat pineal glands stimulated with norepinephrine (1 pM). **p<0.01;
significantly different from control.

between all groups) or by the Dunnett’s post-hoc test
(comparison of groups against the control). When appropriate,
Student’s ¢ test was used.

Results

NIF at the concentrations of 10 and 30 pM significantly
reduced melatonin synthesis by 20-25% in cultured pineal
glands stimulated by NE (1 uM) (p<0.01, n=20 for each
group) (Fig. 1), whereas with lower doses of NIF there was a
reduction, but not statistically significant. Likewise, NIF
reduced melatonin released by pinealocytes, as was observed
by the quantification of melatonin in the culture medium
(p<0.01, n=10 for each group) (Fig. 2). The effects of NIF on
melatonin content appeared to involve a reduction of all the
precursors of its synthetic pathway. Accordingly, it was seen a
reduction for 5-HTP, 5-HT, and NAS in cultured pineal glands
stimulated by norepinephrine 1 pM (p<0.01; for each group
n=20) (Fig. 3).

Besides the intracellular content, serotonin was also mea-
sured in the culture medium of glands stimulated by 1 uM NE,

*
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Fig. 2. Melatonin released by rat pinealocytes in culture when stimulated with
norepinephrine, in the absence (black bars) or in the presence of nifedipine
(10 uM) (grey bars). Melatonin was measured in the culture medium. *p<0.05
and **p<0.01; significantly different from respective controls.
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Fig. 3. Effects of nifedipine (10 pM) on the content of 5-hydroxytriptophan
(5-HTP), serotonin (5-HT) and N-acetylserotonin (NAS) in cultured rat pineal
glands, stimulated with norepinephrine (1 puM). *p<0.05 and **p<0.01;
significantly different from respective controls.

and in this condition serotonin was lesser when the glands were
previously incubated with NIF (p<0.01; n=10 for each group)

(Fig. 4).
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Fig. 4. Effect of nifedipine (10 uM) on the amount of serotonin released by rat
pineal glands in culture stimulated with norepinephrine (1 uM). Serotonin was
measured in the culture medium. **p<0.01; significantly different from control.
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Increasing concentrations of NE, ISO and DBcAMP
increased pineal gland melatonin synthesis in a concentration-
dependent manner, as it would be expected [maximal responses:
7.74+£0.45 ng/gland (NE); 7.75+0.33 ng/gland (ISO); 6.78+
0.45 ng/gland (DBcAMP)]. The previous addition of NIF to
the culture, significantly reduced the maximal responses of
melatonin production for all the treatments (p<0.01; n=18 for
each group) (Fig. 5).
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Fig. 5. Dose—response curves of melatonin content of cultured rat pineal glands
stimulated with different concentrations of norepinephrine, isoproterenol and
dibutyryl-cAMP, in the absence (black dots) or in the presence of nifedipine
(10 uM) (white dots). **p<0.01; ***p<0.001; significantly different from
respective controls.
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Fig. 6. Effects of nifedipine (10 pM) on AA-NAT, HIOMT, and TPH activities in
cultured rat pinealocytes (AA-NAT and HIOMT) or pineal glands (TPH)
stimulated with norepinephrine. Black bars=controls; Grey bars=with
nifedipine. *Significantly different from respective controls stimulated with

norepinephrine 1 pM and 10 pM, p<0.05; # significantly different from control
without stimulation, p<0.05.

For better understanding these effects of NIF on melatonin
synthesis and secretion, we analyzed AA-NAT and HIOMT
activities in cultured pinealocytes stimulated by NE (1 nM to
100 nM). We observed that AA-NAT activity responds in a
concentration-dependent manner, showing the higher response
at the NE concentration of 100 nM. HIOMT, on the contrary,
did not change their activity in response to different concentra-
tions of NE. In these conditions, previous NIF addition (10 pM)
did not alter AA-NAT or HIOMT activity in any NE
concentration used (p>0.05; n=10 for each group) (Fig. 6).

TPH activity, on his turn, increased in approximately two-
times by NE stimulation with regard to the control non-
stimulated glands (p<0.05) (Fig. 6). Moreover, NIF reduced
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TPH activity by 55% at 1 uM and by 26% at 10 uM of NE
(p<0.05; n=10 for each group) (Fig. 6).

Discussion

This study showed that the L-type high voltage-activated
calcium channels modulate adrenergic-induced melatonin
synthesis and secretion in cultured rat pineal glands because
the blockade of these channels by nifedipine reduced intracel-
lular and released melatonin.

The concentrations of NIF that were effective in reducing
melatonin were 10 uM and 30 uM, and, then, in the subsequent
studies we used the minimum concentration (10 puM) that
diminished melatonin.

The reduction of melatonin by nifedipine involves the
cAMP/p-adrenergic pathway and is dependent on mechanisms
situated downward to cAMP synthesis. This conclusion derives
from the fact that the concentration—response curves to
isoproterenol, a [-adrenergic receptor agonist, and to dibu-
tyryl-cAMP, a permeable cAMP analogue, both have their
maximal responses reduced by nifedipine. There are, at least,
two possible pathways by which the cAMP/B-adrenoceptor
activation would promote the influx of calcium. First, cAMP
could act on the described cAMP-dependent nonspecific
cationic channels of pineal cells, inducing membrane depolar-
ization and, as a consequence, the opening of L-type calcium
channels (Darvish and Russell, 1998). Second, PKA could
phosphorylate those calcium channels and facilitate their
opening, as demonstrated for L-type calcium channels in the
heart (Hille, 2001).

AA-NAT activity was stimulated by NE, as expected
(Roseboom et al., 1996), with the maximal response induced
by 100 nM of NE. HIOMT activity, in contrast, was not changed
by NE addition, which is in accordance with the results found in
the literature, that HIOMT activity is not regulated by NE, but
instead it depends of NPY (Ribelayga et al., 1997, 1999). AA-
NAT and HIOMT activities induced by several concentrations
of NE were not modified by the blockade of L-type calcium
channels with nifedipine. However, there are evidences that
both AA-NAT and HIOMT activities are dependent of calcium.
In the absence of calcium AA-NAT activity was reduced in
cultured pineal glands stimulated by isoproterenol or dibutyryl-
cAMP (Yu et al., 1993; Zatz and Romero, 1978). The possible
explanation is that the calcium ions that promote the poten-
tiation of the AA-NAT activity come from a different source,
not related to the membrane voltage-dependent channels, as
calcium is recognizably compartmentalized within the cells
(Gomperts et al., 2002). The lack of action of nifedipine on
HIOMT activity of NE-stimulated pinealocytes could be
explained by the fact that its regulation, as mentioned before
does not depend on the noradrenergic pathway (Ribelayga et al.,
1997, 1999).

TPH had its activity stimulated in approximately two-times
by NE. In this case, the concentrations of NE that induced this
effect were higher (1 pM and 10 uM) than that for inducing the
maximal response for AA-NAT activity (100 nM). TPH activity
was significantly reduced by the nifedipine-induced L-type

calcium channel blockade. The mechanism by which calcium
modulates TPH activity may involve the Ca”*/calmodulin
system, since it has been demonstrated for the brain TPH, that
its phosphorylation and, in consequence, its activation is
dependent on Ca®"/calmodulin complex (Ehret et al., 1991). It
is not completely clear yet if the situation in the pineal gland is
similar to the pattern described in the brain. In support of this
hypothesis, it should be mentioned that the phosphorylation of
TPH by Ca**/calmodulin enables its association with the 14-3-3
protein, which was identified in the rat pineal gland. This
complex formation promotes an increase of TPH activity by
limiting its dephosphorylation (Ichimura et al., 1987; Klein
et al., 2003).

Another possibility of calcium action on TPH activity would
be through mitogen-activated protein kinase (MAPK). There
are data demonstrating that the activation of voltage-dependent
calcium channels could stimulate the Ras/MAPK pathway in
PC12 cells (Rosen and Greenberg, 1996). In turn, MAPK could
activate TPH, either by acting on the TPH gene promoter,
inducing the enzyme transcription (Wood and Russo, 2001) or
by phosphorylating the CREB (Pende et al., 1997).

We have also observed that 5-HTP, 5-HT and NAS were all
reduced by the blockade of the L-type calcium channels. This
result could be anticipated in the light of the fact that 5-HTP is
the product of the rate-limiting enzyme of the 5-HT synthesis,
the tryptophan hydroxylase, and that this, in turn, gives rise to
the substrates of AA-NAT and HIOMT, thus expectedly leading
to a reduction of the melatonin synthesis (Sugden, 1989).

5-HT release was accordingly also reduced by nifedipine.
High concentrations of 5-HT are present in structural vesicles,
as well as in the cytoplasm (Juillard and Collin, 1980). The
activation of a-adrenergic receptors promotes the exocytosis
of serotonin contained in the cytoplasmatic vesicles. This
indolamine has a paracrine excitatory action on pineal 5-HT,-
type serotonin receptors, increasing melatonin synthesis
(Steardo et al., 2000; Sugden, 1990). Therefore, the reduction
of serotonin release by nifedipine may have, probably, po-
tentiated the already diminished melatonin synthesis by TPH
inhibition.

In summary, this study demonstrated that the L-type high
voltage-activated calcium channels of the rat pineal gland have
a role on the regulation of melatonin synthesis and release
stimulated by norepinephrine, by modulating the activity of the
tryptophan hydroxylase enzyme.
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