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Abstract: Multicomponent reactions, especially the Ugi-four component reaction (U-4CR), provide
powerful protocols to efficiently access compounds having potent biological and pharmacological
effects. Thus, a diverse library of betulinic acid (BA), fusidic acid (FA), cholic acid (CA) conjugates
with TEMPO (nitroxide) have been prepared using this approach, which also makes them applicable
in electron paramagnetic resonance (EPR) spectroscopy. Moreover, convertible amide modified
spin-labelled fusidic acid derivatives were selected for post-Ugi modification utilizing a wide range
of reaction conditions which kept the paramagnetic center intact. The nitroxide labelled betulinic
acid analogue 6 possesses cytotoxic effects towards two investigated cell lines: prostate cancer PC3
(IC50 7.4 ± 0.7 µM) and colon cancer HT29 (IC50 9.0 ± 0.4 µM). Notably, spin-labelled fusidic acid
derivative 8 acts strongly against these two cancer cell lines (PC3: IC50 6.0 ± 1.1 µM; HT29: IC50

7.4 ± 0.6 µM). Additionally, another fusidic acid analogue 9 was also found to be active towards
HT29 with IC50 7.0± 0.3 µM (CV). Studies on the mode of action revealed that compound 8 increased
the level of caspase-3 significantly which clearly indicates induction of apoptosis by activation
of the caspase pathway. Furthermore, the exclusive mitochondria targeting of compound 18 was
successfully achieved, since mitochondria are the major source of ROS generation.

Keywords: multi-component reaction; fusidic acid; TEMPO-conjugate; electron paramagnetic reso-
nance (EPR) spectroscopy; caspase-3

1. Introduction

Reactive oxygen species (ROS) are involved in numerous processes, which mediate
physiological and pathophysiological signal transductions. Upon unregulated increased
ROS production, redox imbalances occur, which cause atherosclerosis, cardiovascular
diseases, hypertension, diabetes mellitus, neurodegenerative and immune-inflammatory
diseases. In addition, the impact of oxidants and antioxidants in tumor cell proliferation
is observed frequently. On the molecular level, ROS causes oxidative stress, which is
responsible for damaging cell structures by acting on lipids, membranes, proteins, and
DNA. This behavior of ROS in cancer cells, in particular, offers a basis for the prevention
of tumor progression and metastasis by ROS scavengers [1,2]. Therefore, antioxidant
therapies are sought to selectively inhibit the growth of tumor cells to induce cellular
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differentiation and to alter the intracellular redox state [3]. Besides this, antioxidative
food supplements enhance the positive outcome of conventional cancer treatments. In
the context of cancer therapy, nitroxide-modified natural products have been shown to
be useful due to their ability to remove superoxide anions, trap carbon-centered radicals,
or to terminate chain reactions [4]. Furthermore, these derivatizations have been applied
in bioreductive drugs to initiate additional cytotoxic events, which make them useful as
antitumor drugs [5].

Betulinic acid (BA, 1, Figure 1) and its congeners are well known for their abilities
to act as natural cytotoxic products [6–10]. These triterpenes have been modified quite
extensively providing products with enhanced biological activities [11–15]. Modifications
of these lupane triterpenoids with nitroxyl radicals have been shown to produce a positive
outcome on the cytotoxic activity on several cell lines (e.g., CEM13, U937, MT4) [16,17].
Fusidic acid (FA, 2) is a triterpene acid that belongs to the family of tetracyclic fusidane
nor-triterpenes and has been clinically employed as an antibiotic for staphylococcal infec-
tions [18]. Additionally, it has been reported that fusidic acid sodium salt, an approved
bacteriostatic antibiotic, showed significant cytotoxic effects (in vitro and in vivo) towards
various colon cancer cells alone or coupled with 5-fluorouracil [19,20]. Moreover, various
studies have been reported that cholic acid (CA, 3), which is steroidal acid, can be used for
the prevention and treatment of colon cancer [21,22].
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Based on these promising cytotoxic effects of the natural products 1–3, we prepared
a library of BA (1), FA (2), CA (3) conjugates with TEMPO (nitroxide) by utilizing an
Ugi multicomponent reaction approach (U-4CR) with the aim of enhancing the cytotoxic
potentials of our conjugates. Although only a few reports have been published about
the U-4CR modifications on BA (1) as anti-inflammatory agents [23,24], none of them
investigated the fusion to nitroxide. In a previous communication, we demonstrated that
the U-4CR strategy is very well suited to achieve spin-labelled products [25]. In the present
study, we use an amino spin-label viz.: 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4,
4-NH2-TEMPO) as a U-4CR counterpart (Scheme 1) allowing for the preparation of the
natural acid-TEMPO adducts. The spin-labelled FA derivative 8 acts strongly against two
investigated cancer cell lines of prostate cancer (PC3) and colon cancer (HT29) and induces
apoptosis by a caspase-dependent mechanism.
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Scheme 1. Synthesis of terpenoic acid-TEMPO adducts 6–12.

2. Results and Discussion
2.1. Chemistry

The general synthetic pathway for the preparation of natural acids 1–3-based Ugi
products 6–12 is outlined in Scheme 1. Natural acid-TEMPO adducts 6–11 were synthesized
in a single step operation by utilizing the Ugi four-component reaction. These compounds
were prepared in moderate to good yields (57–81%) by the reaction of BA (1), FA (2), or
CA (3) as the acid component (A), convertible IPB isonitrile 5 [26], or t-butyl isocyanide
as isonitrile component (B), 4-NH2-TEMPO as amine (C), and paraformaldehyde (D) in
the presence of MeOH. Encouraged by our previous results [25] that spin-label TEMPO
is not affected under the reaction conditions of the U-4CR, we plan to couple nitroxide
comprising amine viz.: 4-NH2-TEMPO (4; as amine component) to enhance the cytotoxicity
of natural acids 1–3. Moreover, BA (1), FA (2), and CA (3) have a tertiary carboxylic acid,
vinyl carboxylic acid, and secondary carboxylic acid groups respectively. We found that
the alteration of these acids did not play any significant role in the product yields. To
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introduce further chemical diversity via the Ugi synthetic procedure, we additionally
prepared fusidic acid-based Ugi product 12 by utilizing Yudin’s fluorescent isocyanide [27].

In order to expand the diversity of the Ugi products synthesized, the advantage was
taken of the isonitrile functionality as illustrated for compounds 7 and 9 (Scheme 2). As
demonstrated earlier [26], the secondary amide can be transformed upon acidic treatment to
acyl pyrroles, which can easily be cleaved by nucleophiles. Thus, in the presence of camphor
sulfonic acid (CSA) both Ugi-products 7 and 9 were transformed to the corresponding acyl
pyrroles 13 and 15, which upon treatment with KOH were converted into the corresponding
carboxylates 14 and 16. However, no selectivity could be obtained for the acetyl moiety in
the fusidic acid derivative 15 since the ester moiety (C-16 acetyl group) was cleaved as well,
as expected under these conditions. To achieve selectivity in the displacement of the acyl
pyrrole, an alternative procedure (DMAP, H2O/t-BuOH) was successful and furnished the
C-16 acetyl fusidic acid analog 17. For biological evaluation, we envisioned the preparation
of a conjugate with a triphenylphosphine moiety, since this moiety is known to selectively
bind to mitochondria membranes. Again, the U-4CR proved to be the synthetic protocol of
choice, since in a single step not only the triphenylphosphine moiety but a dye (Yudin’s
dye/Yudin’s isonitrile) can be assembled to form the product in the same synthetic process
yielding the fusidic acid analog 18.
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2.2. Characterization of the Nitroxide Conjugated Compounds by Electron Paramagnetic
Resonance (EPR) Spectroscopy

The radical nature of the synthesized nitroxide conjugates were verified by continu-
ous wave (CW) EPR spectroscopy. Figure 2 shows the CW EPR spectra of the nitroxide
conjugated compounds 6–12, 14, 16, 17, and 18. Conventional triplet pattern of TEMPO
nitroxide with relative spectral intensities of 1:1:1 can be seen in Figure 2 due to the coupling
of the unpaired electron to the N-atom which indicates that the nitroxide was intact during
the EPR measurements.
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Figure 2. Experimental room temperature CW EPR (X-band, microwave frequency ≈ 9.4 GHz)
spectra (black) and the corresponding simulations (red) of the synthesized nitroxide conjugates
are given.

The EPR characteristics, mainly the isotropic hyperfine coupling (Aiso) and isotropic
rotational correlation times (τc), dominate solution-state EPR spectra as a measure of the
line spacing and line shape, were obtained by simulations using the Easyspin software pack-
age [28]. All synthesized nitroxide adducts show hyperfine couplings (Aiso~45–47 MHz)
that are indicative of a water-exposed nitroxide moiety. The isotropic rotational correlation
times (τc), as a simple measure of nitroxide rotational dynamics were monitored and were
found to be between 1–2 ns for the synthesized nitroxide adducts, in good agreement with
what can be expected when attached to medium-sized molecules as in this case. During
the simulations, the g-values were kept constant at giso~2.005, the commonly found value
for piperidine-based nitroxide radicals [29–31]. The numerical values are summarized in
Table S1. Altogether, one can state that the EPR parameters clearly show that none of the
spin-labelled natural products seems to be aggregated/micellized or non-homogeneously
dissolved in aqueous solution.

2.3. Cytotoxic Activity

The first set of synthesized spin-labelled adducts 6–11 were subjected to fast screening
by MTT and CV assays to have an overall view on their potential activity against human
cancer cell lines viz.: PC3 (prostate cancer) and HT29 (colon cancer). Two concentrations
were employed viz.: 0.1 and 10 µM and compared to the activity of unmodified BA (1),
FA (2), and CA (3). As shown in Figure 3 both the betulinic acid derivatives 6 and 7 and
the fusidic acid derivatives 8 and 9 showed a significant reduction in cell viability when
compared to cholic acid derivatives 10 and 11. The low anticancer activity of cholic acid
and its derivatives can be attributed to the high lipophilic character (log p ~ 2.02) and low
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water solubility, which makes it difficult to cross membranes effectively to be present in
high concentrations in the cytosol of the cancer cells [32].
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As expected, FA (2) failed to show any activity against the tested cancer cell lines.
However, the unanticipated very high activity displayed by its derivatives 8 and 9, espe-
cially when compared to the well-known anticancer activity of BA (1) was encouraging [33].
The IC50 values were also determined for the most active compounds against both cell
lines used in our appraisal. The IC50 values are illustrated in Table 1, where it is evident
that fusidic acid analogue 8 is the most active compound against both cell lines tested. Ad-
ditionally, another fusidic acid analogue 9 was also active towards HT29 cells with an IC50
of 6.98 ± 0.25 µM (CV). Moreover, the betulinic acid analogue 6 possesses cytotoxic effects
towards PC3 (IC50: 7.43 ± 0.72 µM) and HT29 cells (IC50: 8.98 ± 0.43 µM). In addition, it
is worthy to note that FA alone possesses no activity when compared to its spin-labelled
adducts. Thus, it may clearly be noted that the structure modification provided by the Ugi
multicomponent reaction dramatically enhances the anticancer activity of these classes
of terpenes.
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Table 1. IC50 values (µM) for the most active compounds against HT29 and PC3 cell lines determined
by MTT and CV assays.

Compound PC3 HT29
CV MTT CV MTT

1 24.64 ± 1.78 25.43 ± 4.35 24.97 ± 0.57 19.02 ± 2.26
6 13.69 ± 0.80 7.43 ± 0.72 13.16 ± 0.97 8.98 ± 0.43
7 10.59 ± 0.85 10.54 ± 0.91 13.82 ± 0.29 11.87 ± 0.94
8 7.44 ± 0.80 6.00 ± 1.09 8.10 ± 0.43 7.41 ± 0.56
9 15.26 ± 1.01 13.85 ± 2.04 6.98 ± 0.25 12.94 ± 1.03

18 9.27 ± 0.73 6.19 ± 0.20 16.30 ± 0.87 12.23 ± 0.67

Compound 8, the most promising conjugate, was selected to determine its mode of
action against the PC3 cell line based on its cytotoxic effects. To determine the mode of
cell death induced by compound 8, the AnnV/PI assay was performed since the degree of
induction of apoptosis by compound 8 can be effectively measured. The assay determines
the expression of phosphatidylserine on the cell surface by annexin V (AnnV) stain and
the DNA fragmentation by propidium iodide (PI) (Figure 4). Compound 8 was tested
at two different concentrations (IC50, 2 × IC50) for 48 h and it was analysed using flow
cytometry. It is clearly shown, that this compound increases both early and late apoptosis,
only when the PC3 cancer cells were treated with 2 × IC50 value with a total apoptotic
event of 68% compared to the control of 16%. To study the impact of compound 8 on the
cell cycle distribution, the DAPI assay was performed as outlined in Figure 5. Based on
the results obtained, compound 8 caused a dose-dependent increase in the entrapment of
cells in sub G1-phase. This accumulation of the cells in the sub G1-phase of the cell cycle
indicates the fragmentation of the DNA that has occurred due to the induction of apoptosis
by compound 8.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 19 
 

 

18 9.27 ± 0.73 6.19 ± 0.20 16.30 ± 0.87 12.23 ± 0.67 

Compound 8, the most promising conjugate, was selected to determine its mode of 
action against the PC3 cell line based on its cytotoxic effects. To determine the mode of 
cell death induced by compound 8, the AnnV/PI assay was performed since the degree of 
induction of apoptosis by compound 8 can be effectively measured. The assay deter-
mines the expression of phosphatidylserine on the cell surface by annexin V (AnnV) stain 
and the DNA fragmentation by propidium iodide (PI) (Figure 4). Compound 8 was 
tested at two different concentrations (IC50, 2 × IC50) for 48 h and it was analysed using 
flow cytometry. It is clearly shown, that this compound increases both early and late 
apoptosis, only when the PC3 cancer cells were treated with 2 × IC50 value with a total 
apoptotic event of 68% compared to the control of 16%. To study the impact of com-
pound 8 on the cell cycle distribution, the DAPI assay was performed as outlined in 
Figure 5. Based on the results obtained, compound 8 caused a dose-dependent increase in 
the entrapment of cells in sub G1-phase. This accumulation of the cells in the sub 
G1-phase of the cell cycle indicates the fragmentation of the DNA that has occurred due 
to the induction of apoptosis by compound 8. 

 
Figure 4. The impact of compound 8 on the apoptosis induction in PC3 cells. 8 was tested using IC50, 2 × IC50 concentra-
tions for 48 h (AnnV/PI assay). 

 

Figure 4. The impact of compound 8 on the apoptosis induction in PC3 cells. 8 was tested using IC50, 2× IC50 concentrations
for 48 h (AnnV/PI assay).

Reyes et al. reported that natural triterpenoic acids induce caspase-dependent apopto-
sis and in particular, caspase-3 [34]. Furthermore, recent reports showed that treating tumor
cells with nitroxides can also induce apoptosis by a caspase activation mechanism [35].
These studies inspired us to investigate the possibility of caspase-3 being involved in the
mechanism of action of conjugate 8 to explain the apoptotic mode of cell death, passivate
the level of protein expression of the anti-apoptotic protein Bcl-XL and the housekeeping
proteins (β-actin and α/β-tubulin). Results illustrated in Figure 6 show that 8 increased the
level of caspase-3 significantly after 48 h of incubation, which clearly indicates the induction
of apoptosis by activation of the caspase pathway. Expression of the anti-apoptotic protein
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Bcl-XL which is a transmembrane molecule in the mitochondria was also measured. After
48 h of incubation, it is clearly evident that the level of Bcl-XL decreases which supports
the apoptosis by triggering the caspase-3 activation pathway.
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β-Actin is a housekeeping protein that is involved in the restriction of the cell motility,
structure integrity, and in addition to its resistance to different cellular treatment, which
makes it a good choice as a housekeeping protein for western blot analysis [36]. Indeed,
after 48 h of incubation, no change in its expression was detected. α/β-Tubulins is another
housekeeping protein control used since their expression should remain unchanged. Sur-
prisingly, the behavior of this protein was manifested by a strong elevation of the expression
level being obvious after 48 h of incubation as shown in Figure 6. Recent studies report that
microtubulin increases during apoptosis and functions as a physical barrier preventing
caspase from spreading into the cellular cortex. In addition, it increases phosphatidylserine
(PS) externalization which helps the macrophage for efficient clearance [37].

The influence of compound 8 (IC50 and 2 × IC50) on the ROS production in PC3 cells
was monitored using dihydrorhodamine (DHR) assay for 48 h and the data were analysed
with flow cytometry.

As shown in Figure 7 compound 8 indeed reduced the level of ROS as anticipated in a
dose-dependent manner.
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2 × IC50 concentrations for 48 h using DHR assay, fluorescence was detected in FITC channel
(ex/em: 488/520 nm).

2.4. Fluorescent Imaging Study

Fluorescent conjugate 12 was initially used to determine if this dye-tagged analogue
of fusidic acid conjugate 8 can target the mitochondria, since mitochondria are the major
source of ROS generation and therefore is more sensible for ROS manipulation. Unfortu-
nately, after PC3 cancer cells were incubated with 12 (depicted as green color in Figure 8),
no mitochondrial targeting was observed. Therefore, we turned our attention to test the
mitochondrial targeting of TPP-conjugate 18. After 24 h of incubation of compound 18
with PC3 cells, a clear mitochondrial targeting was successfully achieved as shown in
Figure 9. Additionally, cytotoxic activity of 18 against PC3 and HT29 was found to be with
significant effects towards PC3 cancer cell line (IC50: 6.18 ± 0.20 µM, MTT).
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3. Conclusions

TEMPO radical conjugation to natural products can serve as a potential strategy to
obtain new hybrid compounds with novel mechanisms of action. Conjugate 8 revealed a
high activity against both PC3 and HT29 cancer cell lines (PC3: IC50 6.0 ± 1.1 µM; HT29:
IC50 7.4 ± 0.6 µM), furthermore, apoptosis was induced through the caspase activation
mechanism. In addition, targeting mitochondria (the major source of ROS generation) was
successfully achieved with 18. Moreover, it was clearly demonstrated that utilizing Ugi
multicomponent reactions is a powerful synthetic tool that gives access to a wide variety
of different analogues via a fairly easy synthetic effort. We envisioned that utilizing the
power of MCR, large interesting libraries of natural product TEMPO conjugates for the
treatment of cancer can be generated.

4. Materials and Methods
4.1. Chemistry
4.1.1. Materials

All commercially available reagents were purchased and used without further purifi-
cation. Convertible isocyanide 2-isocyano-2-methylpropyl phenyl carbonate “IPB” was
synthesized following reported procedures [27]. (3-Aminopropyl)triphenylphosphonium
bromide (TPP-NH2) was also synthesized following reported protocols [38]. HPLC grade
methanol was used in all Ugi reactions. Analytical thin layer chromatography (TLC) was
performed using silica gel 60 F254 aluminum sheets (Merck, Darmstadt, Germany) and the
visualization of the spots has been done under UV light (254 nm) or by developing with
a solution of cerium sulfate. Flash column chromatography was performed using silica
gel (0.040–0.063 mm). 1H- and 13C-NMR spectra were recorded in solutions on a 400 NMR
Varian MERCURY-VX 400 at 22 ◦C at 400 MHz and 100 MHz, or an Agilent (Varian, Santa
Clara, CA, USA) VNMRS 600 NMR spectrometer at 599.83 MHz and 150.83 MHz respec-
tively. Chemical shifts (δ) are reported in ppm relative to TMS (1H-NMR) and to the solvent
signal (13C NMR spectra). The positive-ion high-resolution ESI mass spectra were obtained
with an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Schwerte, Germany)
equipped with HESI electrospray ion source (positive spray voltage 4 kV, capillary temper-
ature 275 ◦C, source heater temperature 80 ◦C, FTMS resolution 60,000). Nitrogen was used
as sheath gas. The instrument was externally calibrated using the Pierce LTQ Velos ESI
positive ion calibration solution (product number 88323, ThermoFisher Scientific, Rockford,
IL, USA). The data were evaluated using the software Xcalibur 2.7 SP1. Analytical RP-
HPLC analysis was performed with an 1100 system (Agilent, Santa Clara, CA, USA) on a
reverse-phase C18 column (4.6 × 150 mm, 5 µm) with a PDA detector. A linear gradient
from 5% to 100% of solvent B in solvent A over 15–30 min at a flow rate of 0.8 mL min−1.
Detection was accomplished at 210 nm. Solvent A: 0.1% (v/v) formic acid (FA) in water.
Solvent B: 0.1% (v/v) FA in acetonitrile.

PBS, RPMI 1640, and Trypsin EDTA were from Capricorn Scientific (Ebsdorfergrund,
Germany). β-mercaptoethanol was from Bio-Rad (Hercules, CA, USA). Anti-rabbit IgG
HRP-linked antibody, α/β-tubulin rabbit Ab, caspase-3 rabbit Ab were purchased from
Cell Signalling Technology (Frankfurt/Main, Germany), while Bcl-XL rabbit antibody
was obtained from Abcam (Cambridge, UK). DMSO was bought from Duchefa Bio-
chemie (Harleem, The Netherlands). ECL Prime Western Blotting System was supplied
by GE Healthcare (Braunschweig, Germany). AnnV/PI, PAGE Ruler, EDTA Solution,
Trypan blue, MitoTrackerTM Deep Red and Halt Protease Inhibitor Cocktail were obtained
from ThermoFisher Scientific, Schwerte, Germany). Ethanol, Na2HPO4, NaH2PO4, and
BSA were bought from Merck, Darmstadt, Germany). Digitonin was from Riedel De
Haen (Seelze, Germany). Acetic acid, APS, FCS, glycerol, glycine, methanol, NaOH,
penicillin/streptomycin, Roti-quant “5x”, TEMED and TRIS were from Roth (Karlsruhe,
Germany). Acrylamide/Bisacrylamide was bought from Serva (Heidelberg, Germany).
Finally, bromophenol blue, CV, DAPI, MTT, Triton X-100, and Tween-20 were from Sigma
Aldrich (St. Louis, MO, USA).
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4.1.2. General Procedure A for the Ugi-4CR

To a stirred solution of TEMPO amine 4 (0.1 mmol) in methanol (250 µL, 0.4 M) was
added paraformaldehyde (0.1 mmol) and the mixture was stirred for 2 h. After this time
the acid (0.1 mmol) and isonitrile (0.1 mmol) were added before stirring was continued for
18 h. The solvent was removed under reduced pressure and the crude material purified by
column chromatography to afford the desired products.

Note: due to the paramagnetism of nitroxide moieties, NMR cannot provide in-
formation useful for structural elucidation of nitroxide-containing products, therefore,
reduction of the paramagnetic center was performed with phenylhydrazine or hydrazoben-
zene [39,40].

(4-{[2-(tert-Butylamino)-2-oxoethyl][(1R,3aS,5aR,5bR,9S,11aR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-
(prop-1-en-2-yl)icosahydro-3aH-cyclopenta[a]chrysene-3a-carbonyl]amino}-2,2,6,6-tetramethylpiperidin-
1-yl)oxidanyl (6)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then betulinic acid and t-butyl isonitrile were added. The crude reaction product
was purified by silica gel column chromatography (ethyl acetate/hexane 8:2) to yield
compound 6 (51 mg, 0.070 mmol, 70%) as red solid. RF 0.77 (ethyl acetate/hexane 8:2).
NMR of the corresponding hydroxylamine after phenylhydrazine reduction. 1H-NMR (600
MHz, CDCl3) δ 4.72 (s, 1H), 4.59 (s, 1H), 4.35 (d, J = 12.6 Hz, 1H), 3.65 (s, 2H), 3.16 (dd, J =
11.3, 4.8 Hz, 2H), 2.98 (m, 1H), 2.87–2.81 (m, 1H), 2.24–2.18 (m, 1H), 2.06–1.20 (m, 49H), 0.96
(s, 3H), 0.95 (s, 3H), 0.92 (s, 3H), 0.80 (s, 3H), 0.74 (s, 3H). 13C-NMR (151 MHz, CDCl3): δ
176.0 (CO), 109.5, 78.9, 55.5, 54.9, 53.0, 50.9, 50.8, 49.3, 47.7, 45.8, 42.8, 42.3, 42.1, 40.8, 38.9,
38.8, 37.3, 36.9, 36.1, 34.3, 32.2, 32.0, 31.6, 29.9, 29.8, 28.7 (4 × CH3 (TEMPO)), 28.1 (CH3
(tBu)), 27.5, 25.7, 21.1, 20.1, 19.9, 19.6, 18.3, 16.2, 15.5, 14.8. HRMS (ESI) m/z: 723.5890 [M +
H]+, calcd. for [C45H77N3O4]+ 723.5914.

[4-([(1R,3aS,5aR,5bR,9S,11aR)-9-Hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-
3aH-cyclopenta[a]chrysene-3a-carbonyl]{2-oxo-2-[(2,4,4-trimethoxybutyl)amino]ethyl}-amino)-2,2,6,6-
tetramethylpiperidin-1-yl]oxidanyl (7)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then betulinic acid and IPB isonitrile 5 were added. The crude reaction product
was purified by silica gel column chromatography (ethyl acetate/hexane 8:2) to yield
compound 7 (50 mg, 0.061 mmol, 61%) as red solid. RF 0.35 (ethyl acetate/hexane 8:2).
NMR of the corresponding hydroxylamine after phenylhydrazine reduction. 1H-NMR
(600 MHz, CDCl3) δ 4.72 (s, 1H), 4.59 (s, 1H), 4.54–4.49 (m, 1H). 4.38 (t, J = 12.5 Hz, 1H
(ipb)), 3.66 (s, 2H), 3.36–3.30 (m, 12H). (IPB Ugi moiety), 3.16 (dd, J = 11.3, 4.8 Hz, 2H),
2.98 (m, 1H), 2.87–2.81 (m, 1H), 2.27–2.15 (m, 1H), 2.11–1.09 (m, 42H), 0.96 (s, 3H), 0.95 (s,
3H), 0.91 (s, Hz, 3H), 0.81 (s, 3H), 0.75 (s, 3H). 13C-NMR (151 MHz, CDCl3) δ 176.08 (CO),
109.50, 79.08, 57.04, 56.98, 56.49, 55.57, 55.47, 53.24, 53.07, 50.93, 45.82, 45.77, 42.59, 42.09,
41.51, 41.30, 40.86, 38.99, 38.85, 38.37, 37.34, 36.10, 35.20, 34.39, 32.21, 31.61, 31.52, 31.44,
31.01, 29.97, 29.82, 28.11(4 x CH3 (TEMPO)), 27.53, 25.73, 21.21, 21.17, 20.32, 20.17, 19.71,
16.31, 16.08, 16.05, 15.48, 14.83. HRMS (ESI) m/z: 812.6138 [M]+, calcd. for [C48H82N3O7]+

812.6153.

[4-({(2E)-2-[(2S,3aS,3bS,6S,7R,9aS,10R,11aR)-2-(Acetyloxy)-7,10-dihydroxy-3a,3b,6,9a-
tetramethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-ylidene]-6-methylhept-5-enoyl}[2-(tert-
butylamino)-2-oxoethyl]amino)-2,2,6,6-tetramethylpiperidin-1-yl]oxidanyl (8)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then fusidic acid and t-butyl isonitrile were added. The crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 9:1) to yield compound 8
(51 mg, 0.057 mmol, 57%) as red solid. RF 0.65 (DCM/MeOH 9:1). NMR of the correspond-
ing hydroxylamine after phenylhydrazine reduction. 1H-NMR (600 MHz, CDCl3) δ 5.69
(d, J = 8.6 Hz, 1H), 5.07 (m, 1H), 4.33–4.22 (m, 3H), 3.71 (s, 2H), 3.26 (d, J = 14.6 Hz, 1H),
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3.05–3.02 (m, 1H), 2.80–2.75 (m, 2H), 2.32–2.28 (m, 1H), 2.22–2.02 (m, 5H), 1.89 (s, 3H),
1.86–1.82 (m, 2H), 1.76–1.71 (m, 4H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60–1.53 (m, 4H), 1.34 (d,
J = 7.0 Hz, 3H), 1.28 (s, 9H), 1.26–1.14 (m, 15H), 1.13–1.08 (m, 2H), 0.96 (s, 3H), 0.91–0.88
(m, 6H). 13C-NMR (151 MHz, CDCl3) δ 173.21, 169.87, 169.06, 133.15, 132.45, 122.56, 74.81,
73.10, 71.29, 68.10, 50.95, 50.84, 49.76, 49.63, 49.42, 44.51, 41.63, 39.45, 39.26, 37.09, 36.22,
36.09, 35.22, 32.28, 32.28, 30.28, 30.24, 28.69, 28.57 (4 x CH3 (TEMPO)), 28.52, 25.86, 22.97,
20.86, 20.51, 20.10, 18.05, 17.88, 16.03. HRMS (ESI) m/z: 783.5744 [M + H]+, calcd. for
[C46H77N3O7]+ 783.5762.

[4-({(2E)-2-[(2S,3aS,3bS,6S,7R,9aS,10R,11aR)-2-(Acetyloxy)-7,10-dihydroxy-3a,3b,6,9a-
tetramethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-ylidene]-6-methylhept-5-enoyl}{2-oxo-
2-[(2,4,4-trimethoxybutyl)amino]ethyl}amino)-2,2,6,6-tetramethylpiperidin-1-yl]oxidanyl (9)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then fusidic acid and IPB isonitrile 5 were added. The crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 9:1) to yield compound 9
(60 mg, 0.068 mmol, 69%) as red solid. RF 0.72 (DCM/MeOH 9:1). NMR of the correspond-
ing hydroxylamine after phenylhydrazine reduction. 1H-NMR (600 MHz, CDCl3) δ 5.69
(d, J = 8.4 Hz, 1H), 5.08 (m, 1H), 4.51 (m, 1H), 4.34–4.31 (m, 1H), 3.76–3.73 (m, 1H), 3.65 (s,
2H), 3.39–3.29 (m, 12H), 3.14 (m, 1H), 3.07–3.02 (m, 1H), 2.75 (m, 1H), 2.37–2.27 (m, 1H),
2.23–2.08 (m, 5H), 2.04 (s, 3H), 1.92 (s, 3H), 1.88–1.80 (m, 4H), 1.76–1.71 (m, 4H), 1.68 (s, 3H),
1.62 (s, 3H), 1.60–1.48 (m, 4H), 1.36 (s, 3H), 1.31–1.17 (m, 15H), 1.15–1.10 (m, 2H), 0.97 (s,
3H), 0.93–0.88 (m, 6H). 13C-NMR (151 MHz, CDCl3) δ 173.21, 169.87, 169.06, 133.15, 132.45,
122.56, 74.81, 71.29, 68.10, 50.95, 49.63, 49.42, 44.51, 42.68, 39.45, 39.26, 37.09, 36.37, 36.22,
36.09, 35.22, 32.28, 30.28, 30.24, 30.07, 28.57 (4 x CH3 (TEMPO)), 28.52, 27.81, 27.73, 25.86,
23.85, 22.97, 21.43, 21.21, 20.86, 20.51, 20.10, 18.19, 18.05, 17.88, 16.03.15.68. HRMS (ESI) m/z:
873.6062 [M + H]+, calcd. for [C49H83N3O10]+ 873.6078.

[4-([2-(tert-Butylamino)-2-oxoethyl]{(4R)-4-[(1R,3aS,4R,7R,9aS,9bS,11S,11aR)-4,7,11-trihydroxy-
9a,11a-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]pentanoyl}amino)-2,2,6,6-
tetramethylpiperidin-1-yl]oxidanyl (10)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then cholic acid and t-butyl isonitrile were added. The crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 9:1) to yield compound 10
(55 mg, 0.081 mmol, 81%) as red solid. RF 0.62 (DCM/MeOH 9:1). NMR of the corre-
sponding hydroxylamine after phenylhydrazine reduction. 1H-NMR (600 MHz, CDCl3)
δ 4.14–4.08 (m, 1H), 4.06–3.98 (m, 2H), 3.97–3.91 (m, 1H), 3.85–3.75 (m, 1H), 2.51–2.42 (m,
1H), 2.36–2.28 (m, 1H), 2.27–2.13 (m, 4H), 1.94–1.80 (m, 5H), 1.79–1.60 (m, 7H), 1.61–1.46 (m,
7H), 1.37–1.15 (m, 25H), 1.13–1.00 (m, 3H), 0.97 (s, 3H), 0.87 (s, 3H), 0.67 (d, J = 7.5 Hz, 3H).
13C-NMR (151 MHz, CDCl3) δ 173.21, 169.87, 169.06, 133.15, 132.45, 122.56, 74.81, 73.10,
71.29, 68.10, 50.95, 50.84, 49.76, 49.63, 49.42, 44.51, 41.63, 39.45, 39.26, 37.09, 36.22, 36.09,
35.22, 32.28, 32.28, 30.28, 30.24, 28.57, 28.52, 28.52, 25.86, 22.97, 20.86, 20.51, 20.10, 18.05,
17.88, 16.03. HRMS (ESI) m/z: 675.5164 [M + H]+, calcd. for [C39H69N3O6]+ 675.5186.

[2,2,6,6-Tetramethyl-4-({2-oxo-2-[(2,4,4-trimethoxybutyl)amino]ethyl}{(4R)-4-[(1R,3aS,4R,7R,9aS,
9bS,11S,11aR)-4,7,11-trihydroxy-9a,11a-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-
yl]pentanoyl}amino)piperidin-1-yl]oxidanyl (11)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then cholic acid and IPB isonitrile 5 were added. The crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 9:1) to yield compound 11
(47 mg, 0.061 mmol, 61%) as red solid. RF 0.55 (DCM/MeOH 9:1). NMR of the corre-
sponding hydroxylamine after phenylhydrazine reduction. 1H-NMR (600 MHz, CDCl3)
δ 4.55–4.48 (m, 1H), 4.12–4.00 (m, 1H), 3.95–3.81 (m, 2H), 3.45 (s, 3H), 3.37–3.28 (m, 12H),
3.28–3.22 (m, 1H), 2.48 (m, 2H), 2.36–2.11 (m, 5H), 1.98–1.80 (m, 6H), 1.80–1.69 (m, 5H),
1.69–1.39 (m, 7H), 1.40–1.16 (m, 15H), 1.15–1.00 (m, 4H), 0.96 (s, 3H), 0.88 (s, 3H), 0.68 (s,
3H). 13C-NMR (151 MHz, CDCl3) δ 174.58, 170.07, 151.16, 101.75, 76.18, 72.86, 71.70, 68.28,
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59.33, 59.28, 57.03, 53.33, 53.06, 52.96, 50.55, 46.99, 46.39, 45.61, 41.80, 41.38, 41.28, 35.57,
35.20, 35.09, 34.64, 32.16, 31.54, 30.85, 30.39, 28.20, 27.46, 26.51, 23.12, 22.42, 19.88, 17.44,
14.62, 12.48. HRMS (ESI) m/z: 764.5410 [M]+, calcd. for [C42H74N3O9]+ 764.5425.

[4-({(2E)-2-[(2S,3aS,3bS,6S,7R,9aS,10R,11aR)-2-(Acetyloxy)-7,10-dihydroxy-3a,3b,6,9a-
tetramethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-ylidene]-6-methylhept-5-enoyl}[2-
({2-[6-(dimethylamino)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl]ethyl}amino)-2-
oxoethyl]amino)-2,2,6,6-tetramethylpiperidin-1-yl]oxidanyl (12)

Obtained using the general method A, N-oxyl amine 4 and paraformaldehyde were
used, then fusidic acid and Yudin’s isonitrile were added. The crude reaction product
was purified by silica gel column chromatography (DCM/MeOH 9:1) to yield compound
12 (35 mg, 0.035 mmol, 35%) as yellow powder. RF 0.1 (DCM/MeOH 9:1). NMR of the
corresponding hydroxylamine after the addition of hydrazobenzene. 1H-NMR (400 MHz,
DMSO-d6) δ 8.49 (dd, J = 8.5, 2.1 Hz, 1H), 8.45 (d, J = 7.5 Hz, 1H), 8.34 (dd, J = 8.2, 1.9
Hz, 1H), 7.78–7.72 (m, 1H), 7.20 (d, J = 8.6 Hz, 1H), 5.65 (d, J = 8.5 Hz, 1H), 5.09–5.01 (m,
1H), 4.91–4.76 (m, 2H), 4.18–4.11 (m, 1H), 4.07 (d, J = 3.9 Hz, 1H), 3.99 (d, J = 3.9 Hz, 1H),
3.90–3.81 (m, 2H), 3.53 (s, 2H), 3.50–3.47 (m, 1H), 3.07 (s, 6H), 2.99–2.85 (m, 1H), 2.70–2.60
(m, 1H), 2.40–2.17 (m, 3H), 2.16–1.93 (m, 5H), 1.85 (d, J = 13.3 Hz, 2H), 1.62 (dd, J = 9.8, 5.2
Hz, 7H, (Fusidic acid; 5H+TEMPO; 2H)), 1.57–1.50 (m, 6H), 1.49–1.28 (m, 6H), 1.25 (s, 3H),
1.08–0.95 (m, 17H, (fusidic acid 3H, TEMPO 14H)), 0.86 (s, 3H), 0.81–0.75 (m, 6H). 13C-NMR
(101 MHz, DMSO-d6) δ 171.61, 169.91, 169.10, 164.32, 163.64, 147.18, 133.72, 132.31, 131.95,
131.88, 130.94, 130.21, 125.46, 124.76, 123.96, 123.48, 114.04, 113.47, 74.34, 69.68, 66.23, 58.57,
58.38, 51.63, 49.42, 49.07, 48.98, 48.65, 44.84, 43.22, 39.05, 36.90, 36.81, 35.67, 35.55, 33.31,
33.05, 32.37, 32.25, 30.69, 29.93, 28.82, 28.49, 25.92, 23.94, 23.18, 20.67, 20.13, 18.01, 17.97,
16.74, 16.71. HRMS (ESI) m/z: 993.6145 [M + H]+, calcd. for [C58H83N5O9]+ 993.6191.

4.1.3. General Procedure B for the Conversion of Ugi Products 7 and 9 to Corresponding
Spin-Labelled N-Acylpyrroles 13 and 15

To a solution of Ugi products 7 and 9 (0.05 mmol) in toluene (10 mL) was added
10-camphorsulfonic acid (10 mol%) and quinoline (10 mol%). The mixture was stirred
for 1 min at room temperature and then refluxed for at least 30 min until TLC showed
complete conversion. The mixture was cooled to room temperature, transferred to a
separatory funnel and washed with 1M aqueous HCl (2 × 30 mL). The acidic aqueous
phase was further extracted with ethyl acetate (1 × 20 mL). The organic layers were
combined, washed with NaHCO3 and brine (2 × 20 mL), dried over anhydrous Na2SO4,
filtered and evaporated under reduced pressure to obtain the N-acyl pyrrole derivatives 13
and 15, which were used in the next step without further purification.

4.1.4. General Procedure C for the Conversion of the N-Acylpyrroles 13 and 15 into Their
Corresponding Carboxylic Acids 14 and 16
Method C1

To a solution of intermediates 13 and 15 (0.025 mmol) in a mixture of THF (2 mL),
methanol (2 mL), water (2 mL), potassium hydroxide (0.5 mmol) was added. This mixture
was heated to 110 ◦C for 30 min in a microwave (90 W heating, 6 W keeping temperature).
The reaction mixture was diluted with methanol (10 mL) and the pH value was set to
pH = 2 by the addition of saturated aqueous NaHSO4 solution. The aqueous phase was
extracted with ethyl acetate (3 × 100 mL) and it was dried over Na2SO4. After filtration
and evaporation of the solvent, the crude residue was purified by column chromatography
(DCM/MeOH 8:2). By this method compounds, 14 and 16 were obtained.

(4-{(Carboxymethyl)[(1R,3aS,5aR,5bR,9S,11aR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-
en-2-yl)icosahydro-3aH-cyclopenta[a]chrysene-3a-carbonyl]amino}-2,2,6,6-tetramethylpiperidin-1-
yl)oxidanyl (14)

Obtained using the general method C1, the reaction crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 8:2) to yield compound 14
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(11.8 mg, 0.014 mmol, 70%) as orange powder. RF 0.12 (DCM/MeOH 8:2). NMR of the
corresponding hydroxylamine after the addition of hydrazobenzene. 1H-NMR (400 MHz,
DMSO-d6) δ 11.92 (s, 1H), 4.64 (d, J = 2.7 Hz, 1H), 4.57–4.51 (m, 1H), 4.26 (d, J = 5.1 Hz,
1H), 3.80–3.62 (m, 1H), 3.52 (s, 2H), 2.97 (m, 2H), 2.80 (m, 1H), 2.68 (m, 1H), 2.36–2.31 (m,
1H), 1.96 (m, 2H), 1.78 (dd, J = 13.0, 9.0 Hz, 2H), 1.64 (s, 3H), 1.55 (t, J = 12.7 Hz, 5H),
1.51–1.38 (m, 6H), 1.38–1.21 (m, 8H), 1.08 (d, J = 3.1 Hz, 14H), 0.92 (s, 3H), 0.88 (s, 3H), 0.84
(s, 3H), 0.77 (s, 3H), 0.66 (s, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 173.71, 171.03, 151.04,
109.22, 76.75, 58.20, 54.97, 53.73, 52.04, 50.17, 48.12, 45.40, 43.82, 41.50, 38.48, 38.28, 38.23,
36.73, 35.18, 33.92, 32.46, 30.63, 29.07, 27.15, 27.12, 25.15, 20.65, 19.78, 19.63, 19.07, 17.93,
15.97, 15.85, 15.78, 14.31. HRMS (ESI) m/z: 666.4996 [M − H]−, calcd. for [C41H66N2O5]−

666.4972.

{4-[(Carboxymethyl){(2E)-6-methyl-2-[(2S,3aS,3bS,6S,7R,9aS,10R,11aR)-2,7,10-trihydroxy-3a,
3b,6,9a-tetramethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-ylidene]hept-5-enoyl}-amino]-
2,2,6,6-tetramethylpiperidin-1-yl}oxidanyl (16)

Obtained using the general method C1, the reaction crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 8:2) to yield compound
16 (10 mg, 0.014 mmol, 58%) as orange oil. RF 0.10 (DCM/MeOH 8:2). NMR of the
corresponding hydroxylamine after the additon of hydrazobenzene. 1H-NMR (400 MHz,
DMSO-d6) δ 10.22 (s, 1H), 5.46 (d, J = 8.6 Hz, 1H), 5.14–5.05 (m, 1H), 4.48 (d, J = 8.3 Hz,
1H), 4.17–4.07 (m, 1H), 4.00 (d, J = 3.6 Hz, 1H), 3.94 (d, J = 3.9 Hz, 1H), 3.51 (t, J = 3.2 Hz,
1H), 3.17 (dd, J = 15.1, 9.9 Hz, 1H), 2.99–2.75 (m, 1H), 2.71–2.55 (m, 1H), 2.40–1.93 (m,
8H), 1.93–1.66 (m, 4H), 1.63 (s, 3H), 1.55 (t, J = 2.2 Hz, 3H), 1.52–1.29 (m, 6H), 1.26 (s, 3H),
1.24–1.07 (m, 3H), 1.07–0.91 (m, 14H), 0.89 (d, J = 6.2 Hz, 6H), 0.79 (d, J = 6.7 Hz, 3H).
13C-NMR (101 MHz, DMSO-d6) δ 174.42, 171.52, 147.95, 147.48, 135.99, 124.70, 69.98, 69.76,
66.50, 58.62, 58.55, 56.47, 49.67, 49.07, 48.89, 43.28, 41.71, 39.22, 36.97, 35.86, 35.67, 33.37,
33.13, 30.75, 29.57, 27.60, 25.89, 23.95, 23.06, 21.21, 19.01, 18.17, 16.77, 16.00. HRMS (ESI)
m/z: 684.4732 [M − H]−, calcd. for [C40H64N2O7]− 684.4714.

Method C2

Method C2 was established to keep the C-16 acetyl group intact on position 16 of
the fusidic acid skeleton. N-acylpyrrole 15 (0.025 mmol) was dissolved in a mixture of
t-BuOH (10 mL) and H2O (5 mL). Then, DMAP (0.015 mmol) was added and the reaction
mixture was heated at reflux for 5 h, after which TLC (DCM/MeOH 8:2) indicated the
saponification into the carboxylic acid 17. The reaction mixture was concentrated to a
volume of 10 mL in a rotary evaporator. Saturated NaHCO3 solution (10 mL) and CH2Cl2
(20 mL) were added. After the separation of the organic layer, the water layer was extracted
with CH2Cl2 (2 × 30 mL). Then the water layer was acidified with NaHSO4 (2 M) and
extracted with EtOAc (3 × 20 mL). The combined organic solutions of the acidic extraction
were dried over Na2SO4, filtered, and evaporated to give carboxylic acid derivative, which
was further purified by column chromatography (DCM/MeOH 8:2).

{4-[{(2E)-2-[(2S,3aS,3bS,6S,7R,9aS,10R,11aR)-2-(Acetyloxy)-7,10-dihydroxy-3a,3b,6,9a-
tetramethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-ylidene]-6-methylhept-5-enoyl}
(carboxymethyl)amino]-2,2,6,6-tetramethylpiperidin-1-yl}oxidanyl (17)

Obtained using the general method C2, the reaction crude reaction product was
purified by silica gel column chromatography (DCM/MeOH 8:2) to yield compound
17 (12 mg, 0.016 mmol, 66%) as orange oil. RF 0.15 (DCM/MeOH 8:2). NMR of the
corresponding hydroxylamine after the addition of hydrazobenzene. 1H-NMR (400 MHz,
DMSO-d6) δ 8.89 (s, 1H), 5.44 (d, J = 8.5 Hz, 1H), 5.10 (t, J = 7.0 Hz, 1H), 4.18–4.13 (m, 1H),
3.98 (d, J = 3.7 Hz, 1H), 3.95 (d, 1H), 3.87 (d, J = 17.0 Hz, 2H), 3.53–3.49 (m, 1H), 2.97–2.87
(m, 1H), 2.73–2.66 (m, 1H, TEMPO), 2.26–2.17 (m, 3H), 2.10–1.97 (m, 5H), 1.94–1.82 (m,
5H), 1.81–1.70 (m, 2H, TEMPO), 1.64 (s, 3H), 1.57 (s, 3H), 1.53–1.29 (m, 6H), 1.27 (s, 3H),
1.26–1.12 (m, 3H), 1.10–0.95 (m, 14H, TEMPO), 0.88 (s, 3H), 0.84 (s, 3H), 0.79 (d, J = 6.7 Hz,
3H). 13C-NMR (101 MHz, DMSO-d6) δ 175.94, 171.54, 170.02, 154.96, 147.92, 133.53, 123.91,
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74.27, 69.74, 66.27, 58.63, 58.47, 54.20, 49.43, 49.10, 48.97, 43.02, 39.25, 38.90, 36.94, 36.69,
36.09, 35.71, 31.77, 29.78, 27.52, 26.07, 23.86, 23.22, 21.37, 20.72, 20.18, 18.21, 18.15, 16.78,
14.43. HRMS (ESI) m/z: 726.4807 [M − H]−, calcd. for [C42H66N2O8]− 726.4819.

{4-[{(2E)-2-[(2S,3aS,3bS,6S,7R,9aS,10R,11aR)-2-(Acetyloxy)-7,10-dihydroxy-3a,3b,6,9a-
tetramethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-ylidene]-6-methylhept-5-enoyl}(2-{[2-
({2-[6-(dimethylamino)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl]ethyl}amino)-
2-oxoethyl][3-(triphenylphosphaniumyl)propyl]amino}-2-oxoethyl)amino]-2,2,6,6-
tetramethylpiperidin-1-yl}oxidanyl bromide (18)

Obtained using the general method A in 0.013 mmol scale (3-aminopropyl) triph-
enylphosphonium bromide and paraformaldehyde were used, then fusidic acid derivative
17 and Yudin’s isonitrile were added. The crude reaction product was purified by silica gel
column chromatography (DCM/MeOH 8:2) to yield compound 18 (6 mg, 0.004 mmol, 34%)
as yellow powder. RF 0.12 (DCM/MeOH 8:2). NMR of the corresponding hydroxylamine
after the additon of hydrazobenzene. 1H-NMR (400 MHz, DMSO-d6) δ 8.57 (d, J = 8.8 Hz,
1H), 8.54 (d, J = 7.5 Hz, 1H), 8.51 (d, J = 8.3 Hz, 1H), 7.87–7.72 (m, 15H), 7.18–7.15 (m, 1H),
5.44 (q, J = 15.3, 12.0 Hz, 1H), 5.10 (d, J = 10.6 Hz, 1H), 4.62 (t, J = 7.3 Hz, 2H), 4.20–4.14
(m, 1H), 4.08–3.97 (m, 6H), 3.62–3.52 (m, 4H), 3.37 (d, J = 7.9 Hz, 2H), 3.16 (s, 4H), 3.10 (s,
6H), 2.95–2.88 (m, 1H), 2.69–2.62 (m, 1H), 2.46–2.11 (m, 8H), 2.11–1.92 (m, 7H), 1.50 (s, 3H),
1.47–1.32 (m, 6H), 1.30 (s, 3H), 1.24 (s, 3H), 1.15–0.95 (m, 17H), 0.89 (s, 3H), 0.85 (s, 3H),
0.80 (d, J = 6.7 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 171.12, 169.83, 169.46, 168.61,
163.83, 163.15, 156.51, 148.71, 135.13, 135.10, 133.60, 133.49, 132.17, 131.82, 131.51, 130.42,
130.29, 129.73, 128.76, 128.46, 124.98, 123.47, 122.99, 118.40, 117.82, 113.56, 112.99, 73.58,
69.19, 65.74, 58.08, 57.89, 54.62, 51.14, 48.94, 48.58, 48.16, 44.36, 43.54, 42.08, 38.59, 36.66,
36.42, 36.33, 36.26, 36.16, 35.84, 31.78, 30.21, 27.01, 25.55, 23.46, 23.33, 21.07, 20.80, 20.67,
20.08, 19.64, 18.37, 17.84, 17.71, 17.49, 16.25. HRMS (ESI) m/z: 1352.7621 [M]+, calcd. for
[C81H105N6O10P]+ 1352.7624.

4.2. EPR Spectroscopy and Sample Preparation

X-Band (~9.43 GHz) room temperature CW-EPR measurements were performed on
a Magnettech MiniScope MS400 benchtop spectrometer (Magnettech, Berlin, Germany).
Spectra were recorded with a microwave power of 3.16 mW, 100 kHz modulation frequency,
modulation amplitude of 0.1mT and 4096 points. The final spectra were accumulations of
10 scans, each took 60 s. The samples were dissolved in methanol. Therefore, to reduce the
line broadening effect due to the dissolved oxygen in the solvent, all samples were flushed
with argon before EPR measurements.

4.3. Biology
4.3.1. Cell Lines and Cultivation

PC3 and HT29 cell lines were supplied by the Leibniz Institute of Plant Biochemistry.
The cells were grown in RPMI 1640 completed medium (supplemented with 10% FCS, 1%
glutamine, and 1% penicillin/streptomycin) at 37 ◦C and 5% CO2. Cells were seeded at
5 × 103 cells/well in 96-well plates for viability determination and 1.5 × 105 cells/well in
6-well plates for flow cytometry and western blotting.

4.3.2. MTT and CV Assays

For the fast screening the two cell lines were treated with 0.1 and 10 µM of the
synthesized compounds 6-12, and 18 for 48 h. The compounds which showed anticancer
activity was further analyzed to determine their IC50, in which, each compound was tested
in 7 different concentrations (100, 50, 25, 12.5, 6.25, 3.125, 1.56 µM) for 48 h. Afterward,
for the CV assay, the cells were fixed by 4% paraformaldehyde for 15 min at RT and then
the cells were stained with 0.1% CV solution for 15 min. Subsequently, the cells were
washed with dd H2O, dried overnight and the dye was dissolved using 33% acetic acid.
For MTT assay, the cells were incubated with MTT (0.5 mg/mL) for 20 min. Then, the



Int. J. Mol. Sci. 2021, 22, 7125 16 of 18

MTT solution was removed and the dye was dissolved using DMSO. The dissolved dyes
were measured using an automated microplate reader (Spectramax, Molecular Devices,
San José, CA, USA) at 570 nm with a background wavelength of 670 nm. The IC50 values
were calculated using the four-parameter logistic function and presented as the mean and
all assays were performed in three biological replicates. The cell viability was expressed
as a percentage compared to a negative control which was cells treated with complete
medium and a positive control which was cells treated with digitonin (125 µM) [41,42].

4.3.3. Apoptosis Analysis

The PC3 cells were prepared in a 6 well plate, treated with IC50 and 2 × IC50 of
compound 8 (7.4 and 14.9 µM), and incubated for 48 h at 37 ◦C and 5% CO2. After the
incubation, cells were stained by AnnV and PI (5 µL of AnnV, 2 µL of PI in 100 µL PBS)
to determine apoptosis using flow cytometry (FACSAria III, BD Biosciences, Franklin
Lakes, NJ, USA). The procedure was carried out according to the manufacturer’s supplied
instructions [42].

4.3.4. Cell Cycle Analysis

The PC3 cells were prepared in a 6 well-plate and treated with IC50 and 2 × IC50 of
compound 8 (7.4 and 14.9 µM) and incubated for 48 h at 37 ◦C and 5% CO2. Afterward,
the cells were fixed in 70% ethanol overnight at 2 ◦C and then, stained with 1 µg/mL of
DAPI at room temperature for 10 min. At last, the cells were analyzed by flow cytometry
(FACSAria III) [42].

4.3.5. Western Blot Analysis

PC3 cells were cultivated with an IC50 dose of 8 for 2 h, 6 h, 12 h, 24 h, and 48 h. The
cell lysis was performed using protein lysis buffer (62.5 mMTris–HCl (pH 6.8), 2% (w/v)
SDS, 10% glycerol, and 50 mM dithiothreitol). The proteins were electrically separated
using 12% SDS-polyacrylamide gels where a PageRuler prestained ladder was used as a
protein molecular weight marker. The proteins were electrically transferred to nitrocellu-
lose membranes by western blot system (Owl HEP-1, ThermoFisher Scientific, Schwerte,
Germany). The membranes were blocked by 5% (w/v) BSA in PBS with 0.1% Tween 20 for
1 h at RT. Afterwards, blots were incubated overnight at 4 ◦C with α/β-Tubulin rabbit Ab,
Caspase-3 rabbit Ab, β-actin rabbit Ab, and Bcl-XL rabbit Ab. As a secondary antibody
Anti-rabbit IgG, HRP-linked Antibody was used. Bands were visualized using an ECL
Prime Western Blotting System.

4.3.6. Investigation of ROS Production

For the detection of reactive oxygen and nitrogen species, PC3 cells were stained with
1 µM of DHR solution in 0.1% PBS for 10 min. Afterwards, the cells were treated with IC50
and 2 × IC50 of compound 8 for 48 h. After 48 h, cells were trypsinized, washed with PBS,
and then analyzed with flow cytometry [43,44].

4.4. Microscopy
Fluorescent Microscopy

PC3 cells were seeded in a 6-well plate for 24 h at 37 ◦C and 5% CO2. Afterward, cells
were stained with 0.1 µM of MitoTrackerTM Deep Red in a complete medium for 15 min
(based on the manufacturer’s protocol). The cells were washed twice with PBS. After
washing, cells were treated with the IC50 of the tested compound for 24 h. The cells were
washed twice with PBS, upon which 1 mL of medium was added. Finally, the cells were
observed using GFP and Texas Red channels using LSM700 (Carl Zeiss, Jena, Germany)
and EVOS FL AUTO (ThermoFisher, Schwerte, Germany).
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Ruthenium(II) p-cymene complex bearing 2,2′-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without
disruption of antitumor immune response. J. Inorg. Biochem. 2015, 153, 315–321. [CrossRef] [PubMed]
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