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Abstract: Transplantation represents the treatment of choice for many end-stage diseases but is
limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP)
has the potential to extend the donor pool by facilitating the use of marginal quality organs such as
those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a
platform for organ quality assessment but also offers the opportunity to treat and eventually regen-
erate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory,
immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an
interesting tool in this model system. Only a limited number of studies have reported on the use
of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At
this point, no clinical benefits have been conclusively demonstrated, and studies with controlled
transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to
improve organs during ex situ machine perfusion.

Keywords: regeneration; mesenchymal stem cells; machine perfusion

1. Introduction

Acute and chronic organ failure, caused by infection, cancer, or chronic disease, repre-
sents a life-threatening condition. In most cases, organ transplantation is the only effective
therapy for permanent restoration of organ function. However, an increasing disparity
exists between demand and supply of donor organs for transplantation, which leaves
many patients suffering and eventually dying while on the waiting list [1–3]. Never-
theless, suboptimal organs with pre-existing damage and organs from older or cardiac
death donors (DCD) are particularly susceptible to pronounced organ damage caused
by ischemia/reperfusion injury (IRI), resulting in inferior graft function after transplanta-
tion [4,5].

The technology of machine perfusion introduces a new era in organ transplantation.
Maintaining an organ under close-to-physiologic conditions not only offers the unique
possibility to extend preservation times but also allows for enhanced assessment of organ
function [6]. The vision of keeping an organ alive outside the human body for several
days opens up completely new perspectives for organ treatment and possibly even organ
improvement. While there is evidence that the technology of normothermic machine
perfusion (NMP) may promote graft regeneration and reduce IRI by inhibition of inflam-
mation [7], the possibility of adding drugs or cells to the perfusion solution may help to
induce organ regeneration [8].
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Mesenchymal stem cells (MSCs) may be important tools for this mission. They are
multipotent stem cells isolated from different sources such as adipose tissue and bone
marrow [9]. MSCs have a wide range of anti-inflammatory and immunomodulatory effects
both by cell-to-cell contact and by secreting substances such as chemokines, cytokines, and
growth factors [10]. Due to their ability of immunomodulation by suppressing T and B
cell proliferation and inhibiting dendritic cell maturation and hence function, MSCs have
emerged as a therapeutic cell population in solid organ transplantation [11,12]. Moreover,
this specific cell population has been attributed capacities to ameliorate transplantation-
related IRI [13]. Based on their multilineage differentiation potential and the capacity to
migrate towards damaged tissue, MSCs contribute to tissue repair by secreting bioactive
trophic factors, which have a variety of pleiotropic effects, such as enhancing angiogenesis,
preventing apoptosis, and fibrosis [14] (Figure 1).

This review summarizes the current state of ex situ machine perfusion and highlights
the advantageous combination of this novel technology with the therapeutic potential of
MSCs in organ regeneration.

 
Figure 1: Effects of MSCs on organ regeneration through immunomodulatory  and other 
effects.  
MSCs suppress T cell, B cell and natural killer (NK) cell proliferation. They may induce 
regulatory T cell differentiation via sectretion of indoleamine 2,3-dioxygenase (IDO)  and  
human leukocyte antigen-G5 (HLA-G5), have impact on maturation of monocytes into dentridic 
cells and inhibit NK and T cell function. Through secretion of soluble factors, such as growth 
factors, cytokines and chemokines, MSCs contribute to tissue repair, promote angiogenesis, 
and prevent cell apoptosis and formation of fibrosis. (Figure created with https://biorender.com) 
 
 

Figure 1. Effects of MSCs on organ regeneration through immunomodulatory and other effects. MSCs suppress T cell, B
cell, and natural killer (NK) cell proliferation. They may induce regulatory T cell differentiation via secretion of indoleamine
2,3-dioxygenase (IDO) and human leukocyte antigen-G5 (HLA-G5), have an impact on the maturation of monocytes into
dendritic cells, and inhibit NK and T cell function. Through secretion of soluble factors, such as growth factors, cytokines,
and chemokines, MSCs contribute to tissue repair, promote angiogenesis, and prevent cell apoptosis and formation of
fibrosis. (Figure created with https://biorender.com, accessed on 21 March 2021).

2. Bridging Time to Transplantation—From Static Cold Storage to Machine Perfusion

Static cold storage (SCS) remains the established standard for preserving organs prior
to transplantation [15]. During organ procurement, the organ is flushed and cooled (0 to
4 ◦C) with specific preservation fluids, put into plastic bags filled with preservation solu-
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tion, and stored in an icebox until transplantation. Hypothermia reduces organ metabolism
by 10- to 12-fold, and various preservation solutions are available that prevent cell aci-
dosis, cell swelling, and oxygen radical formation; maintain intracellular iron and signal
homeostasis; enable electrolyte balance; provide ions and amino acids; contain buffers to
maintain physiologic pH and hence preserve cell membrane integrity; and reduce vascular
endothelial cell damage [16].

Even though SCS is a well-established, simple, and effective way of organ preservation,
it does not allow for organ function testing. While cell metabolism is reduced, the anaerobic
metabolism continues at a very low rate, leading to accumulation of succinate and reactive
oxygen species (ROS) production upon reperfusion of the graft [17].

Alternative organ preservation methods have been developed in the last decade.
Machine perfusion techniques vary with respect to temperature (hypothermic machine
perfusion (HMP) at 4 ◦C to NMP at 37 ◦C), as well as the composition of the perfusate [18].
HMP operates with a cold preservation solution and continuously perfuses the organ at a
controlled, low flow [19]. HMP has been associated with significantly lower rates of delayed
graft function (DGF) and an increased 1-year graft survival compared to SCS [20–24].

Over the past years, various NMP devices for the kidney, liver, heart, and lung have
been developed for clinical use in transplantation [25–27]. A machine used to preserve
donor organs under physiological conditions outside the body mimics an in vivo situation
and maintains full metabolic organ function. Especially for ECD organs, NMP may be
ideal to cautiously bridge time to implantation since it allows for in-depth organ quality
assessment [28]. The first in man renal transplantation after NMP was described in 2011
by the group around Hosgood and Nicholson [29]. Shortly after, the first clinical study
of NMP in kidney transplantation was published by the same group. Eighteen kidneys
from ECD were utilized for NMP prior to transplantation, with a significantly lower rate of
DGF in the NMP group, compared to SCS allografts (5.6% vs. 36%) [30]. Weissenbacher
et al. demonstrated that urine recirculation during prolonged NMP of discarded kidneys
ameliorated metabolic processes and led to enhanced kidney organ function recovery [31].

In 2018, Nasralla et al. performed the first multicenter, randomized controlled trial
(RCT) to compare NMP and SCS in liver transplantation. The authors demonstrated that
NMP was associated with 50% less graft injury, measured by hepatocellular enzyme release,
despite a 50% lower rate of organ discard and a 54% longer mean preservation time [6].
Since then, NMP of the liver has successfully been implemented into the clinical routine
and allows for prolongation of preservation times up to 38 h [25].

Primarily in lung transplantation, the discard rate of procured lungs is high due to
strict inclusion criteria for acceptable donor lungs. Marginal lung grafts stored with SCS
are especially susceptible to IRI, with a high rate of primary graft failure after transplan-
tation [32]. There is evidence that normothermic ex vivo lung perfusion (EVLP) has a
beneficial effect on the outcome of these marginal organs. Moreover, transplantation of
high-risk donor lungs preserved with EVLP resulted in comparable outcomes to those of
conventional (healthy) lung grafts [33–35].

As for heart transplantation, the Organ Care System (OCS), which perfuses the donor
heart at mild hypothermia (34 ◦C) with a combination of donor blood and proprietary solu-
tion [36], is available for extended heart preservation. The use for ECD hearts resulted in an
excellent short-term post-transplant outcome and was comparable to the SCS group [37].

3. The Potential of MSCs in Regenerative Medicine

With their capacity to differentiate into multiple cell lineages, MSCs are promising
tools in regenerative medicine and tissue engineering [38,39]. Originally, they were char-
acterized from bone marrow (bm) and identified by Friedenstein et al. [40]. Moreover,
these multipotent cells can also be found in adipose tissue (at), muscle, peripheral blood,
umbilical cord (uc), and placenta, where they support function and repair. The availability
of MSCs from multiple sources as well as several advantageous characteristics favor them
for clinical use. They are easily accessible and can be expanded simply for large-scale
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production [41]. Moreover, the capability of self-renewal and differentiation into multi-
ple lineages are important features for tissue regeneration therapies [38,42]. Because of
an increasing interest to use MSCs as a potential therapeutic agent in a broad variety of
biomedical disciplines, the International Society for Cellular Therapy proposed minimal
criteria to define human MSCs. First, MSC must be plastic adherent when maintained
in standard culture conditions. Second, they must express CD105, CD73, and CD90 and
lack expression of CD45, CD34, CD14 or CD11b, and CD79a or CD19, as well as HLA-
DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes, and
chondroblasts in vitro (Figure 2) [43].
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Figure 2. Minimal criteria for defining multipotent mesenchymal stem cells, according to the International Society for
Cellular Therapy (ISCT). (Figure created with https://biorender.com, accessed on 21 March 2021). (1) MSCs must be
plastic adherent in standard culture conditions. (2) Expression of CD73, CD90, CD105, and absence of the expression
of hematopoietic cell surface markers CD34, CD45, CD11b or CD14, CD19 or CD79a, and HLA-DR. (3) Upon specific
stimulation, MSCs must differentiate into osteoblasts, adipocytes, or chondrocytes.

To exert their therapeutic/regenerative effects, agents or cells must reach their targets.
In this context, a major point to consider is the route of administration (systemic deliv-
ery (intravenous [i.v.] or intraarterial [i.a.]) or local delivery (e.g., intramuscular [i.m.],
intraperitoneal [i.p.], or intracardiac [i.c.])) [39,44,45]. The ideal application route depends
on the mechanism of action. Despite some reports indicating that MSCs home to injured
tissue independent of the administration route, the majority favor local delivery [46–48].
Systemic and direct routes have been investigated in a mouse model. Cell tracking showed
prolonged engraftment only after i.m. application [49]. This is in line with a study of Freitas
et al. where local injection of bmMSCs and atMSCs in rats with calvarial defects revealed
increased bone formation [50].

In theory, the regenerative effect of MSCs is due to their high differentiation potential
into cells of ectodermal and endodermal origin (e.g., cardiomyocytes, hepatocytes, or
epithelial cells), which then replace damaged and necrotic tissues [51–53]. However, there is
growing evidence that the impact of MSC-based therapies and their regenerating potential
mainly relies on paracrine effects and not on their differentiation into target cells [54,55].
It has been reported that overexpression of either chemokines or their receptors prompts
proliferation and migration of administered MSCs and thus enhances the therapeutic
effect [56–58]. Once MSCs migrate to injured tissue, the secretion of paracrine factors,
including chemokines, cytokines, and growth factors, stimulates cells in the near vicinity for
tissue repair, thereby exerting antiapoptotic, anti-inflammatory, antifibrotic, and angiogenic
effects. These pleiotropic effects of MSCs on injured tissue have been demonstrated in a
variety of disease models [59–61]. Upon administration of bmMSCs, significantly increased
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levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and
insulin-like growth factor (IGF) could be found in injured hearts, resulting in superior
regeneration compared to control groups [62]. In an acute kidney injury (AKI) model in
rats, the regenerative response of MSCs depended on bioactive factors rather than cell
integration and differentiation [63].

The immunomodulatory properties of MSCs are mainly related to the cytokines
interleukin-6 (IL-6), IL-10, and macrophage colony-stimulating factor (M-CSF) [64,65]. In
a murine sepsis model, bmMSCs induced secretion of anti-inflammatory IL-10, which in
turn prevented the differentiation of monocytes into dendritic cells (DC) and hence the
full activation of the immune and inflammatory response [66]. The success of MSC-based
therapies in experimental settings paved their way for clinical application [12,67]. MSC
administration has since been applied in a wide range of diseases such as inflammatory and
neurological disorders, diabetes mellitus, ischemic injuries, and graft-versus-host disease
(GvHD) [68,69].

4. MSC Therapy in Organ Transplantation

The effect of MSCs has been explored in organ transplantation. Therapeutic properties
range from anti-inflammatory properties and the potential to mitigate tissue damage to
repair and immunomodulation [70–73]. This implicates the potential for MSC application
to reduce IRI [74] and the incidence of acute rejection [12] and promote minimization of
immunosuppression or even transplant tolerance [75]. Immunomodulatory properties
of MSCs have been studied in a wide range of preclinical small and large animal studies
with success in clinical kidney, liver, and lung transplantation [76–78] (reviewed in detail
elsewhere [79]). Both autologous (bm-derived) and allogeneic (bm-derived and umbilical
cord-derived) MSCs have been used clinically. Particularly, allogeneic cells have the
potential to modulate an anti-donor immune response and seem more sustainable for
clinical implementation since they are readily available [80]. Thus far, MSC studies in
transplantation are primarily phase I studies with a focus on safety and feasibility of MSC
administration. The first evidence for immunomodulatory effects is indicated by increased
regulatory T cells (Tregs) [77,81,82], reduced immune activation towards donor cells [83],
and a decrease in immunosuppressive treatment necessary to avoid acute rejection [76]. No
toxicity directly related to the MSC infusion, no malignancies, and a comparable number
of infectious complications have been reported so far for the use of MSCs in transplant
studies [79,84]. Since these trials display a huge heterogeneity in study design, the optimal
timing, dosage, and frequency of administration remain to be established [79,85].

5. MSCs in Organ Machine Perfusion

Machine perfusion has emerged as a promising technology allowing not only to
preserve and comprehensively assess but also to treat and regenerate pre-damaged organs
outside the human body. Further to this, NMP may provide a novel way to effectively
administer MSCs into the organ (Figure 3). Several studies have shown promising results
with respect to the applicability and feasibility of MSC administration during machine
perfusion of the kidney, liver, and lung, but little is known about the mechanism through
which MSCs may exert beneficial effects. As for the heart, therapeutics such as viral vectors
for gene therapy [86] and siRNA [87] have been investigated in preclinical animal trials
during ex situ machine perfusion; however, there are no studies available reporting on
the use of MSCs during ex situ perfusion of hearts. Table 1 gives an overview of studies
investigating safety, feasibility, and efficacy of MSCs in machine perfusion.
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Figure 3. Normothermic machine perfusion as a novel platform to treat and regenerate organs
outside the human body. MSCs can be delivered directly into the vasculature of the liver by addition
into the circulating perfusate. This concept may help to overcome issues of MSC trafficking and
homing (Figure created with https://biorender.com, accessed on 21 March 2021).

Table 1. Overview of studies investigating safety, feasibility, and efficacy of MSCs in machine perfusion. To identify articles
reporting on MSC therapy during ex situ machine perfusion, a PubMed search using the search terms “mesenchymal stem
cell” and “transplantation” and “machine perfusion” was performed on 10 March 2021, thereby identifying 7 studies.

Study Year Model Length of
Preservation Therapeutic Agents Outcome, Major Findings

Pool et al.
[88] 2019 Porcine kidney 7 h of NMP

105 human aMSCs
106 human aMSCs
107 human aMSCs
Fluorescent prelabeled
bmMSCs

MSCs were detected mainly in the
lumen of glomerular capillaries.
Minority of glomeruli were positive
for fluorescent prelabeled bmMSCs.

Lohmann
et al. [89] 2020 Porcine kidney

autotransplantation

240 min NMP, after
14 h oxygenated HMP
and 75 min WIT

106 porcine aMSCs
106 human aMSCs

Safe and feasible; no beneficial effect
could be demonstrated

Pool et al.
[90] 2020 Porcine kidney 7 h NMP after 2–3 h of

HMP and 20 min WIT
1 × 107 human aMSCs
1 × 107 human
bmMSCS

Lower levels of injury markers
(Human HGF, NGAL); increased
release of immunomodulatory
cytokines (IL-6, IL-8, human HGF)

Brasile et al.
[91] 2019 Human DCD kidney

allografts 24 h of EMS, NMP 108 MSC
Renal regeneration of ischemically
damaged kidneys

Yang et al.
[92] 2019 Rat liver NMP 1 × 107 rat bmMSCs

Reduced hepatocyte apoptosis,
repaired hepatocyte mitochondrial
damage, improvement of histological
damage and liver function

Mordant
et al. [93] 2016 Porcine lung EVLP for 12 h after

18 h SCS

5 × 107 ucMSCs
endobronchially, or via
pulomary artery
1.5 × 108 ucMSCs
3 × 108 ucMSCs

Increased VEGF; decreased IL-8

Lee et al.
[94] 2009

Human lung with
induced acute lung
injury through E. coli
toxin

EVLP Human bmMSCs
Increased AFC, decreased endothelial
permeability, decreased
wet-to-dry ratio

https://biorender.com
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5.1. MSC Therapy in Machine Perfusion of Kidneys

To test the feasibility of MSC administration during machine perfusion of kidney
grafts, the effects of perfusion conditions and fluids on MSCs were assessed by Parraga
et al. The group investigated survival, metabolism, and function of thawed cryopreserved
human (h)MSCs and porcine (p)MSCs in suspension and demonstrated a 40% reduced
pMSC viability in both perfusion fluid and cultured medium, whereas the viability of
hMSCs was diminished by only 15% in perfusion fluids. Not surprisingly, the best survival
was observed for hMSCs in the cultured medium. The freezing–thawing process impaired
viability, thus resulting in reduced adherence to endothelial cells when compared to fresh
hMSCs. Thawed hMSCs also showed increased levels of ROS, which may further exert
damage on mitochondria. Nevertheless, the potential of MSCs to proliferate and secrete
mediators, as well as the secretory profile, was unaffected when cultured with perfusion
fluids used for machine perfusion. Most importantly, the therapeutic effect of MSCs was
maintained when tested under conditions equivalent to those during NMP [95].

In a next step, porcine kidneys were machine perfused under normothermic conditions
for 7 h, and varying numbers of hMSCs (0, 105, 106, 107) were added to the circulating
perfusion fluid. Further, fluorescent prelabeled bmMSCs were added to evaluate the
localization and viability of MSCs during NMP. The authors demonstrated that the number
of circulating MSCs decreased with perfusion time. After 7 h, they were only present in
the higher dosage group (107), but they still remained viable. MSCs were localized in the
lumen of glomerular capillaries, albeit at a low prevalence. This study demonstrates that
the administration of MSCs during NMP is feasible. However, it remains to be elucidated
whether the rapid decrease in circulating MSCs is a result of cell migration into the graft,
cell death, or adherence within the perfusion system [88].

The group of Lohman et al. demonstrated the feasibility and safety of MSC therapy
during NMP prior to transplantation in a porcine autotransplantation model. Porcine
kidneys were exposed to warm ischemia and oxygenated HMP, followed by 240 min
of NMP, where either 1 × 106 porcine aMSCs or 1 × 106 human aMSCs were added
to the perfusion solution. Neither negative effects on perfusion hemodynamics during
NMP nor adverse effects on early transplantation outcome were observed. The study
provided a proof of concept for ex vivo MSC application during NMP; however, no clear
beneficial effect of MSC therapy during the short post-transplant follow-up period could
be found [89].

In another porcine kidney NMP model, Pool et al. investigated cytokine levels in
the perfusate with and without MSC administration. Porcine kidneys challenged with
warm ischemia and subsequent HMP were perfused under normothermic conditions for
7 h. After 1 h of NMP, either 107 human aMSCs or 107 bmMSCs were added. The authors
demonstrated that the addition of both types of human MSCs to an ischemically damaged
porcine kidney led to an increased release of immunomodulatory cytokines such as human
hepatocyte growth factor (HGF), IL-6, and IL-8 into the perfusate, as well as reduced levels
of organ injury markers such as lactate dehydrogenase (LDH) and neutrophil gelatinase-
associated lipocalin (NGAL), compared to controls without MSC treatment [90].

Brasile et al. used an exsanguinous metabolic support (EMS) platform to investi-
gate the effect of MSCs on IRI of human kidney allografts from DCD donors (mean CIT
29.4 ± 7.4 h) during 24 h of ex situ normothermic perfusion [91]. EMS assembles an acellu-
lar medium, a perfusion system, a disposable organ chamber with biosensors to monitor
metabolism, and a control module [96,97]. Five human DCD kidney allografts were per-
fused with EMS for 24 h (control group), and the matching paired kidneys were perfused
with EMS, where MSCs were added (1 × 108). A reduced inflammatory response along with
an increased synthesis of adenosine triphosphate (ATP) and several growth factors, such as
endothelial growth factor, fibroblast growth factor 2, and transforming growth factor α,
and normalization of cytoskeleton and mitosis was observed in the MSC-treated group,
hinting on tissue regeneration of ischemically damaged human kidney allografts [91].
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5.2. MSC Therapy in Machine Perfusion of the Liver

There is only a limited number of experimental studies reporting on the use of MSCs
in NMP of livers. The group of Rigo et al. established an ex situ NMP model for rats as
an experimental setting for organ reconditioning and pharmacological interventions [98].
They were the first to deliver extracellular vesicles from human liver stem cells during a
4-h perfusion period of rat livers and were able to show reduced hepatocellular damage as
per histopathology and reduced markers of hepatic cytolysis in the perfusate [99].

Another study reports the use of rat bmMSCs to investigate their beneficial effects on
DCD rat livers when administered during ex situ machine perfusion. Compared to the
SCS control group, liver function was improved, hepatocyte apoptosis and necrosis were
diminished, and mitochondrial damage was reduced in the NMP group with and without
bmMSCs. Additional bmMSC administration into the perfusate significantly inhibited
intrahepatic macrophage activation and intercellular adhesion, prevented endothelial
cell damage, and significantly improved endothelin 1 nitric oxide balance. The authors
concluded that the combination of NMP and MSC delivery may improve DCD liver
microcirculation and hence organ quality [92]. However, the mechanism of action remains
incompletely understood and/or inconclusively demonstrated.

5.3. MSC Therapy in Machine Perfusion of the Lung

Ex situ lung perfusion aims to diminish the gap between organ supply and demand
and, eventually, to improve the outcome after lung transplantation. Several strategies
to improve lung function while the lungs are extracorporeally kept alive on a machine
are currently under investigation, one of them being the administration of MSCs during
EVLP [34].

In a porcine model of EVLP, Mordant et al. administered human umbilical cord-
derived MSCs, either endobronchially or via the pulmonary artery, to determine the
favorable route of cell administration. Furthermore, varying dosages of MSCs (5 × 107,
1.5 × 108, or 3 × 108)were tested in order to find an optimal tolerated dose. A significantly
higher amount of MSCs remained in the lung parenchyma when administered via the in-
travascular route, compared to intrabronchial. An optimal dose of 1.5 × 108 was associated
with increased concentrations of human vascular endothelial growth factor (VEGF) in lung
tissue, as well as decreased IL-8 concentrations in the perfusate [93]. Therapeutic efficacy
of MSC application during EVLP was furthermore demonstrated in a study of acute lung
injury induced by E. coli endotoxin. Human MSCs were added intrapulmonarily (via the
trachea) during perfusion to maximize the efficiency of MSC delivery [100], which resulted
in an improved alveolar fluid clearance, less lung endothelial permeability, and decreased
pulmonary edema [94].

6. Considerations, Potential Risks, and Difficulties

Although there is a growing number of experimental studies investigating the admin-
istration of MSCs during ex situ machine perfusion in organ transplantation, the actual
clinical relevance and the underlying mechanism of their therapeutic effect have not yet
been sufficiently understood.

Particularly in solid organ transplantation, there is a major discussion on whether
to use recipient- or donor-derived MSCs. Both autologous and allogeneic MSCs appear
generally safe and well-tolerated for systemic infusion [101]. While treatment with autolo-
gous MSCs has been reported to be safe without provoking unwanted immune responses,
allogeneic MSCs are most likely not completely immunoprivileged and may cause cellular
and humoral immune responses against donor antigens [102]. In an organ transplant
setting, the availability of autologous MSCs still has its limitations. Due to very limited
time from the donor organ harvest and allocation until transplantation [103], there is no
opportunity to isolate and expand an adequate amount of recipient-derived MSCs in
time. Moreover, it is important to culture human MSCs at low clonal density to keep the
proliferative capacity [104–106]. Development and production of allogeneic MSCs are
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currently being investigated by pharmaceutical companies, which would allow immediate
availability for clinical use [107] and, as a consequence, save time, reduce costs, and pro-
mote standardization. The optimal timing of MSC injection may be an important factor to
successfully develop cell-based therapy protocols for machine perfused organs. It remains
to be elucidated at which time-point MSCs have to be added during the perfusion process.
Furthermore, it is not clear whether a single dose of MSCs is sufficient to exert a positive
effect or if multiple doses will be favorable. MSC dosages in general and also the timing of
application may depend on organ quality, the type of primary disease, and the extent of
organ injury/disease. Moreover, the application route within the perfused organ/circuit
may vary between different organs (lung vs. liver, vs. heart, vs. kidney).

Besides MSCs, there may also be alternative cell-based therapies to be tested and ap-
plied during ex situ machine perfusion in order to ameliorate IRI and to modify, regenerate,
or even cure low-quality or diseased organs prior to transplantation. Mesenchymal stem
cell-derived extracellular vesicles (MSC-EVs) [108], for example, exert their therapeutic
effect by delivering microRNA, mRNA, and various proteins into injured tissue [109].
Moreover, treatments with regulatory T cells (Tregs) [110] and regulatory dendritic cells
(DCregs) [111] have emerged as novel therapeutic strategies to ameliorate IRI-related effects
and may be considered as potential candidates to be delivered directly into the perfused
organ during ex situ perfusion.

Organ treatment with cell therapies may not be completed ex situ due to a limited
perfusion period on the machine (several days) and may have to be pursued or repeated at
later time-points in the recipient. While extracorporeal treatment on the machine can be
highly dosed and even more aggressive, as for tumor or antiviral therapy, further treatment
necessary in the recipient may be less aggressive or low-dosed in order to avoid side effects.

Even though progress has been made, optimal selection criteria for MSCs source,
immunogenicity, culture conditions, timing, routes of administration, and dosing have yet
to be evaluated in the setting of ex situ machine perfusion of organs. Nevertheless, the
type of the organ and its dimensions, the extent of organ damage, and the type of disease
may also impact the aforementioned criteria of MSC use in machine perfusion.

7. Conclusions and Future Perspectives

Ex situ machine perfusion introduces a completely new era in the field of organ preser-
vation, treatment, and regeneration. A model of prolonged ex vivo organ preservation may
provide a platform to modify, repair, and regenerate organs. Building upon knowledge
gained in the field of MSC research, this stem cell type may help to achieve this goal.
Until now, only a limited number of studies have reported on the use of MSCs during
ex situ machine perfusion, mostly focusing on feasibility and safety aspects. However,
no actual clinical benefits have been conclusively demonstrated at this point. Controlled
transplantation set-ups are urgently warranted to elucidate any favorable effects and the
exact mechanisms of action of MSCs in this setting. As for the future, they may be used not
only to treat donor organs in order to increase the donor pool and hence acquire a higher
number of ECD organs for transplantation but also to further expand upon curing diseased
organs ex vivo.
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aMSC adipose tissue-derived mesenchymal stem cells
bmMSCs bone marrow-derived mesenchymal stem cells
CIT cold ischemia time
DC dendritic cells
DCD donation after cardiac death
DCregs regulatory dendritic cells
DGF delayed graft function
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EVLP ex vivo lung perfusion
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GvHD graft-versus-host disease
HGF hepatocyte growth factor
HLA-G5 human leukocyte antigen-G5
HMP hypothermic machine perfusion
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IGF insulin-like growth factor
IL-6 interleukin 6
IL-8 interleukin 8
i.a. intraarterial
IDF-1i.c. insulin-like growth factor 1intracardiacal
i.m. intramuscular
i.p. intraperitoneal
i.v. intravenous
IRIKGF ischemia–reperfusion injurykeratinocyte growth factor
LDHMEGF lactate dehydrogenasemouse epidermal growth factor
MP machine perfusion
MSC mesenchymal stem cells
MSC-EV mesenchymal stem cell-derived extracellular vesicles
MMF mycophenolate mofetil
M-CSF macrophage colony-stimulating factor
NK natural killer cell
NGAL neutrophil gelatinase-associated lipocalin
NMP normothermic machine perfusion
OCS Organ Care System
RCT randomized controlled trial
ROSSDF1 reactive oxygen speciesstromal cell-derived factor 1
SCS static cold storage
SOTTGF-β solid organ transplantationtransforming growth factor beta
Treg regulatory T cell
ucMSC umbilical cord-derived mesenchymal stem cells
VEGF vascular endothelial growth factor
WIT warm ischemia time
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