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Abstract: The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field
of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady
state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or
irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem
cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo
dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a
subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells,
may also have some degree of plasticity in specific situations. The function of ISCs is maintained by
the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition,
various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions
following epithelial injury. Here, we summarize the current understanding of ISCs and their niches,
review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how
inflammatory cytokines contribute to epithelial regeneration.
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1. Discovery of Lgr5+ Stem Cells and Their Niche

The intestinal epithelium consists of the villus part, which faces the lumen and plays
an important role in food digestion and absorption, and the crypt part, which is located
between the villus as an invaginated form and acts as a source of epithelial turnover.
Intestinal stem cells (ISCs) have been thought to reside within the crypts and continuously
supply their daughter differentiated cells from crypt to villi. While the majority of the
differentiated daughter cells turn over within 3–5 days, ISCs are long-lived and can self-
renew [1]. Earlier studies revealed that there are label-retaining cells located at the +4
position within the proliferating zone of crypts, which were initially thought to be ISCs [2].
However, recent studies using the lineage tracing method identified crypt base columnar
(CBC) cells as rapidly cycling, self-renewing ISCs residing at the +1 to +3 position of the
crypt [3].

Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is a receptor of
R-spondin, and its binding strengthens Wnt signaling through the stabilization of β-
catenin [4]. Lgr5 was found to be specifically expressed in CBC cells [3]. Lineage tracing
experiments using Lgr5-CreERT mice showed that Lgr5+ CBC cells have the capacity of
long-term self-renewal and differentiation into multiple cell types, indicating that Lgr5+
CBC cells have a stem cell function.

Several pathways are strongly activated in ISCs to maintain their stem cell activity.
Wnt signaling, transduced through β-catenin/transcription factor 4 (Tcf4), is essential for
intestinal development during the embryonic stage and plays a critical role in mucosal
homeostasis and stem cell functions in the adult intestinal epithelium [5]. The Notch
receptor Notch1 is expressed in Lgr5+ CBC cells, and Notch signaling is required for
stem cell maintenance [6,7]. Inhibition of notch signaling induces rapid stem cell loss,
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with reduced proliferation and apoptosis, and promotes differentiation into secretory cell
lineages. BMP signaling suppressed Wnt signaling to ensure a balanced control of ISC self-
renewal, and conditional inactivation of Bmpr1a in mice increased the stem and progenitor
cell populations, eventually inducing intestinal polyposis [8].

Intestinal stem cells are supported by the surrounding niche cells to maintain their
proliferative, self-renewing ability. Multiple cell types contribute to the stem cell niche
(Figure 1). Paneth cells, interspersed between Lgr5+ CBC cells, play a role in mucosal
immune defense and act as niche cells by secreting several growth factors, such as Egf,
Tgf-a, Wnt3, and Notch ligand Dll4, all of which activate critical signals for stem cell
maintenance [9]. Nevertheless, even if Paneth cells are ablated, intestinal homeostasis is
not impaired, as other niche cells, such as tuft cells, enteroendocrine cells, and stromal
cells, can compensate for the loss of Paneth cells [9–11]. The stromal cells play essential
roles as stem cell niches. The major intestinal stromal subsets are classified as fibroblasts, a-
smooth muscle actin (a-SMA)-expressing myofibroblasts, and perivascular pericytes [12,13].
Studies using in situ hybridization revealed that many Wnt ligands, such as Wnt-2b, Wnt-4,
Wnt-5a, and Wnt-5b, as well as R-spondins, are expressed in the stroma to support ISCs
(Figure 2) [14,15]. Foxl1+ telocytes, a small subset of fibroblasts, are one of the important
sources of Wnts, and the ablation of telocytes inhibited the proliferation of ISCs, which was
associated with a loss of active Wnt signaling [16,17]. Recent studies have revealed more
detailed subsets among these stromal cell types, showing that Foxl1+PdgfraHigh telocytes
secrete Wnt ligands, R-spondins, and BMPs, while CD81+PdgfraLow trophocytes at the
crypt bottom secrete BMP antagonists and gremlin 1 to maintain WNT signaling [18,19].
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Figure 1. Intestinal stem cells and their niches. Lgr5+ crypt base columnar (CBC) cells reside at the crypt base and
continuously supply their daughter cells from crypt to villi. Paneth cells, interspersed between Lgr5+ CBC cells, can act
as a stem cell niche to maintain the stem cell functions of CBC cells. There is another stem cell pool, the +4 cells, which
contain quiescent +4 stem cells, Paneth cell precursors, and label-retaining cells. Transit-amplifying (TA) cells include more
differentiated and actively proliferating but relatively short-lived cell populations, including both secretory and absorptive
progenitors, which can give rise to stem-like cells following stem cell damage. Secretory progenitors are differentiated into
Paneth cells, goblet cells, tuft cells, and enteroendocrine cells, while absorptive progenitors enterocytes. The stromal cells
surrounding the crypt region contribute to the stem cell niche and are classified into several subsets, such as fibroblasts,
myofibroblasts, telocytes, and trophocytes, all of which express and secrete stem cell niche factors. Representative markers
of each cell are shown in red.
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Figure 2. Stem cell niches and regulatory signals. Stem cell niches consist of epithelial cells, stromal cells, immune cells,
bacteria, the nervous system, and other signals. Paneth cells, interspersed between Lgr5+ CBC cells, secrete EGF, TGFα,
DLL4, and WNT3 and maintain stem cell functions. When Paneth cells are ablated, tuft and enteroendocrine cells act
as a complementary source of Notch signaling. Fibroblasts maintain stem cell functions by producing WNT, R-spondin,
gremlin, and PGE2. Foxl1+PdgfraHigh telocytes provide Wnt, R-spondin, and BMP, while CD81+PdgfraLow trophocytes at
the crypt bottom secrete BMP antagonists and gremlin 1 to strengthen WNT signaling. WNT and BMP antagonists are also
secreted from smooth muscles. The cytokines secreted from immune cells, including Wnt-producing macrophages, Jagged-
producing dendritic cells, IL13-producing ILC2s, and IL22-producing ILC3s, have an important role in stem cell regulation
and epithelial regeneration. Enteric bacteria either directly or indirectly regulate stem cell functions via production of MDP,
which supports ISC survival and activation of the tuft cell–ILC2 immune circuit through their metabolites. Tuft cells are
involved in the activation of ILC2s via production of IL-25 and leukotrienes. Enteric nerves and tuft cells support ISC
functions via production of acetylcholine, and various neuron-derived products can stimulate ILC2s, which support ISC
function. Major signals provided from stem cell niches are shown in blue.

The EGFR pathway is activated in the stem and progenitor cells, and multiple EGFR
ligands mediate this pathway. As mentioned above, Paneth cells are likely involved in this
signaling, but more recent studies have identified neuregulin 1 (NRG1) as a predominant
EGFR ligand that activates ISCs during epithelial repair and development [20,21]. NRG1 is
upregulated in the stromal compartment of the regenerating intestine and is indispensable
for tissue repair. NRG1, but not EGF, increases cellular diversity in cultured enteroids,
highlighting the importance of NRG1 as a stem cell niche factor. BMP antagonists, including
gremlin 1, gremlin 2, and chordin-like 1, are also expressed by intestinal pericryptal
myofibroblasts and smooth muscle cells at the colon crypt [22]. Other reports showed that
the mesenchymal cells express prostaglandin E2 (PGE2) to promote epithelial regeneration
through the activation of YAP signaling [23,24].

Bacterial pathogens in the intestinal lumen also, in many ways, contribute to the
activity of ISCs. ISCs express a high level of an innate immune receptor, nucleotide-binding
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oligomerization domain-containing protein 2 (NOD2) receptor, and can recognize bacteria-
derived products through NOD2. A common peptidoglycan motif, muramyl dipeptide
(MDP), supports ISC survival through the clearance of the mitochondrial reactive oxygen
species (ROS) within ISCs via mitophagy in a NOD2-dependent manner [25]. Another
receptor for bacterial pathogens, toll-like receptor 4 (TLR4), also plays an important role in
intestinal homeostasis and the protection against epithelial damages. Tlr4–/– mice as well
as germ-free, wild-type mice were more susceptible to epithelial damage induced by DSS
treatment [26]. Subsequent studies have suggested that the proliferation of ISCs appears
to be mediated at least in part by TLR4, as well as downstream expression of the specific
microRNA such as miR-375-3p [27,28].

Recent studies have suggested that gut microbiota modulate not only gut homeosta-
sis but also functions and diseases in the distant organs, including the central nervous
system (CNS), liver, pancreas, and skin [29]. In particular, the gut–brain axis has been
shown to be involved in various diseases through bidirectional communication between
the intestine and the central nervous system, which is largely mediated by the gut micro-
biome. Several mechanisms have been suggested concerning the gut–brain axis. First, the
microbiota-derived metabolites and neurostimulatory peptides, such as glutamate, gamma-
aminobutyric acid (GABA), and serotonin, can act as neurotransmitters to stimulate the
CNS, as well as the enteric nervous system [30]. The bacterial metabolites are also related
to other extra-intestinal disorders, including non-alcoholic steatohepatitis [31]. Second,
specific cytokines and immune cells can be activated in the intestinal bacteria, and they
play an important role in ISC regulation and affect the gut–brain axis. For example, gut mi-
crobiota are associated with the development and severity of multiple sclerosis [32], since
autoreactive T cells, which respond to myelin oligodendrocyte glycoprotein (MOG), can
be activated by specific intestinal bacterial species, such as the family of Erysipelotrichaceae
and a strain of Lactobacillus reuteri. In addition to multiple sclerosis, it has been reported
that there is a strong association between gut dysbiosis and other neurological and psycho-
logical disorders, including Parkinson’s disease, amyotrophic lateral sclerosis, Alzheimer’s
disease, and autism spectrum disorder. Teratani et al. recently proposed a liver–brain–gut
axis, in which vagus nerve signals in the liver mediate the differentiation of peripheral
regulatory T cells (pTreg cells) in the gut and subsequent intestinal inflammation [33]. As
surgical resection of the hepatic vagal sensory afferent nerves reduced pTreg cells and
increased susceptibility to colitis, the liver seems to be an important relay point within the
gut–brain axis.

The nervous system is considered a part of the stem cell niche. Acetylcholine (ACh),
a major neurotransmitter in the enteric nervous system, is associated with multiple func-
tions, including movement, secretion, and endocrine [34]. In addition, as the nonselective
blockade of muscarinic receptors using scopolamine reduced both the number and activity
of Lgr5+ ISCs [35–37], ACh-producing nerves play a role in the ISC niche. Interestingly,
epithelial tuft cells, which usually express a specific marker, Dclk1, can act as a source of
ACh [38], and the expansion of Dclk1+ tuft cells was observed following the administration
of scopolamine via a negative-feedback loop. Although a muscarinic receptor, M3R, was
expressed in several cell types in the intestine, Prox1+ enteroendocrine cell-specific ablation
of M3R induced robust tuft cell expansion, suggesting that the Prox1+ cells monitor and
sustain the murine intestinal epithelial cholinergic niche.

2. Plasticity within Intestinal Stem and Progenitor Cells

Recently, it has been suggested that short-lived progenitors and even a subset of
mature cells can dedifferentiate and function as an alternative source of ISCs during
inflammation and regeneration. The ablation of Lgr5+ CBC cells using a diphtheria toxin
receptor gene did not affect the homeostasis of the intestinal epithelium in mice, suggesting
the presence of another reserve stem cell pool [39]. The currently accepted theory is that
there are two major, functionally distinct populations of stem cells: the Lgr5+ CBC cells,
which divide rapidly at the crypt base, and the more quiescent +4 stem cells, which reside
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at the +4 position above CBC cells. The +4 stem cells are marked by unique markers, such
as Bmi1, Tert, Hopx, Krt19, Clu, Mex3a, or Lrig1 [39–46], and can self-renew and modestly
trace the entire villus crypt units in the normal state, but become more active following
epithelial injury [47]. While Lgr5+ stem cells are susceptible to various types of epithelial
injury induced by irradiation [41,48–50], chemicals [51–53], and pathogens [54,55], and
easily undergo apoptosis, the +4 stem cells are resistant to such epithelial injury and serve
as a reserve stem cell population [39,48]. Following the loss of Lgr5+ cells, the +4 reserve
stem cells interconvert to Lgr5+ ISCs and act as a major source of cell supply. At this stage,
the re-emerged Lgr5+ stem cell pool is indispensable for epithelial regeneration [56].

Apoptosis in Lgr5+ ISCs occurs predominantly through the p53/PUMA-dependent
pathway, and blockade of this pathway prolongs the survival of Lgr5+ cells and promotes
epithelial regeneration [52,57]. Apoptosis in +4 stem cells can be induced by tamoxifen, a
reagent that excites the Cre–LoxP gene recombination system in a Bcl2-dependent man-
ner [58], and this effect might influence the frequency of lineage-tracing events from Lgr5+
and +4 ISCs. Activation of the CreERT system in the intestinal epithelium impairs stem
cell functions by causing genome toxicity [59], suggesting that previous findings using the
CreERT-dependent lineage-tracing system may need to be carefully reinterpreted.

Transcriptome analyses at the single-cell level revealed that at least a subset of +4 ISCs,
including Bmi1+ cells, may belong to the enteroendocrine lineage [60]. Another group
reported that Bmi1+ cells expressed the enteroendocrine cell-related genes, including
Prox1, and lineage tracing showed that Prox1+ cells maintained both the homeostasis
and regeneration of the intestinal epithelium [61]. Single-cell mRNA-seq revealed that
the Prox1+ cells consist of two subgroups: enteroendocrine and tuft cell lineages [37,61].
In addition, CD69+ and CD274+ goblet cell precursors can dedifferentiate into Lgr5+
stem cells in response to stem cell ablation [62]. Secretory precursors that express Dll1
or Atoh1 [63] also act as a reserve stem cell pool and can give rise to stem-like cells after
epithelial injury [64,65]. Our group recently identified Bhlha15+ (also known as Mist1+)
secretory precursors that can dedifferentiate into stem-like cells in the small intestine and
the colon. Dedifferentiation from Bhlha15+ progenitors occurs in a Notch-dependent
manner in the small intestine, and in a YAP-dependent manner in the colon [53]. Finally,
in addition to the secretory precursors, Alpi+ enterocyte-lineage progenitors also had the
capacity to replace lost stem cells during intestinal regeneration [66].

The dedifferentiation and interconversion from the progenitors to the stem cells are
controlled by multiple mechanisms, including epigenetic modification and Wnt, Notch,
and Ascl2-dependent signaling. Jadhav et al. identified that thousands of cis elements
that control lineage-restricted gene expression are selectively open in secretory cells and
the accessibility dynamically converts toward that of Lgr5+ stem cells in response to
the Lgr5+ stem cell loss [62]. As Wnt ligands are required for organoid growth from
Dll1+ secretory progenitors, the importance of Wnt signaling in dedifferentiation has been
suggested [63]. Systemic inhibition of Wnt secretion with porcupine inhibitors impaired
intestinal homeostasis after radiation injury [15]. During tissue damage and regeneration,
inflammatory cells such as macrophages serve as an important source of Wnt ligands [67].

Likewise, inhibition of Notch signaling using a γ-secretase inhibitor resulted in im-
paired proliferation and the loss of the regenerative response within the epithelial layer
after DSS treatment [68], and the deletion of the Notch 1 or Notch 2 receptor reduced
epithelial proliferation and impaired crypt regeneration after radiation [69], suggesting
the importance of Notch signaling after injury. In inflammatory conditions, tissue-resident
dendritic cells may serve as niche cells that activate Notch signaling in ISCs [70]. Ascl2, a
transcription factor that cooperates with β-catenin/Tcf4 and controls the stem-cell-specific
subset of intestinal Wnt target genes [71], has also been suggested as an essential fac-
tor for stem cell interconversion. Ascl2 activates IL-11RA signaling, which promotes a
regenerative response in the intestinal epithelium [72].
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3. Plasticity in Mature Cell Types and Potential as an Origin of Cancer

In addition to the progenitors, several reports have shown that a few mature cells
can also dedifferentiate and give rise to stem cells. Studies using Paneth-cell-labeled
transgenic mice suggested that mature Paneth cells may be capable of dedifferentiating
in response to irradiation and acting as stem-like cells [73]. Activation of Notch signaling
and SCF signaling appears to be required for the dedifferentiation from Paneth cells [51].
Phosphatidylinositol 3-kinase (PI3K)/Akt and Wnt signaling are also activated during the
dedifferentiation of Paneth cells following chemically induced intestinal injury [74].

In the colon, more differentiated Krt20+ surface enterocytes can contribute to the
epithelial regeneration in response to the loss of Lgr5+ stem cells during DSS-induced
injury [75]. During colonic regeneration, there is an upregulation of R-spondin 3 in the
stroma, which appears necessary to enhance Wnt signaling and dedifferentiation from
differentiated Krt20+ cells.

Plasticity in mature cell types may potentially initiate carcinogenesis. Simultaneous
Notch activation with the loss of Apc in Paneth cells induces tumor formation in the
intestine, suggesting the possibility that Paneth cells may serve as the origin of intestinal
tumors under specific conditions [51,73,74]. Consistently, aberrant appearance of Paneth
cells is frequently observed in intestinal epithelial lesions, including colorectal cancer [76].
Tuft cells have been suggested as another source of mature cell-derived tumorigenesis.
It was reported that Dclk1+ tuft cells [77] or IL17RB+ tuft-like cells [78] act as stem-like
cells in the established intestinal tumors. Similarly, Apc deletion in Dclk1+ tuft cells
generates colonic tumors in the setting of additional DSS-induced inflammation, while
tumor formation from Dclk1-expressing cells was not observed in the steady state [79].
These results suggest that intestinal tuft cells, some of which appear to be extremely long-
lived, can act as colon cancer-initiating cells following acute injury. However, it remains
unclear as to what factors are a key trigger for tuft cell-derived tumor formation. As
the activation of NF-κB signaling is reportedly required for dedifferentiation and tumor
formation from a non-stem cell population, several key pathways such as NF-κB signaling
would probably regulate tuft cell activity during inflammation, and this point needs to be
elucidated in future studies [80].

4. Role of Inflammatory Signals in Cellular Plasticity and Homeostasis

Recently, it has been elucidated that inflammatory cytokines play an important role
in stem cell regulation, especially during tissue injury and regeneration. Such cytokines
are produced by multiple immune cell types, including innate lymphoid cells (ILCs),
macrophages, and dendritic cells. ILCs consist of three subtypes, ILC1s, ILC2, and ILC3,
and are differentiated from common lymphoid progenitors to secrete specific effector
molecules such as interleukin (IL) [81,82] (Table 1). ILC1 secretes interferon-γ and tumor
necrosis factor and mainly contributes to the protection against intracellular pathogens,
while ILC2 and ILC3 contribute to the resolution of inflammation and regeneration, in
addition to their role in initiating acute inflammatory responses [82].

ILC2s are involved in type 2 immune responses, which are mediated by type 2 cy-
tokines, including IL33, IL25, IL13, and IL5. Among these cytokines, IL-25 was found to
be secreted specifically from tuft cells, and tuft-cell-derived IL-25 activated ILC2s via the
IL-17RB receptor. Activated ILC2s secreted IL-13 and stimulated ISCs to promote tuft and
goblet cell differentiation [83]. During helminth or protist infection, the tuft cells dramati-
cally increased, and the activated tuft cell–ILC2–ISC circuit contributed to the clearance
of the infected pathogens [84]. More recently, it was reported that circular RNA circPan3
binds to mRNA, encoding the IL-13 receptor subunit IL-13Rα1, and increases its stability to
induce the expression of IL-13Rα1 in ISCs [85]. The circPan3-dependent IL13Ra1 signaling
appears to be essential for self-renewal in Lgr5+ ISCs and regeneration of the intestinal
epithelium. Thus, ILC2 and type 2 immune cytokines play critical roles in ISC functions
and mucosal homeostasis. ILC2s also contribute to the progression of gastric and biliary
cancers, possibly related to the secretion of Wnt5a or IL-33 [86,87]. In addition, ILC2s
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are closely related to nervous signaling and activated by various neurotransmitters and
neuron-derived products, including neuromedin U (NMU) [88–90], alpha-calcitonin gene-
related peptide (a-CGRP) [91–93], and adrenaline [94,95]. NMU, a ligand of a neuropeptide
receptor Nmur1, is selectively expressed in ILC2s, and the activation of NMU–Nmur1
signaling strongly induces the production of innate inflammatory and tissue repair cy-
tokines. a-CGRP, a 37 amino acid neuropeptide produced by alternative splicing of the
calcitonin gene, is highly expressed in a subset of ILC2s, which preferentially express IL-5
after infection, and negatively modulates the production of type 2 cytokines of ILC2s. In
addition, ILC2s also express the b2-adrenergic receptor and colocalize with adrenergic
neurons in the intestine. The adrenergic signaling suppresses the ILC2 responses and
reduces inflammation. These findings again highlight the importance of the gut–brain axis
in gut immunity and pathogenesis.

Table 1. ILCs and regulatory cytokines.

Groups Subgroups
Factors Required for

Differentiation of
ILCs

Cytokines
Stimulating

ILCs

Cytokines Secreted
from Activated

ILCs
Functions

ILC1s
NK cells T-bet, eomes IL-12, IL-18 IFN-γ

Early immune responses against
viruses

Immune responses against cancer cells

ILC1 cells T-bet IL-12, IL-18 IFN-γ, TNF Protection against intracellular
pathogens

ILC2s ILC2 cells GATA3, RORα IL-25, IL-33,
TSLP IL-4, IL-5, IL-13

Protection against helminth parasites
Promotion of mucus production from

goblet cells
Resolution of inflammation and

regeneration

ILC3s
LTi cells RORγt IL-1β, IL-23 IL-17, IL-22 Formation of lymph nodes during

embryogenesis

ILC3 cells RORγt IL-1β, IL-23 IL-17, IL-22, IFN-γ

Protection against fungi and
extracellular bacteria

Promotion of antimicrobial peptide
from Paneth cells

Resolution of inflammation and
regeneration

Abbreviations: eomes, eomesodermin; GATA, GATA-binding protein; IFN, interferon; IL, interleukin; ILCs, innate lymphoid cells; LTi
cells, lymphoid tissue inducer cells; NK cells, natural killer cells; ROR, retinoic acid receptor-related orphan receptor; TSLP, thymic
stromal lymphopoietin.

IL-22, a member of the IL-10 family, is predominantly secreted from ILC3s, and the
expression of IL-22 receptors (IL-22R) is restricted mainly to the TA cells in the intes-
tine [96]. The IL-22–IL22R interaction contributes to the mucosal healing by inducing
epithelial proliferation and regeneration after damage [82]. Lindemans et al. showed
that IL-22 induced the phosphorylation of STAT3 in Lgr5+ ISCs, and the activated STAT3
was crucial for organoid formation and IL-22-mediated tissue regeneration [97]. More
recently, two studies have reported that IL-22 interacts with transit-amplifying cells in
addition to ISCs [98,99]. Zwarycz et al. showed that in the in vitro ileal organoid model,
the stimulation with IL-22 increased the size of organoids but decreased the organoid
survival, accompanied with reduced expression of ISCs markers (Lgr5, Olmf4) and Wnt
and Notch signaling [98]. They also reported that the proliferating cells increased in the
TA zone without affecting the number of ISCs in IL-22-trangenic mice. Zha et al. also
showed that IL-22 markedly reduced the number of Lgr5+ ISCs using Lgr5 reporter mice,
but increased epithelial proliferation and markers of the TA zone [99]. In addition, it was
reported that IL-22 is produced by recipient ILC3s, which can persist after bone marrow
transplant (BMT) and protect ICSs from immune-mediated tissue damage by graft versus
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host disease (GVHD) [100]. ILC3s also amplify the YAP1 signaling in intestinal crypt cells
and contribute to the regeneration of the intestinal epithelium in an IL-22-independent
manner [101].

Another class of cytokines, IL-6, is one of the major proinflammatory cytokines, and it
influences multiple processes, including inflammation, cell proliferation, and survival [102].
Although IL-6 family members were traditionally thought to activate JAK–STAT3 signaling
via the common co-receptor gp130, Taniguchi et al. reported that IL-6 contributed to ep-
ithelial regeneration through gp130–Src–YAP–Notch signaling [103]. Transgenic mice that
expressed an activated form of gp130 (gp130Act) enhanced YAP and Notch signaling and
caused aberrant proliferation of the intestinal epithelium, while Notch or YAP inhibition
using inhibitors or gp130Act;YAPFl/Fl mice restored intestinal epithelial homeostasis. The
gp130Act mice also exhibited less severe colitis and weight loss than wild-type mice after
DSS-induced injury. In addition, autocrine IL-6 signaling also contributed to crypt home-
ostasis through the Paneth cells and the Wnt signaling pathway [104]. Exogenous IL-6
promoted crypt organoid proliferation in vitro and increased ISCs through JAK–STAT3
and Wnt signaling in Paneth cells, while inhibition of IL-6 signaling reduced organoid
proliferation in vitro and the number of Lgr5+ ISCs and Paneth cells in vivo. As IL-11,
which also binds to the gp130 co-receptor, may be involved in stem cell interconversion,
as mentioned above, signals mediated by the gp130 receptor seem to play critical roles in
maintaining intestinal homeostasis, particularly during injury.

It has been reported that interferon (IFN)-γ is a principal mediator of immune-
mediated damage responses in ISCs, especially after BMT [105]. Although few T cells can
be found near the ISCs in a normal intestine, donor T cells infiltrate the intestinal crypt
following BMT. In this setting, IFN-γ secreted from the T cells can directly target ISCs to
induce their apoptosis through JAK–STAT signaling. In addition, IFN signaling also influ-
ences the regenerative capacity of ISCs [106]. Interferon regulatory factor 2 (IRF2), which is
a negative regulator of IFN signaling, appears to be essential for intestinal regeneration
after 5-fluorouracil-induced damage, based on the observations in Irf2–/– mice. Lgr5+ ISCs
significantly reduced and instead immature Paneth cells increased in Irf2–/– intestines,
indicating that excessive IFN signaling directs ISCs towards a secretory-cell fate. Moreover,
Th17-associated IL-17A, in addition to Th1-associated IFN-γ, also has critical effects on
tissue damage and regeneration by mediating C-X-C motif ligand 10/interferon-inducible
protein 10 (CXCL10/IP10) signaling [107].

5. Conclusions

ISCs, including Lgr5+ CBC cells and +4 stem cells, cooperatively maintain intestinal
homeostasis. In addition, more differentiated progenitors and specific cell types contribute
to epithelial regeneration via dedifferentiation. The stem cell niche regulates stem cell
functions in the normal state and boosts cellular plasticity and dedifferentiation during
injury. In particular, immune cells, such as ILCs, T cells, dendritic cells, and macrophages,
as well as the nervous system, play important roles in the homeostasis of ISCs and in-
testinal regeneration. Understanding the complex, stratified regulatory systems for ISC
maintenance will be useful for innovative therapy for intestinal injury, inflammatory bowel
disease, and intestinal neoplasm in the near future.
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