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Abstract: In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate
bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide
with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Us-
ing ethanol as a reaction medium allowed the isolation of a discrete mononuclear homoleptic complex
[NiLI] (1), for which its crystal structure contains three independent molecules, namely 1-I, 1-II, and 1-
III, in the asymmetric unit. The doubly deprotonated ligand LI in the structure of 1 is coordinated in
a cis-manner through the azomethine nitrogen atoms and the thiocarbonyl sulfur atoms. The coordi-
nation geometry around metal centers in all the three crystallographically independent molecules of
1 is best described as the seesaw structure. Interestingly, using methanol as a reaction medium in the
same synthesis allowed for the isolation of a discrete mononuclear homoleptic complex [Ni(LII)2] (2),
where LII is a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-
N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the reaction of
LI with methanol upon coordination to the metal center under synthetic conditions. In the structure
of 2, two ligands LII are coordinated in a trans-manner through the azomethine nitrogen atom and
the thiocarbonyl sulfur atom, also yielding a seesaw coordination geometry around the metal center.
The charge and energy decomposition scheme ETS-NOCV allows for the conclusion that both struc-
tures are stabilized by a bunch of London dispersion-driven intermolecular interactions, including
predominantly N–H···S and N–H···O hydrogen bonds in 1 and 2, respectively; they are further
augmented by less typical C–H···X (where X = S, N, O, π), CH···HC, π···π stacking and the most
striking, attractive long-range intermolecular C–H···Ni preagostic interactions. The latter are found
to be determined by both stabilizing Coulomb forces and an exchange-correlation contribution as
revealed by the IQA energy decomposition scheme. Interestingly, the analogous long-range C–H···S
interactions are characterized by a repulsive Coulomb contribution and the prevailing attractive
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exchange-correlation constituent. The electron density of the delocalized bonds (EDDB) method
shows that the nickel(II) atom shares only ~0.8|e| due to the σ-conjugation with the adjacent in-plane
atoms, demonstrating a very weak σ-metalloaromatic character.

Keywords: Ni(II) complexes; intermolecular C–H···Ni interactions; σ-metalloaromaticity

1. Introduction

The progress in the coordination chemistry of transition metals is still a compelling and
experimentally demanding frontier in modern inorganic chemistry. Every year, we observe
the emergence of scientific reports on the synthesis of new complexes with unexpected
bonding modes, structures, and properties.

Among a variety of different ligands, which are actively used in the coordination
chemistry, (thio)semicarbazones seem to be one of the most widely utilized ligands.
(Thio)semicarbazones were first reported in the late 1800s to early 1900s [1] and possessed
remarkable complexation properties towards a great variety of metal ions. These com-
pounds comprise a separate family of the so-called Schiff bases, and are readily obtained
through the condensation reaction of (thio)semicarbazides with aldehydes or ketones.
Using precursors with two or more aldehyde or ketone functions allows us to obtain
polyfunctional (thio)semicarbazones. Thus, ease of synthesis as well as pronounced com-
plexation properties are of particular interest for a wide application of these types of com-
pounds for smart design of different structures of interest. Generally, (thio)semicarbazone
moieties, and more precisely their anionic forms, are N,O/S bidentate ligands, yielding a
five-membered chelate metallocycles upon coordination to a metal ion. However, the incor-
poration of different additional donor functions, e.g., pyridine derivatives, can facilitate a
tridentate (polydentate) coordination mode [2].

Apart from their great importance as building units in the coordination chemistry,
(thio)semicarbazones as well as their metallocomplexes have actively been studied over
a number of years because of their diverse biological activity and, thus, are a focus in
biomedicine [2–10].

Some time ago, we also directed our attention toward closely related hiosemicar-
bazides. Particularly, we were interested in a family of (thio)phosphorylated thiosemi-
carbazides, including bifunctional derivatives, as potential polydentate ligands [11–14].
The reported compounds were readily obtained by the addition reaction of the corre-
sponding hydrazine derivatives to (thio)phosphorylated isothiocyanates. Furthermore,
a dramatic influence of the solvent nature was revealed for the formation of the final
product [14].

A wide diversity of applications thus prompted the present study in which we report the
solvent-induced synthesis and the molecular and supramolecular structures of two nickel(II)
complexes derived from the bis-thiosemicarbazone ligand H2LI, obtained by the condensation
of 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde with 4-phenylthiosemicarbazide (Scheme 1).
It should be noted, that, to the best of our knowledge, neither the crystal structure of H2LI

nor its metallocomplexes are known so far. Thus, the chemistry of H2LI is of particular
interest. Importantly, extensive theoretical studies are performed to identify physical factors,
which contribute to the stability of the reported metal-based supramolecular architectures.
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Scheme 1. Synthesis of complexes 1 and 2. 

2. Results and discussion 
A one-pot reaction of equimolar amounts of Ni(CH3COO)2∙2H2O with H2LI in EtOH 

at 60 °C in a branched tube apparatus leads to a discrete mononuclear homoleptic complex 
[NiLI] (1) (Scheme 1). Notably, using methanol as a reaction medium in the same synthesis 
leads to a discrete mononuclear homoleptic complex [Ni(LII)2] (2) (Scheme 1), where LII is 
a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-
N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the 
reaction of LI with MeOH upon coordination to the metal center under synthetic condi-
tions. Thus, the reaction of Ni(CH3COO)2∙2H2O with H2LI is solvent sensitive. Both com-
pounds were isolated as crystalline air-stable solids with good yields. 

Complex 1 crystallizes in the triclinic space group P–1 with three independent com-
plex molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The metal centers in 1 
are bis-chelated by one doubly deprotonated tetradentate ligand LI in a cis-configuration 
through two azomethine nitrogen atoms and two thiocarbonyl sulfur atoms, yielding two 
five-membered metallocycles (Figure 1). Two least-square planes through these metallo-
cycles form a dihedral angle of 20.51(14), 20.42(15), and 22.02(15)° in 1-I, 1-II, and 1-III, 
respectively, likely dictated for accomplishing coordination of the metal (Table 1). Thus, 
the nickel(II) cations in the structure of 1 are in a N2S2 tetracoordinate environment with 
the formation of a seesaw coordination geometry, as evidenced from the calculated τ4-
descriptors of 0.2146, 0.2206, and 0.2406 in 1-I, 1-II, and 1-III, respectively (Table 1) [15]. 

  

Scheme 1. Synthesis of complexes 1 and 2.

2. Results and discussion

A one-pot reaction of equimolar amounts of Ni(CH3COO)2·2H2O with H2LI in EtOH
at 60 ◦C in a branched tube apparatus leads to a discrete mononuclear homoleptic complex
[NiLI] (1) (Scheme 1). Notably, using methanol as a reaction medium in the same synthesis
leads to a discrete mononuclear homoleptic complex [Ni(LII)2] (2) (Scheme 1), where LII is
a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-
N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the
reaction of LI with MeOH upon coordination to the metal center under synthetic conditions.
Thus, the reaction of Ni(CH3COO)2·2H2O with H2LI is solvent sensitive. Both compounds
were isolated as crystalline air-stable solids with good yields.

Complex 1 crystallizes in the triclinic space group P–1 with three independent com-
plex molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The metal centers in 1
are bis-chelated by one doubly deprotonated tetradentate ligand LI in a cis-configuration
through two azomethine nitrogen atoms and two thiocarbonyl sulfur atoms, yielding two
five-membered metallocycles (Figure 1). Two least-square planes through these metallo-
cycles form a dihedral angle of 20.51(14), 20.42(15), and 22.02(15)◦ in 1-I, 1-II, and 1-III,
respectively, likely dictated for accomplishing coordination of the metal (Table 1). Thus,
the nickel(II) cations in the structure of 1 are in a N2S2 tetracoordinate environment
with the formation of a seesaw coordination geometry, as evidenced from the calculated
τ4-descriptors of 0.2146, 0.2206, and 0.2406 in 1-I, 1-II, and 1-III, respectively (Table 1) [15].



Int. J. Mol. Sci. 2021, 22, 5337 4 of 20
Int. J. Mol. Sci. 2021, 22, x  4 of 20 
 

 

 
Figure 1. Top and side views on the hydrogen bonded centrosymmetric dimer in the crystal struc-
ture of 1, formed by a pair of molecules 1-I (ellipsoids are drawn with 40% probability; CH hydrogen 
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1-II. Color code: C = gold, H = black, N = blue, O = red, S = yellow, Ni = green; N–H∙∙∙S hydrogen 
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Figure 1. Top and side views on the hydrogen bonded centrosymmetric dimer in the crystal structure
of 1, formed by a pair of molecules 1-I (ellipsoids are drawn with 40% probability; CH hydrogen
atoms are omitted for clarity). A similar centrosymmetric dimer is also formed by a pair of molecules
1-II. Color code: C = gold, H = black, N = blue, O = red, S = yellow, Ni = green; N–H···S hydrogen
bond = cyan dashed line.

Table 1. Selected Bond Lengths (Å) and Angles (◦) for 1 and 2.

1-I 1-II 1-III 2

Bond lengths

Ni–N 1.914(3)
1.928(4)

1.918(3)
1.923(3)

1.916(3)
1.935(3)

1.903(4)
1.907(4)

Ni–S 2.1464(14)
2.1506(11)

2.1502(13)
2.1631(12)

2.1389(14)
2.1453(14)

2.160(2)
2.161(2)

Bond angles

N–Ni–N 101.26(15) 100.27(14) 102.20(14) 173.1(2)

N–Ni–Sendocyclic
85.59(11)
86.62(10)

86.14(11)
86.46(11)

86.53(11)
87.04(11)

85.94(19)
86.12(19)

N–Ni–Sexocyclic
163.87(11)
168.87(12)

163.98(11)
164.92(11)

162.85(11)
163.23(11)

94.90(19)
94.95(19)

S–Ni–S 89.90(5) 90.96(5) 88.39(5) 164.23(8)

Dihedral angle

NiNNCS···
NiNNCS 20.51(14) 20.42(15) 22.02(15) 22.3(2)
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The Ni–N and Ni–S bond lengths are pairwise very similar and of 1.914(3)–1.935(3) Å
and 2.1389(14)–2.1631(12) Å, respectively (Table 1). The endocyclic chelating N–Ni–Sendocyclic
bond angles range from 85.59(11)◦ to 87.04(11)◦, while the exocyclic N–Ni–Sexocyclic bond
angles vary from 162.85(11)◦ to 168.87(12)◦ with the most pronounced differences observed
in the structure of 1-I (Table 1). The S–Ni–S bond angle in all the independent molecules
of 1 are close to 90◦ (Table 1). Additionally, the bis(phenoxy)ethane moiety assumes a
conformation to avoid steric clashes (Figure 1).

Notably, a structurally characterized nickel(II) complex [Ni(H2LIII)](ClO4)2·2MeOH
(3) [16] with a similar ligand H2LIII [17], but containing the NH2 group instead of the
PhNH group, was reported, where the phenoxy oxygen donors also participate in coor-
dination towards the metal that adopts a distorted octahedral geometry. However, in the
structure of 3, the parent ligand is coordinated in its neutral form, and Ni(ClO4)2 was
used as a metal source, though trimethylamine was also added in the reaction medium to
neutralize the parent organic ligand. Furthermore, in the crystal structure of 1, two sim-
ilar centrosymmetric dimers can be revealed (Figure 1), formed by two 1-I and two 1-II
molecules through a pair of intermolecular N–H···S hydrogen bonds (Table 2). The crys-
tal structure of 1 is additionally stabilized by intermolecular π···π stacking interactions,
formed between the phenylene rings of two molecules 1-I, also yielding a centrosymmetric
dimer (Figure 2, Table 3).

Table 2. Hydrogen Bond Lengths (Å) and Angles (◦) for 1 and 2.

D–H···A d(D–H) d(H···A) d(D···A) ∠(DHA)

1 N1–H1N···S1 0.88 2.80 3.672(4) 175
N12–H12N···S4 0.88 2.79 3.482(3) 136

2 N1–H1N···O7 0.86(7) 2.12(7) 2.922(9) 154(7)
N4–H4N···O4 0.89(7) 2.14(8) 2.949(7) 152(6)
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Figure 2. A dimer, formed by π···π stacking interactions between two molecules 1-I in the crystal
structure of 1 (hydrogen atoms are omitted for clarity). Color code: C = gold, H = black, N = blue,
O = red, S = yellow, Ni = green; π···π stacking interaction = cyan dashed line.
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Table 3. π· · ·π Distances (Å) and Angles (◦) for 1 and 2 1.

Cg(I) Cg(J) d[Cg(I)–Cg(J)] α β γ Slippage

1 C6H4 C6H4 3.728(3) 1.3(2) 24.3 25.3 1.534
C6H4 C6H4 3.729(3) 1.3(2) 25.3 24.3 1.595

2 C6H4 C6H4 3.853(4) 12.4(4) 13.8 16.3 0.918
C6H4 C6H4 3.854(4) 12.4(4) 16.3 13.8 1.083

1 Cg(I)–Cg(J): distance between ring centroids; α: dihedral angle between planes Cg(I) and Cg(J); β: angle Cg(I)
→ Cg(J) vector and normal to plane I; γ: angle Cg(I)→ Cg(J) vector and normal to plane J; slippage: distance
between Cg(I) and perpendicular projection of Cg(J) on ring I.

The most striking finding in the crystal structure of 1 is the formation of the so-
called anagostic interactions C–H···Ni considered in the literature as repulsive forces.
Particularly, the nickel(II) cation of 1-I forms one anagostic bond with one of the phenyl
para-hydrogen atoms from an adjacent molecule 1-III, in which the nickel(II) cation and
one of the meta-hydrogen atoms from the other phenyl fragment are also involved in the
C–H···Ni anagostic interactions with one of the phenyl meta-hydrogen atoms and the metal
center of 1-II, respectively (Figure 3, Table 4). As a result of the mentioned information
above, elusive anagostic interactions an asymmetric trimer is formed (Figure 3).
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interaction, are omitted for clarity). Color code: C = gold, H = black, N = blue, O = red, S = yellow, Ni = green; C–H···Ni
anagostic interaction = cyan dashed line.

Table 4. Bond Lengths (Å) and Angles (◦) for 1 and 2.

1-I 1-II 1-III 2

Bond lengths

C–H 0.95 0.95 0.95 0.99
Ni···H 2.71 2.94 2.84 2.91
Ni···C 3.504(5) 3.657 3.563 3.713

Bond angle

Ni···H–C 142 133 133 139

Complex 2 crystallizes in the monoclinic space group P21/c with one independent
complex molecule in the asymmetric unit. The complex shows a pseudo two-fold axis
passing through the metal center and normal to the coordination plane (Figure 4). The two
organic ligands LII, which were formed in situ under experimental conditions in their
deprotonated form, are coordinated to the metal center through the azomethine nitrogen
donors and thiocarbonyl sulfur atoms in a trans-planar configuration, as observed in the
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majority of the related bis-chelated thiosemicarbazide complexes, also yielding two five-
membered metallocycles (Figure 4). Despite two ligands LII displaying a trans-arrangement
in the crystal structure of 2, the coordination of polyhedron and coordination distances
are well-comparable within their esd’s to those measured in the cis-configured disposition
of LI in the crystal structure of 1. Particularly, in complex 2, two least-square planes
through the five-membered metallocycles also form a very similar dihedral angle of 22.3(2)◦

(Table 1). The N2S2 tetracoordinate environment around the metal center also forms a
seesaw coordination geometry, as evidenced from the calculated τ4-descriptor of 0.1608
(Table 1) [15], which, however, testifies to be closer to a square-planar structure. The Ni–N
and Ni–S bond distances as well as the N–Ni–Sendocyclic bond angles in the structure of
2 are very similar to those in the molecules of 1 and of about 1.91 and 2.16 Å, and 86◦,
respectively (Table 1). In the crystal structure of 2, the N–Ni–N and S–Ni–S bond angles are
about 73◦ larger, while the N–Ni–Sexocyclic bond angle is about 70◦ smaller than those in the
crystal structure of 1 (Table 1), which is, obviously, explained by trans- and cis-arrangement
of the corresponding donor atoms around the metal center (Figures 1 and 4).
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Figure 4. Top and side views on the crystal structure of 2 (ellipsoids are drawn with 40% probability;
CH hydrogen atoms are omitted for clarity). Color code: C = gold, H = black, N = blue, O = red,
S = yellow, Ni = green; N–H···O hydrogen bond = cyan dashed line.

The structure of 2 is stabilized by a pair of intramolecular N–H···O hydrogen bonds, re-
alized between the NH hydrogen atoms and MeO oxygen atoms (Figure 4, Table 2), thus in-
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ducing the multidentate ligands to act as didentate chelating. Furthermore, molecules of 2
are interlinked in a 1D polymeric supramolecular chain along the c axis through π···π stack-
ing interactions formed by the phenylene rings attached to the imine functions (Figure 5,
Table 3). It should be noted that molecules of 2 are further interlinked into a 1D polymeric
chain along the b axis through the C–H···Ni anagostic bonds, formed between the metal
centers and one of the CH2 hydrogen atoms (Figure 6, Table 4).
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We have further applied the Hirshfeld surface analysis [18] to study in detail inter-
actions in the crystal structures of 1 and 2. As such, associated 2D fingerprint plots [19]
were generated using the CrystalExplorer 17.5 software [20]. Notably, since the crystal
structure of 1 contains three independent molecules 1-I, 1-II, and 1-III, the data were
obtained separately for each of them.

As evidenced from the Hirshfeld surface analysis, the intermolecular H···H and
H···C contacts are major contributors to the crystal packing of all the discussed molecules
despite a variety of donor heteroatoms (Table 5). Interestingly, while a proportion of
the H···H contacts in the molecular surface of 1-II and 1-III is almost the same and of
about 40%, the same contacts occupy about 47% of the surface in 1-I and an even higher
proportion of about 55% in the surface of 2 (Table 5). The latter can obviously be explained
by the presence of two ligands, thus containing a double set of aliphatic and aromatic
hydrogen atoms, as well as by the incorporation of the MeO groups in the structure of 2
(Figure 4). The shortest H···H contacts are shown in the corresponding fingerprint plots
of all molecules as characteristic broad spikes at de + di ≈ 2.0–2.2 Å (Figures S1–S4 in
the Supporting Information). It should be noted that a subtle feature is evident in the
fingerprint plot of 2. Particularly, a clear splitting of the short H···H fingerprint is observed
(Figure S4 in the Supporting Information), which occurs when the shortest contact is
between three atoms, rather than for a direct two atom contact [18]. It was also found
that intermolecular H···C contacts occupy almost the same proportion of about 25% of
the Hirshfeld molecular surface of molecules 1-I, 1-II, and 2, while a remarkably higher
proportion of the same contacts of about 30% was found in the molecular surface of 1-III
(Table 5). The shortest H···C contacts are shown in the corresponding fingerprint plots of
all molecules at de + di ≈ 2.5–2.7 Å (Figures S1–S4 in the Supporting Information).

It should also be added that the corresponding 2D fingerprint plots of all the reported
molecules contain a significant number of points at large de and di, shown as tails at the
top right of the plot (Table 5). This is similar to that observed in the fingerprint plots of
benzene [18] and phenyl-containing compounds, [21–26] and correspond to regions on the
Hirshfeld molecular surface without any close contacts to nuclei in adjacent molecules.

The structures of all molecules are also dictated by the intermolecular H···N contacts,
comprising from 5.5% to 8.1%, as well as by the H···S contacts in 1-I, 1-II, and 1-III, and
H···O contacts in 2 (Table 5). Notably, the H···S contacts in 1-I and 1-III occupy about 10%
of the molecular surface, while a remarkably higher proportion (14%) of the same contacts
was found on the Hirshfeld surface of 1-II. Contrarily, only a minor proportion of the
H···O and H···S contacts was found in the structures of molecules of 1 and 2, respectively,
comprising 1.4–3.0% (Table 5).

Furthermore, all the molecules are also characterized by a significant proportion of
the C···C contacts, comprising 3.3–5.0% (Table 5). These contacts are shown as the area
at de = di ≈ 1.7–2.2 Å in the corresponding 2D fingerprint plots and correspond to π···π
interactions (Figures S1–S4 in the Supporting Information).

Additionally, it is worth mentioning that the contribution to the total Hirshfeld surface
area of all molecules arises from the Ni···H contacts being 1.4%, 2.3%, and 0.8% for 1-I,
1-II and 1-III, and 2, respectively. Notably, these contacts are exclusively shown in the
corresponding 2D fingerprint plot of 1-I as Ni···H contacts but no as reciprocal contacts
(Figure S1 in the Supporting Information). This is explained by the fact that in the structure
of 1-I, only the metal center is involved in the formation of the intermolecular anagostic
bond, while molecules 1-II and 1-III each form this type of interactions by both their metal
center and one of the hydrogen atoms (Figure 3). The shortest Ni···H contacts are shown at
de + di ≈ 2.7–2.9 Å in the 2D fingerprint plots of 1-I, 1-II and 1-III, and 2 (Figures S1–S4 in
the Supporting Information).

Finally, the structures of all molecules are also described by a negligible proportion of
the intermolecular C···X and N···X contacts, comprising 0.1–2.1% (Table 5, Figures S1–S4
in the Supporting Information).
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Table 5. Hirshfeld Contact Surfaces and Derived “Random Contacts” and “Enrichment Ratios” for 1-I, 1-II, 1-III, and 2.
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C 26.2 5.0 – – – – 24.4 4.6 – – – – 30.4 3.3 – – – – 24.0 3.5 – – – –
N 6.9 0.4 0.0 – – – 8.1 1.5 0.1 – – – 7.5 1.4 0.0 – – – 5.5 0.8 0.0 – – –
O 2.3 0.7 0.0 0.0 – – 3.0 1.7 0.0 0.0 – – 1.4 2.1 0.0 0.0 – – 6.6 0.4 0.2 0.0 – –
S 9.8 0.1 0.0 0.0 0.0 – 14.0 0.1 0.2 0.0 0.3 – 9.9 0.1 0.2 0.0 0.9 – 2.5 0.1 0.0 0.2 0.0 –
Ni 1.4 0.0 0.0 0.0 0.0 0.0 2.3 0.7 0.1 0.0 0.0 0.0 2.3 0.8 0.1 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.0 0.0

Surface (S, %)

70.6 18.7 3.7 1.5 5.0 0.7 64.8 18.8 5.1 2.4 7.5 1.6 65.4 20.7 4.6 1.8 6.0 1.6 74.4 16.6 3.3 3.7 1.4 0.8

Random contacts (R, %)

H 49.8 – – – – – 42.0 – – – – – 42.8 – – – – – 55.4 – – – – –
C 26.4 3.5 – – – – 24.4 3.5 – – – – 27.1 4.3 – – – – 24.7 2.8 – – – –
N 5.2 1.4 0.1 – – – 6.6 1.9 0.3 – – – 6.0 1.9 0.2 – – – 4.9 1.1 0.1 – – –
O 2.1 0.6 0.1 0.0 – – 3.1 0.9 0.2 0.1 – – 2.4 0.7 0.2 0.0 – – 5.5 1.2 0.2 0.1 – –
S 7.1 1.9 0.4 0.2 0.3 – 9.7 2.8 0.8 0.4 0.6 – 7.8 2.5 0.6 0.2 0.4 – 2.1 0.5 0.1 0.1 0.0 –
Ni 1.0 0.3 0.1 0.0 0.1 0.0 2.1 0.6 0.2 0.1 0.2 0.0 2.1 0.7 0.1 0.1 0.2 0.0 1.2 0.3 0.1 0.1 0.0 0.0

Enrichment (E) 2

H 0.95 – – – – – 0.93 – – – – – 0.93 – – – – – 0.99 – – – – –
C 0.99 1.43 – – – – 1.00 1.31 – – – – 1.12 0.77 – – – – 0.97 1.25 – – – –
N 1.33 0.29 – – – – 1.23 0.79 – – – – 1.25 0.74 – – – – 1.12 0.73 – – – –
O 1.10 – – – – – 0.97 – – – – – 0.58 – – – – – 1.20 0.33 – – – –
S 1.38 0.05 – – – – 1.44 0.04 – – – – 1.27 0.04 – – – – 1.19 – – – – –
Ni 1.40 – – – – – 1.10 – – – – – 1.10 – – – – – 0.67 – – – – –

1 Values are obtained from CrystalExplorer 17.5 [20]. 2 The “enrichment ratios” were not computed when the “random contacts” were
lower than 0.9%, as they are not meaningful [27].

We additionally calculated the enrichment ratios (E) [27] of the intermolecular contacts
in order to estimate the propensity of two chemical species to be in contact. All the H···X
contacts, except the H···O and Ni···H contacts in 1-III and 2, respectively, are favored in
the structures of all molecules since the corresponding enrichment ratios EHX are close
to or even higher than unity (Table 5). The C···C contacts in the structures of 1-I, 1-II,
and 2 are highly enriched (ECC = 1.25–1.43), while the same contacts in the structure of
1-III are significantly less favored (ECC = 0.77), although the SC value of the structure
of 1-III is the highest among all the discussed molecules. This is related to the high
proportion and enrichment of H···C contacts (Table 5). Remaining contacts are significantly
impoverished (Table 5).

In order to provide deeper insight into the nature of physical factors and non-covalent
interactions, which influence the stability of the reported metal complexes, the ETS-
NOCV [28] charge and energy decomposition method were applied as implemented in the
ADF package [29,30]. We applied DFT/BLYP-D3/TZP since these types of computational
details provide reliable results for non-covalent interactions [31,32].
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As it was already mentioned, one of the most intriguing and elusive contributors to
self-assembling of 1 and 2 is a long range (2.71–2.94 Å) C–H···Ni contact (Figures 3 and 7,
Table 4), which is considered in the literature as a repulsive term based rather on chemical
intuition without any computational or experimental proofs. The ETS-NOCV results of 1
unveiled that cooperative action of both long-range C–H···Ni and C–H···S interactions leads
to the very low dimerization energy, ∆Etotal = –16.28 kcal/mol, caused chiefly by the London
dispersion term (Figure 7). Surprisingly, it is even more efficient than more intuitive in-
plane σ-type hydrogen bonds N–H···S and C–H···S, further supported by π-delocalizations
(Figure 8) [33–35]. Furthermore, there are clearly charge delocalizations discovered from the
contour of ∆ρorb stemming from the two ways transfers in C–H···Ni: [Ni(dz

2)→ σ*(C–H)
and σ(C–H)→ Ni(dz

2)] and within C–H···S [S(Lp)→ σ*(C–H)] (Figure 7).
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tions between in-plane monomers in 1. Additionally, the overall deformation density ∆ρorb with the
corresponding ∆Eorb are presented together with σ- and π-NOCV based contributions.

Since both C–H···Ni and C–H···S interactions are present in 1, and ETS-NOCV can-
not separate their individual strengths as indicated by the contour ∆ρorb, we decided
to perform additionally an Interacting Quantum Atoms (IQA) [36] energy decomposi-
tion based study which allows us to discern Ni···H vs. S···H (Table 6). The obtained
results nicely point out the importance of sizeable stabilization stemming from both Ni···H
(∆Eint = –9.71 kcal/mol) and S···H (∆Eint = –2.87 kcal/mol), despite their long distances
of about 2.84 Å, where the repulsion could be expected [37,38] (Table 6). We noticed sim-
ilar stabilizations for the intramolecular C–H···Ni contacts in other complexes based on
thiourea derived ligands [37]. Interestingly, the Ni···H interactions are dominated by the at-
tractive Coulomb term, ∆ECoulomb = –6.37 kcal/mol, followed by the exchange-correlation
constituent ∆EXC = –3.33 kcal/mol, whereas the S···H interactions are characterized by
the repulsive Coulomb forces, ∆ECoulomb = 1.94 kcal/mol, and the sole attractive force in
S···H which is ∆EXC = – 4.80 kcal/mol (Table 6). It should be added that intermolecular
Ni···H interactions described herein are stronger than the intramolecular ones reported by
us recently [37]. Both intra- and intermolecular Ni···H interactions are constituted from
prevailing attractive Coulomb forces followed by the exchange-correlation constituent
(Table 6) [37].
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Table 6. IQA Energy Decomposition of the Diatomic Long-range Ni···H and S···H Interactions in 1
(the model from Figure 7 is considered).

IQA/BLYP/6-311+G(d,p) ∆Eint
1 ∆ECoulomb ∆EXC

Ni···H (2.843 Å) –9.71 –6.37 –3.33
S···H (2.840 Å) –2.87 1.94 –4.80

1 ∆Eint = ∆ECoulomb + ∆EXC [36].

As far as 2 is considered, it is seen that the cooperativity of the C–H···Ni and less
intuitive C–H···X (X = S, N, π, H–C) interactions [37–46] provides the most efficient sta-
bilization with ∆Etotal = –32.93 kcal/mol (Figure 9), which is stronger with respect to 1
(Figures 7 and 10). Stabilization stemming from π···π and C–H···X (X = O, H–C) interactions
in 2 (Figure 9) is less efficient than in 1 (Figure 7). It is to be noted that the presence of sup-
portive, recently topical homopolar C–H···H–C interactions, discussed in terms of in-depth
understanding of steric-crowding [39–45] (Figures 9 and 10), explains also the Hirshfeld
based observation on the dominance of H···H contacts in the reported crystal structures.
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the involvement of the nickel(II) d-orbitals is depicted.
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Figure 10. The results of ETS-NOCV energy decomposition describing C–H···Ni, C–H···S and
C–H···H–C (left), and C–H···S and N–H···S (right) interactions in 1. Additionally, the overall
deformation density ∆ρorb with the corresponding ∆Eorb are presented.

We finally studied the aromaticity by the electron density of delocalized bonds (EDDB)
method [47], which is suitable for both qualitative and quantitative analyses of electrons’
delocalization in various aromatic compounds, including very challenging metal complexes.
It is established that in both complexes 1 and 2, the extended π-delocalizations are observed
mostly at the phenyl units and the adjacent HCNN linkers (Figure 11). Interestingly,
the σ-delocalization starts to dominate when going to the metal proximity (Figure 11).
It proves that nickel(II) is conjugated to the neighboring atoms predominantly through
σ-channels. Furthermore, in both cases, it is very weak conjugation since only about 0.8|e|
is delocalized through the Ni–N and Ni–S bonds. Further analyses revealed consistently
that mostly in-plane d-orbitals are involved in σ-conjugation (Figure 11).
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3. Materials and Methods
3.1. Materials

Unless stated otherwise, all chemicals were obtained from Sigma-Aldrich, and were
used as received.

3.2. Physical Measurements

Microanalyses were performed using a Heraeus CHN-O-Rapid analyser (Heraeus,
Hanau, Germany). The FTIR spectra were recorded on a Bruker Tensor 27 FTIR spectrome-
ter (Bruker, Karlsruhe, Germany).

3.3. Synthesis of Complexes

Complexes were synthesized using a branched tube method [48]. A mixture of H2LI

(0.284 g, 0.5 mmol) and Ni(CH3COO)2·2H2O (0.106 g, 0.5 mmol) were placed in the main
arm of a branched tube. EtOH or MeOH (15 mL) was carefully added to fill the arms.
The tube was sealed and immersed in an oil bath at 60 ◦C while the branched arm was kept
at ambient temperature. After few days, X-ray suitable single crystals of the corresponding
complex were formed in the cooler arm of the tube. Crystals were isolated by filtration.

[NiLI] (1). Block-like crystals. Isolated yield: 0.225 g (72%). Anal. Calc. for
C30H26N6NiO2S2 (625.39): C 57.62, H 4.19 and N 13.44; found: C 57.51, H 4.28 and
N 13.53%.

[Ni(LII)2] (2). Plate-like crystals. Isolated yield: 0.222 g (45%). Anal. Calc. for
C50H52N6NiO8S2 (987.81): C 60.80, H 5.31 and N 8.51; found: C 60.71, H 5.43 and N 8.62%.

3.4. Single-Crystal X-ray Diffraction

Diffraction data for 1 were collected on a Bruker Smart Apex II diffractometer equipped
with CCD, and those of 2 on a Enraf Nonius CAD4. Both the experiments were performed
at 100 K with Mo-Kα radiation (λ = 0.71073 Å). Cell refinement, indexing, and scaling of
the data sets were carried out using the Mosflm, Denzo/HKL suite [49,50] and Bruker
Smart Apex and Saint packages [51]. The structures were solved by direct methods and
subsequent Fourier analyses and refined by the full-matrix least-squares method based on
F2 with all observed reflections [52]. The contribution of hydrogen atoms in complexes was
introduced in the final cycles of refinement at the calculated position, except those of the
imino nitrogen atoms in 2, located on the Fourier map. All the calculations were performed
using the WinGX System, Ver 2013.13 [53].

Crystal data for 1. C30H26N6NiO2S2, Mr = 625.40 g mol−1, triclinic, space group
P–1, a = 16.2571(11), b = 17.0000(12), c = 17.4769(12) Å, α = 86.288(5), β = 64.780(4),
γ = 71.536(5)◦, V = 4130.9(5) Å3, Z = 6, ρ = 1.508 g cm−3, µ(Mo-Kα) = 0.897 mm−1,
reflections: 15090 collected, 15090 unique, Rint = 0.048, R1(all) = 0.0817, wR2(all) = 0.1258,
S = 1.066.

Crystal data for 2. C50H52N6NiO8S2, Mr = 987.80 g mol−1, monoclinic, space group
P21/c, a = 19.014(2), b = 12.4932(15), c = 21.984(3) Å, β = 115.557(4)◦, V = 4711.3(10) Å3,
Z = 1, ρ = 1.393 g cm−3, µ(Mo-Kα) = 0.562 mm−1, reflections: 46736 collected, 5757 unique,
Rint = 0.104, R1(all) = 0.1057, wR2(all) = 0.1819, S = 1.065.

CCDC 1998447 and 1998448 contain the supplementary crystallographic data. These data
can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, ac-
cessed on 17 March 2021, or from the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

3.5. ETS-NOCV Studies

In order to shed light on the nature of bonding, the charge and energy decomposition
scheme ETS-NOCV [28] was applied as implemented in the ADF package [29,30]. This ap-
proach allows us to understand chemical bonding in terms of qualitative and quantitative
delineation of various bonding channels (σ, π, etc.), and it also decomposes total interac-
tion energy (∆Etotal) into physically meaningful contributions: ∆Etotal = ∆Eorb + ∆Eelstat

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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+ ∆EPauli + ∆Edisp. The orbital interaction term ∆Eorb (corresponding to ∆ρorb = ∑i ∆ρ(i))
covers various charge delocalizations/contributions ∆ρorb(i) (σ, π, etc.), further supple-
mented by the corresponding energies ∆Eorb(i) for any system even without symmetry.
The second term, ∆Eelstat, represents the classical electrostatic interaction between the
selected subsystems. The next term, ∆EPauli, concerns Pauli repulsion between occupied or-
bitals of fragments. Finally, the last contribution, ∆Edisp, corresponds to the semi-empirical
Van der Waals component. It shall be added that overall interaction energies are calculated
not from the supermolecular approach, but according to the ETS method [28].

3.6. IQA studies

The Interacting Quantum Atoms Energy decomposition scheme (IQA) [36] operates
in atomic resolution as opposed to the ETS-NOCV. It allows us to approximate overall
system energy by a sum of atomic and diatomic contributions, where the latter can be in
turn decomposed into physically relevant Coulomb and exchange-correlation constituents:
∆Eint = ∆ECoulomb + ∆EXC.

3.7. EDDB studies

The EDDB(r) quantity is a part of electron density (ED) ED(r) = EDLA(r) + EDLB(r) +
EDDB(r), where EDLA represents electrons localized on atoms (inner shells, lone pairs);
EDLB represents electrons in Lewis-like localized bonds; and EDDB represents electrons
delocalized between conjugated bonds (multicenter electron sharing, aromatic rings) [47].
The latter is calculated based on diatomic blocks of a charge and bond-order matrix.

4. Conclusions

In summary, two novel discrete mononuclear homoleptic complexes of the nickel(II)
cation were synthetized using a one-pot synthetic approach, and extensively characterized
by both experimental and theoretical approaches. Complex [NiLI] (1) was obtained in
ethanol from the bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-
phenylthiosemicarbazide with bis-aldehyde, namely 2,2′-(ethane-1,2-diylbis(oxy)dibenza-
ldehyde, and contains three independent molecules, namely 1-I, 1-II, and 1-III, in the
asymmetric unit. Complex [Ni(LII)2] (2), where LII is a monodeprotonated ligand 2-(2-(2-(2-
(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-N-phenylhydrazine-1-carbothioamide
(HLII), was formed using the same synthetic approach and precursors but in methanol.
Thus, the ligand LII was formed in situ from the reaction of LI with methanol upon coordi-
nation to the metal center under synthetic conditions. The doubly deprotonated ligand LI

in 1 is coordinated in a cis-manner, while two ligands LII are coordinated in a trans-manner
in 2, both yielding an N2S2 coordination environment, formed by the azomethine nitrogen
atoms and the thiocarbonyl sulfur atoms, with a seesaw coordination polyhedron around
the metal centers.

It was determined based on the charge and energy decomposition scheme ETS-NOCV
that supramolecular networks in the reported structures are due to cooperative action of
mostly London dispersion dominated N–H···S and N–H···O hydrogen bonds in 1 and 2,
respectively, and a bunch of efficient C–H···X (where X = S, N, O, π, H–C), π···π stacking
and the most elusive long-range (~2.8 Å), attractive C–H···Ni preagostic as well as re-
cently topical homopolar dihydrogen C–H···H–C [39–42] interactions. It was further
unveiled that the intermolecular preagostic C–H···Ni interactions are constituted from
both stabilizing Coulomb forces and an exchange-correlation contribution (contrary to the
literature claims on its pure Coulombic and repulsive character [54]) as opposed to the
analogous long-range C–H···S interactions, where the attraction stems from the dominant
exchange-correlation contribution over the repulsive Coulomb component. The electron
density of delocalized bonds (EDDB) method demonstrates that the nickel(II) cation is
involved in weak σ-conjugation with the adjacent in-plane atoms since only ~0.8|e| are
delocalized through the system of Ni–N and Ni–S bonds, which suggests a very weak
σ-metalloaromatic character.
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Finally, complex 2 might be of particular interest as a complex agent, containing two
podand-like functions, which potentially can trap suitable species; thus, it can be used,
e.g., in membrane transport and liquid-liquid extraction. These comprehensive studies are
currently in progress and will be reported elsewhere in the case of successful results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22105337/s1. 2D and decomposed 2D fingerprint plots of observed contacts for 1-I, 1-II.
1-III and 2.
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