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Abstract: In this paper, we present a formulation of highly correlated Fock-space multi-reference
coupled-cluster (FSMRCC) methods, including approximate triples on top of the FSMRCC with
singles and doubles, which correct the electron affinities by at least at third and up to the fourth
order in perturbation. We discuss various partial fourth-order schemes, which are reliable and yet
computationally more efficient than the full fourth-order triples scheme. The third-order scheme
is called MRCCSD+T*(3). We present two approximate fourth-order schemes, MRCCSD+T*−a(4)
and MRCCSD+T*(4). The results that are presented allow one to choose an appropriate fourth-order
scheme, which is less expensive and right for the problem. All these schemes are based on the
effective Hamiltonian scheme, and provide a direct calculation of the vertical electron affinities. We
apply these schemes to a prototype Li2 molecule, using four different basis sets, as well as BeO
and CH+. We have calculated the vertical electron affinities of Li2 at the geometry of the neutral
Li2 molecule. We also present the vertical ionization potentials of the Li2 anion at the geometry of
the anion ground state. We have also shown how to calculate adiabatic electron affinity, though
in that case we lose the advantages of direct calculation. BeO has been examined in two basis
sets. For CH+, four different basis sets have been used. We have presented the partial fourth-order
schemes to the EA in all the basis sets. The results are analyzed to illustrate the importance of
triples, as well as highlight computationally efficient partial fourth-order schemes. The choice of
the basis set on the electron affinity calculation is also emphasized. Comparisons with available
experimental and theoretical results are presented. The general fourth-order schemes, which are
conceptually equivalent with the Fock-space multi-reference coupled-cluster singles, doubles, and
triplets (MRCCSD+T) methods, based on bondonic formalism, are also presented here in a composed
way, for quantum electronic affinity.

Keywords: electronic affinity; Fock-space coupled-cluster theory; perturbative triples; multi-reference
coupled-cluster; bondonic formalism

1. Introduction

Many electron systems often require improved electron correlation, for a quality
description of the wave function, in order to understand the structure and properties of
these systems. Moreover, the numerical cost of electron correlation calculation grows
rapidly with the size of the basis set. Therefore, effective approximate methods have to
be proposed, as a compromise between the computational cost of evaluating electron
correlation and the quality that is required of the wave function [1–7].
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Quantitative investigations, for understanding phenomena such as the electron-
donating properties of ligands in coordination compounds, the energy changes occurring
in oxidation–reduction reactions and in charge transfer reactions, the calculation of lat-
tice energies from the Born–Haber cycle, and the inductive effects of different groups in
chemical bonding, require a knowledge of the electron affinity [8–12].

There is a large number of experimental techniques that have been applied to the
determination of electron affinities, such as laser photoelectron spectroscopy and electron
transmission spectroscopy [13,14].

The computational methods require flexible basis sets and careful treatment of electron
correlation, for a systematic evaluation of the electron affinities (EA) [15,16].

It is a challenging task, even for ab initio methods, because the energy of interest is a
very small fraction of the total electronic energy of the parent neutral system. Thus, EA
is a sensitive quantity, which requires the inclusion of higher-order electron correlation
methods, along with basis sets that are large enough, and can be a good testing ground for
the accuracy of approximate theoretical models. At the same time, the quantum theory, by
merging the fermionic and bosonic features of matter, offers a description of the chemical
bond where bondons act as virtual quantum particle. Bondonic chemistry promotes the
modeling of chemical transformations by the quantum particle of the chemical field, called
bondons, rather than by the molecular wave function.

The single-reference coupled-cluster (SRCC) method was introduced in the early 1960s,
and over the last two decades it has become the most powerful approach in the field, for its
capability of predicting the properties of systems to a high degree of accuracy [2,3,17–26]. It
treats the dynamical electron correlation problem, in terms of an infinite-order exponential
ansatz of interacting clusters of electrons. Further, the CCSD(T) method [27–32], which is
an extension of the standard coupled-cluster singles and doubles model, has proved to be
the current “gold standard” of ab initio quantum chemistry, due to its success in chemical
applications. Though, spin orbital-based coupled-cluster methods allow the use of a wide
range of reference functions, for open-shell system coupled-cluster wave functions based
on ROHF, or when the UHF reference function fails to be a rigorous eigen function of the
S2 operator. Thus, Fock-space coupled-cluster (FSCC) [33–44], on the other hand, is an
approach to an open-shell system, which is capable of providing a true eigen function of the
S2 operator, and has the ability to handle the multi-reference determinants that are needed
to represent quasi-degenerate states. Moreover, the FSCC method is capable of providing
energy differences for several states, in a single calculation, at a lesser computational
cost, and offers a distinct advantage over the SRCC approach. The Fock-space-based
approach, to correlate model spaces that have different numbers of electrons, also has the
advantage of the calculation of EA in a direct manner. Comprehensive discussions on
FSCC are presented in the references [40,45,46]. The FSCC, in its singles and doubles model
(FSCCSD), has been well developed and studied for direct difference energies [40–42], as
well as for energy derivatives, by Pal and co-workers [47–49]. They have formulated a
linear response approach [47], followed by the evolution of a Z-vector-type approach [48],
with the idea of Lagrange multipliers [49], within FSMRCC method, in order to get a
satisfactory result for the calculation of energy derivatives, including properties such as the
dipole moments and polarizabilities of molecules. Their approach is not only applicable
for complete model spaces, but it is also applicable for incomplete model spaces. Moreover,
the implementations of the complex absorbing potential (CAP) in the FSMRCC framework
for resonant states, have also been achieved by Pal and co-workers [46,50–52].

Although FSCC is a post-CC method, as the FSCC equations depend on the solved
CC energy and wave function, for a given truncation, both FSCC and CC do not provide
equivalent quality results, due to the restriction of the excitations from the inactive to
active orbital space in the FSCC method. Therefore, for a given truncation, to match the
expansion space, the FSCC calculation must include spectator contributions from higher
cluster operators. Thus, to improve the quality of FSCCSD, we have to include triple
excitation effects (EE) in FSCCSD (FSCCDT), to gain accurate theoretical results. The
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requirement of non-spectator triples is often very important and it significantly changes the
results. However, the full FSCCSDT model [53,54] is computationally expensive. Therefore,
as a compromise, several approximations to include triples are required [37,55–57]. Pal
et al., in their earlier work, have included triples excitations at various approximate levels
for IP and EE [55,57].

We may mention that the equation-of-motion coupled-cluster (EOM-CC) [58,59] is
an alternative development to the FSCC method, in that it yields the difference energies
directly. There are versions of EOM-CC [60] for the calculation of IP, EA [61], and EE [62].
Specifically, the EOM-CC for EA is known as EA-EOM-CC; one may add that the IP- and
EA-EOM-CC energies are equivalent to the one-hole and one-particle FS sector energies,
respectively. Substantial developments of EOM-CC have taken place in singles and doubles,
as well as with full triples and some perturbative triples [63]. In the context of the EOM-CC,
it obviously improves the results. Fundamentally, EOM-CC is different from FS-CC, in
the sense that only a single determinant is used for the ground state, and the target state
is described by the action of a linear operator. The analytic gradients of EOM-CC have
also been developed [64]. While the Fock space suffers from intruder states in some critical
cases, strategies of intermediate Hamiltonian have been formulated to overcome this [65].
EOM-CC, on the other hand, does not suffer from this problem. However, it is well known
that EOM-CC does not provide correct scaling of difference energies. One requires another
similarity transformation, in what is known as ST-EOM-CC, to achieve this. This is more
closely related to FS-CC [66]. Within the EOM-CC context, full methods [67], as well as one
with selected triples [68] and an approximate EOM-CCSDT-3 [69], have been developed.

In the present work, we report the development of a computer code of perturbative
approximation to a FSCCSDT model, using a primarily non-iterative or single-iteration
approach for the inclusion of triples up to third and fourth order. Similar efforts were made
for low-order improvements to ionization potentials, but not for electron affinities, follow-
ing the work of Pal et al. [56]. Within the intermediate Hamiltonian version, the work of
Musial and co-workers, in the inclusion of triples, should also be mentioned [70]. However,
compared to all these developments, the novel aspect of the work that is presented here
is the partial fourth-order schemes, which have only been attempted recently by us [71],
in the context of IP calculations; with that occasion, the bondonic formalism was also
illustrated for the first time, for treating such higher-order perturbation excitation effects.

Such efforts, in the context of EOM-CC, have not been carried out and, in fact, no
parallel to this, in the context of EOM-CC, can be made. In the context of EA calculations,
which are computationally more demanding, such efforts are required even more. We
have reported precisely such studies of systematic improvements to EA, by adding triples
corrections to at least third-order schemes, and then through two partial and full fourth-
order schemes, due to the triples. The full scheme needs only one iteration of selected
diagrams that fully correct to at least up to the fourth order and other third order, and
the two partial fourth-order schemes are completely non-iterative [55,57]. These two
non-iterative partial fourth-order schemes are computationally less expensive, and yet
provide results that are closer to the full triples-corrected fourth-order scheme. The two
partial fourth-order schemes, called MRSSCD+T*−a(4) and MRCCS+T*−b(4), are the
important approximations presented in this manuscript. Among these, the first one is
even more computationally efficient. We highlight, from the numerical results, that the
first partial scheme can often be enough to get significantly improved results. One can
thus choose triples-corrected fourth-order schemes, depending on the size of the problem.
Different strategies may be implemented, in terms of computer time and storage, to include
such effects.

We have also reported concepts related to the algorithm that has been adopted, in
order to optimize the computational requirements. We may mention that the scheme to
calculate the EA of a molecule can be used to generate results for the ionization potential of
the corresponding molecular anion. Since the calculations are direct, these are amenable to
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vertical difference energy calculations. We have also shown how to calculate adiabatic EA,
although this will no longer be a direct calculation (it could be direct at each geometry).

In Section 2, we summarize the FSCC theory for the (1,0) sector. This will help us
to introduce the background for the present work, and we also present the equations for
the inclusion of the triply excited amplitudes, to generate EAs that are correct up to the
third, as well as fourth, order. In Section 3, we report the details of the triples correction
at the third and fourth order. In Section 5, we describe the implementation of these to the
computer code. In Section 4, the analogous fourth-order schemes, which are conceptually
equivalent with MRCCSD+T methods, based on bondonic formalism, are reported for
electron affinity. In Section 6, we present some model results of the two molecules Li2 and
BeO, in different basis sets. We present the vertical EA of Li2, vertical IP of the Li2 anion (at
the anion geometry), as well as the adiabatic EA of Li2, in four different bases. In the same
section, we present the results for BeO in two different basis sets, as well as the vertical EA
of CH+. We compare these with the earlier results, using singles and doubles amplitudes
only, and experimental values. Section 7 presents a perspective on computational time,
with conclusions in Section 8.

2. Theory Description: Basis Structure

The traditional Fock-space approach is based upon a valence universal wave operator
Ω, which, when acting on an appropriate model space, yields the desired wave function.
The theory is based on a common vacuum, which defines holes and particles. Usually, an
appropriate closed-shell single-determinant restricted Hartree–Fock (RHF) wave function
is chosen as a vacuum. An appropriate Fock space, consisting of m holes and n particles
(m,n sector), is defined for a specific problem. This also subdivides the holes and particles
into active and inactive subparts. For example, for electron-attached states, a suitable Fock
space consists of one particle, with respect to the RHF of the neutral ground state as a
vacuum. This will thus define the (1,0) Fock space sector. The FSCC model space is defined
as follows: ∣∣∣ψ0(m,n)

i 〉 = ∑
µ

cµi

∣∣∣ϕ(m,n)
µ 〉 (1)

∣∣∣ψ(m,n)
i 〉 = Ω

∣∣∣ψ0(m,n)
i 〉 (2)

With Ω = {e
ˆ
T}, and where ϕ(m,n)

µ defines the determinants within active particles

and active holes. For the (m,n) sector,
ˆ
T
(m,n)

= ∑ k = 0 . . . m
l = 0 . . . n

ˆ
T
(k,l)

.
ˆ
T
(k,l)

annihilates

specifically k active particles and l active holes, in addition to other hole-particle creations.
Thus, the (m,n) sector correlation operator consists of operators of all the lower sectors. The
Bloch equation is used to solve the set of equations. Normal ordering of the wave operator,
as proposed by Lindgren [72], ensures decoupling of the equations, such that a specific
Bloch equation contains operators of that sector and lower. For the specific (1,0) sector, the
ˆ
T
(1,0)

equation depends on the
ˆ
T
(0,0)

and
ˆ
T
(1,0)

operators. The second-quantized form of
operators in singles and doubles may be represented as follows.

For the (0,0) sector, the following:

ˆ
T
(0,0)

1 = ∑
i,a

ta
i {

ˆ
a

†ˆ
i} (3a)

ˆ
T
(0,0)

2 =
1
4 ∑

i, a
j, b

tab
ij {

ˆ
a

† ˆ
b

†ˆ
j
ˆ
i} (3b)
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For the (1,0) sector, the following:

ˆ
T
(1,0)

1 =
active

∑
a

inactive

∑
b

tb
a{

ˆ
b

†
ˆ
a} (3c)

ˆ
T
(1,0)

2 =
1
2

active

∑
a

∑
b

∑
k

∑
c

tbc
ak{

ˆ
b

†
ˆ
c

† ˆ
k

ˆ
a} (3d)

Similarly, three body operators may be defined. The Bloch equation is defined as follows:

P(k,l)[HΩ−ΩHeff]P
(k,l) = 0 (4a)

Q(k,l)[HΩ−ΩHeff]P
(k,l) = 0 (4b)

where k = 0, 1, 2, . . . , m and l = 0, 1, 2, . . . , n. The above structure, with the normal ordering
of the wave operator, suggests that the equations can be solved from the lowest sector
upwards. Since the (1,0) Fock space is a complete Fock space by definition, PΩP = P, and
thus the first Equation (4a) is the defining equation for the effective Hamiltonian within
the FS sector (PHe f f P). Equation (4b) solves the amplitudes of Ω, using the subsystem
embedding condition (SEC) [73]. Specifically, for the (1,0) sector, the (0,0) sector, which is the

standard single-reference CC theory, is first solved, before the
ˆ
T
(1,0)

amplitudes are obtained.

For computational simplicity, (HΩ)c ≡
(

HeT(0,0)
eT(1,0)

)
c

is split into H =
(

HeT(0,0)
)

c
and

(HΩ)c ≡
(

HeT(1,0)
)

c
. H is the effective operator, which is constructed after the eT(0,0)

amplitudes are obtained. H has many different body parts and can be written as follows:

H = fN + vN + wN + · · · (4c)

where fN, vN, and wN are one, two, and three body parts, respectively. The Bloch equation
for the (1,0) sector can be rewritten in the CCSD approximation as follows:

ˆ
H

(1,0)

eff =
ˆ
P
(1,0)

{fN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2

)
+ vN

ˆ
T
(1,0)

2 }
ˆ
P
(1,0)

(5)

ˆ
Q

(1,0)

1

{
fN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2

)
+ vN

ˆ
T
(1,0)

2 −
ˆ
T
(1,0)

1
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (6)

ˆ
Q

(1,0)

2

{
fN

ˆ
T
(1,0)

2 + vN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2

)
+ wN

ˆ
T
(1,0)

2 −
ˆ
T
(1,0)

2
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (7)

Initially, a ground-state CCSD calculation has to be performed to obtain the converged

amplitudes
ˆ
T
(0,0)

1 and
ˆ
T
(0,0)

2 . From these converged amplitudes and the molecular orbital
integrals, the elements of the effective CC Hamiltonian H can be obtained.

As was discussed, the FSCC method and EOM-CC method have similarities. The FS
method plugs an effective Hamiltonian of small dimension, unlike the EOM-CC, which
is the origin of intruder states; this leads to problems in the convergence of the non-
linear equations. Methods, based on intermediate Hamiltonian, have been formulated to
overcome this [65].
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3. Approximate Triplets: Perturbative Analysis

In this section, we discuss the approximate inclusion of triples in our FS-MRCCSD
implementation of EA. The full FSCCSDT equations can then be written as follows:

ˆ
H

(1,0)

eff =
ˆ
P
(1,0)

{
fN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2

)
+ vN

(
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
+ wN

ˆ
T
(1,0)

3

}
ˆ
P
(1,0)

(8)

ˆ
Q

(1,0)

1

{
fN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2

)
+ vN

(
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
+ wN

ˆ
T
(1,0)

3 −
ˆ
T
(1,0)

1
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (9)

ˆ
Q

(1,0)

2

{
fN

(
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
+ vN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
+ wN

(
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
−

ˆ
T
(1,0)

2
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (10)

ˆ
Q

(1,0)

3

{
fN

ˆ
T
(1,0)

3 + vN

(
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
+ wN

(
1 +

ˆ
T
(1,0)

1 +
ˆ
T
(1,0)

2 +
ˆ
T
(1,0)

3

)
−

ˆ
T
(1,0)

3
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (11)

The above expressions suggest that the full inclusion of triples is very expensive, and
thus we propose approximate triples for both the (0,0) and (1,0) sectors. The approximation
is motivated by a perturbative analysis [47]. A similar analysis exists for the ionization
potential [52]. Furthermore, we start from the SRCC similarity-transformed Hamiltonian,
and this (0,0) sector has been kept truncated at the singles and doubles labels. Then, we
solve the FSCC equations for the state of interest of a given Fock-space sector. The original
problem is decoupled into sup problems, due to normal ordering. In order to consider a

balanced correlation for the entire wave function, we impose inclusion of the
ˆ
T
(0,0)

3 into
ˆ
T
(0,0)

2 , triples at the (0,0) sector as well as the (1,0) sector, correcting effective Hamiltonian at
both the third and fourth orders. This inclusion of triples is on and above the full MRCCSD,
which implies the effects of one and two body operators, included up to infinite order in the
perturbation. Further, we will see that the triples affect the singles and doubles amplitudes,
to the extent of providing corrections to the effective Hamiltonian at the fourth order. Such
effects have normally been included. To analyze the effect of perturbative approximate

triples to
ˆ

H
(1,0)

eff , let us consider the expression of
ˆ

H
(1,0)

eff ,
ˆ
T
(1,0)

3 ,
ˆ
T
(1,0)

1 ,
ˆ
T
(1,0)

2 , up to lowest
order forms, as follows:

ˆ
H

(1,0)

eff =
ˆ
P
(1,0)

{
fN + fN

ˆ
T
(1,0)

1 + fN
ˆ
T
(1,0)

2 + vN
ˆ
T
(1,0)

2 + vN
ˆ
T
(1,0)

3

}
ˆ
P
(1,0)

(12)

ˆ
Q

(1,0)

3

{
fN

ˆ
T
(1,0)

3 + vN
ˆ
T
(1,0)

2 + wN −
ˆ
T
(1,0)

3 H
(1,0)

}
ˆ
P
(1,0)

= 0 (13)

ˆ
Q

(1,0)

1

{
fN + fN

ˆ
T
(1,0)

1 + fN
ˆ
T
(1,0)

2 + vN
ˆ
T
(1,0)

2 + vN
ˆ
T
(1,0)

3 −
ˆ
T
(1,0)

1
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (14)

ˆ
Q

(1,0)

2

{
fN

ˆ
T
(1,0)

2 + vN + vN
ˆ
T
(1,0)

2 + vN
ˆ
T
(1,0)

3 + wN
ˆ
T
(1,0)

2 −
ˆ
T
(1,0)

2
ˆ

H
(1,0)

eff

}
ˆ
P
(1,0)

= 0 (15)

From Equation (12), we observe that the third order correction, due to triples, is

explicitly due to the
ˆ
P
(1,0)

vN
ˆ
T
(1,0)

3
ˆ
P
(1,0)

term. For this, however, it suffices to take
ˆ
T
(1,0)

3 up
to the second order in Equation (13).

ˆ
Q

(1,0)

3

{
fN

ˆ
T
(1,0)

3 + vN
ˆ
T
(1,0)

2 + wN −
ˆ
T
(1,0)

3 fN

}
ˆ
P
(1,0)

= 0 (16)
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where
ˆ

H
(1,0)

eff has been replaced by fN. Further, a diagonal approximation of fN suffices.

Hence, using this, we can calculate
ˆ
T
(1,0)

3 non-iteratively, by taking the values of
ˆ
T
(1,0)

2 that
were obtained from the MRCCSD equation of the (1,0) sector, and wN up to the second

order. This also implies that while
ˆ
T
(1,0)

3 is correct up to the second order, partial higher

order corrections are also taken into account, due to the higher-order effects in
ˆ
T
(1,0)

2 and
ˆ
T
(1,0)

1 from the MRCCSD equation. The construction of wN up to the second order is
conducted when required. This scheme is called the MRCCSD+T∗(3) scheme.

We now explain the various fourth order schemes, due to the triples that we have

proposed. First, we include that the effects of
ˆ
T
(1,0)

3 , calculated up to the second order in

Equation (15), affect the
ˆ
T
(1,0)

2 amplitudes at the third order. Clearly, this will affect the effec-
tive Hamiltonian at the fourth order, and this scheme has been called MRCCSD+T*−a(4),
which is a partial fourth-order correction, due to the triples. Subsequently, we go back

to Equation (13) and include wN to at least the third order, by taking the vN
ˆ
T
(0,0)

2
ˆ
T
(0,0)

2

term, in addition to the vN
ˆ
T
(0,0)

2 term. This now includes the wN, fully corrected up to at

least the third order. Using this, as well as wN
ˆ
T
(1,0)

2 , with the new values of
ˆ
T
(1,0)

2 , as in

the MRCCSD+T*−a(4) scheme, we calculate
ˆ
T
(1,0)

3 . This partially corrects
ˆ
T
(1,0)

3 up to the
third order. It is important to emphasize that, at this stage, the corrections in the triples
are still essentially non-iterative. The effective Hamiltonian generated at this level, is only

partially correct up to the fourth order, since Equation (13) has the a vN
ˆ
T
(1,0)

3 term, which
has been omitted at this stage. This is called MRCCSD+T*−b(4). Finally, in Equation (13),

the term of vN
ˆ
T
(0,0)

3 with the second order
ˆ
T
(1,0)

3 , as in MRCCSD+T*(3), has been included

(one iteration), to obtain the
ˆ
T
(1,0)

3 values, which are correct up to the third order. The

consequent
ˆ

Heff is correct at least up to the fourth order. This final approximation is known
as MRCCSD+T*(4).

4. Bondonic Systematics of Electron Affinity Quantum Dynamics

Wherever the many electronic closed systems are present, starting with celebrating
chemical bonding, special analysis and formalism should apply; this because the inter-
electronic natural (Coulombic) repulsion acts as a potential barrier, preventing the inter-
electronic interference, binding, and correlation. In fact, electrons as fermions interact
through bosonic fields in the following way: in free states, the electromagnetic field is
created, being quantified by the bosons—the photons; in mutatis mutandis, in closed or
under externally applied potential systems, interacting electrons develop specific bosonic
fields that drive their inter-relation dynamics. In chemical bonding, the descriptions of such
bosonic fields were, by already a decade, quantified by the so-called bondons, the bosonic
quasi-particle that is responsible for tunneling the inter-repulsion potential towards the
electronic wave-function interference and bonding [74,75]. The bondonic formalism was
soon recognized as “ . . . the bond is becoming again a central intellectual arena, and one can even
find allusions to the bond as an elementary particle of chemistry, so-called <bondon>” [76,77].

Accordingly, the bondonic theory introduces the needed chemical fields’ description
of the chemical bond, though emphasizing the wave-particle duality, so filling the “missing
link” of the celebrated molecular orbitals, density functional, and exclusively related wave-
related theories [74,75]; this way, the chemical bonding is described as the bosonization
of the interacting electrons, otherwise necessary repelling, through the quantum quasi-
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particles bosons, the bondons [75]. The bondons were considered to be the new challenge
for the revived chemical boding arena [76,77], while, indeed, mainly addressing the exotic
and complex features of atoms in molecules and the extended nano-chemical systems.
The model proved to introduce an additional degree of freedom in interpreting chemical
bonding, for instance, explaining why the ordinary (quantum) chemical bond is not pos-
sible in a helium molecule and, when possible, it relates through the bondons involved
with the helium superfluidity [78]; it also offers the quantum counterpart of otherwise
only purely topologically described Stone-Wales rotations’ formation and propagation on
graphenes [79–81].

Thus, being a formalism for describing the interactions of many electronic systems,
the bondonic formalism may also act as an independent, checking formalism for any other
theory, as is the present coupled-cluster Fock-space-related one; even more, especially
when it is about electronic affinity, the power of any theoretical description should also be
formally checked by a dedicated theory, systematically allowing the tunneling of the inter-
electronic repelling, with the affinity being the typical dynamical “adding electrons” to the
“electronic bath”; this section is thus dedicated to pursue and prove that such connection
can be formally established.

Quite recently, the bondonic formalism provided an alternative formal way of de-
scribing the fourth-order perturbation treatment of the ionization potentials of molecules,
by advancing the N-body k-order of interaction of bondonic contribution to the specific
contraction [71], as follows:

B[1](α) × B[2](β) × B[3](γ) ×
(

1
1

)
∼ N7 ⊗ f (quantum− f luctuations) (17)

with the following:

B[N](k) = N22−(k+l)
[(

k
1

)
+

(
k + 1

1

)]
(18)

N—the total number of electrons in the bonding state of matter (it can be either ground
state or valence state, or another involved in chemical reactivity); k—the perturbation order;
l—the total number of loops over all the diagrams involved [71,82].

Moreover, α, β, γ index the specific realization (viz. the orders), depending on the imple-
mented scheme. Note that the quantum fluctuation function above may further affect
the total order of collective electrons in bonding, depending on the bondonic creation–
annihilation life-line of pairing electrons that contribute to bondonic bosons in their dynam-
ics. Actually, in molecular ionization potential, many body schemes, such as fluctuation
(creation vs. annihilation) along the line-life of electrons in affected bonds, was not ex-
plicitly considered, since the expulsed electrons is “certainly” observed or gained (i.e., no
fluctuation). Yet, in general, and in the special present case of electronic affinity modeling,
this will longer be possible to ignore—since the molecular virtual and excited orbitals
are involved—so, this was included with necessity creation and annihilation dynamics in
such complex perturbation quasi-particle quantum schemes. This way, Figure 1 depicts
the “decomposed” Feynman diagram for bondonic types as they may appear through
the creation and annihilation action of operators that are associated with the electrons
in chemical bonding. Accordingly, the electrons in bonding interact not only in space—
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along the bonding coordinate—but also in time, by their creation and annihilation type of
information/operators.

ˆ
o =

 0 . . .
ˆ
a,

ˆ
b

1 . . .
ˆ
a
+

,
ˆ
b
+ (19)

They are naturally related with spinning too. Therefore, one may consider the basic “paste”
and “future” spinning sectors as being of singlet and triplet forms, and with associated
total spin quantum numbers S∨ and S∨, respectively, as follows:

∨,∧ :
{

T± . . . S∨,∧ = ±1
S . . . S∨,∧ = 0

(20)

Figure 1. The Feynman’s bondonic prototype from creation and annihilation quantum operators; the
resulting basic life-lines of electronic quantum dynamics structures include the following, from left
to right: nucleophilic (active hole), electrophilic (active electron, conduction, ionization), radicalic
affinity (active hole–electronic pair), and protonation (electronic annihilation in situ)—bosonizations,
respectively. Basically, the entire chemical bonding and reactivity phenomenology can be described
with the resulting “bondonic–zoo”; the respective classification, according to the relativistic-coupled
(past-in and future-in bonding) spinning sectors of specific bondons, are in Table 1, systematically
detailed—also see the text for further details.
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Table 1. Bondonic Feynman’s-type diagrams for the triplet (T), singlet (S) and mixed sectors of creation–annihilation
life-lines of creation–annihilation of valence electrons in generic chemical bonding; the corresponding left (<) and right (>)
time-ordering contraction for the operatorial eigenvalues are respectively considered relative with the “present” in or out
electrons in bonding (see text for further details); the resulting total spin for past (∨) and future (∧) “histories” of in and out
valence electrons in bonding are also considered and correlated with the triplet and singlet total spin in each of TT, SS, ST
and TS bondonic sectors, respectively (see also Figure 1 for details on symbolic representation of bondons).

Bondonic
Diagram Bondonic Symbol

Quantum Indices

Bonding Life-Lines of
Creation–Annihilation

Total
Spin

±∑
<

^
o ±∑

>

^
o S∨ S∧

“TT” Sector

TT+/+ 2 2 1 1

TT−/− 0 0 −1 −1

TT0/0 −1 −1 1 −1

TT*/* +1 +1 −1 1

“TS” Sector

TS+/0 2 −1 1 0

TS0/+ −1 2 1 0

TS−/* 0 +1 −1 0

TS*/− +1 0 −1 0
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Table 1. Cont.

Bondonic
Diagram Bondonic Symbol

Quantum Indices

Bonding Life-Lines of
Creation–Annihilation

Total
Spin

±∑
<

^
o ±∑

>

^
o S∨ S∧

“ST” Sector

ST+/* 2 1 0 1

ST0/− −1 0 0 −1

ST*/+ +1 2 0 1

ST−/0 0 −1 0 −1

“SS” Sector

SS0/* −1 +1 0 0

SS+/− 2 0 0 0

SS−/+ 0 2 0 0

SS*/0 +1 −1 0 0

The resulting “present” chemical bonding contraction within the bondonic formation
employs the “in-bonding” eigenvalues of creation–annihilation operators, in their possible
pairings, as such the following applies:

<,>:


∑
<

ˆ
o = −1, 0, 1, 2

∑
>

ˆ
o = −1, 0, 1, 2

(21)
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Chemically speaking, four types of in-bonding dynamics are actually combined,
namely, the following: nucleophilic (active hole)—by past–future annihilation for electronic
life-line in bonding; electrophilic (active electron, conduction, ionization)—by past–future
creation for electronic life-line in bonding; radicalic affinity (active hole–electronic pair)—
by past-annihilation future creation of electronic life-line in bonding; and protonation (in
situ electronic annihilation)—by past-creation future annihilation of electronic life-line
in bonding, respectively. The systematic coupling of these life-lines give out the corre-
sponding special classes of bondons, as in Table 1, classified according to their past/future
(spinning) sectors in bonding. At this point, it is worth mentioning that the ionization
potential of the fourth-order scheme above, corresponds with employing the bondon
B[N](k) = TT+/+[N](k), since it unitarily involves past–future active electrons in bonding
towards the ionization level in molecular systems or to the conduction bands in solid
systems. On the other hand, in the electronic affinity phenomenology that is associated
with active past hole–future electronic pairing, the bondonic terms B[N](k) = TT∗/∗[N](k) are
associated with their measure instead. However, in many electronic molecular systems,
such electronic affinity bondonic terms turn out to appear not only by the single bosoniza-
tion of paired interactions of electrons in bonding, but also through bondonic contraction
by the paired interaction of bondons in the creation–annihilation dynamics across many
electronic dynamics. Table 2 showcases all such diagrammatical contractions for each
bondonic sector that is considered in Table 1. The emphasis (also by explicit depiction) is
given on “exchanging-correlation” of life-lines of active hole–electronic pairings, resulting
in electron affinity bondonic terms in various combinations, i.e., with the new distinctive
notations, as follows:

T∗∗[N](k) = TT∗/∗ (22)

T∗−[N](k) =
1

TT−/−

[(
TS−/∗

)(
TS∗/−

)]
(23)

T∗+[N](k) =
1

TT+/+

[(
ST+/∗

)(
ST∗/+

)]
(24)

T∗0[N](k) =
1

TT0/0

[(
SS0/∗

)(
SS∗/0

)]
(25)

Table 2. Bondonic contractions along the reaction coordinates, while involving the left and right creation–annihilation
life-lines for all combinations specific to each “past-future” triplet and singlet total spin sectors of corresponding Feynman’s
diagrams for the “present” in and out valence electrons in a generic chemical bonding and reaction mechanism; special
emphasis by detailed Feynman bondonic diagrammatic contraction is given for those interactions involving/resulting in
TT*/* product, for each bondonic sector, as such terms are currently associated with the electronic affinity bonding/bondonic
contribution (see text for further details and Figure 1 for more on symbolic and diagrammatic representation of bondons).

BONDONS-IN BONDONS-OUT

Term “p” ⊗ Term “q” = Term “r” ⊗ Term “w”

“TT” Sector

TT+/+ ⊗ TT−/− = SS−/+ ⊗ SS+/−

TT+/+ ⊗ TT0/0 = TS0/+ ⊗ TS+/0

TT+/+ ⊗ TT*/* = ST*/+ ⊗ ST+/*

TT−/− ⊗ TT0/0 = ST0/− ⊗ ST−/0

TT−/− ⊗ TT*/* = TS*/− ⊗ TS−/*

TT0/0 ⊗ TT*/* = SS*/0 ⊗ SS0/*
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Table 2. Cont.

BONDONS-IN BONDONS-OUT

Term “p” ⊗ Term “q” = Term “r” ⊗ Term “w”

“TS” Sector

TS+/0 ⊗ TS0/+ = TT0/0 ⊗ TT+/+

TS+/0 ⊗ TS−/* = ST−/0 ⊗ ST+/*

TS+/0 ⊗ TS*/− = SS*/0 ⊗ SS+/−

TS0/+ ⊗ TS−/* = SS−/+ ⊗ SS0/*

TS0/+ ⊗ TS*/− = ST+/+ ⊗ ST0/−

TS−/* ⊗ TS*/− = TT*/* ⊗ TT−/−

⊗ = ⊗

“ST” Sector

ST−/0 ⊗ ST0/− = TT0/0 ⊗ TT−/−

ST−/0 ⊗ ST+/* = TS+/0 ⊗ TS−/*

ST−/0 ⊗ ST*/+ = SS+/0 ⊗ SS−/+

ST0/− ⊗ ST+/* = SS+/− ⊗ SS0/*

ST0/− ⊗ ST*/+ = TS+/− ⊗ TS0/+

ST+/* ⊗ ST*/+ = TT*/* ⊗ TT+/+

⊗ = ⊗

“SS” Sector

SS+/− ⊗ SS−/+ = TT−/− ⊗ TT+/+

SS+/− ⊗ SS0/* = ST0/− ⊗ ST+/*

SS+/− ⊗ SS*/0 = TS*/− ⊗ TS+/0

SS−/+ ⊗ SS0/* = TS0/+ ⊗ TS−/*

SS−/+ ⊗ SS*/0 = ST*/+ ⊗ ST−/0

SS0/* ⊗ SS*/0 = TT*/* ⊗ TT0/0

⊗ = ⊗

Observe that the scheme for EA–bondonic T∗+[N](k) explicitly depends on IP–bondonic
TT+/+[N](k); this is also relevant for the present aim, in establishing which of the actual
schemes may correspond to the Fock-space coupled-cluster approach, which states the
fact the EA–bondons T∗−[N](k) and T∗+[N](k) are based on partial singlet partial triplet
life-lines of electrons in bonding, so are naturally associated with the T∗+[N](k) further
partial scheme of perturbation. It is clear now that each such formal scheme of quantum
electronic affinity, based on bondonic formalism, may be considered with the above general
scheme of fourth-order bondonic expansion, giving rise to the actual specializations, which
are conceptually equivalent with the Fock-space multi-reference coupled-cluster singles
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doubles and triplets (MRCCSD+T) methods for the interacting clusters of electrons, in an
iteratively composed way.

MRCCSD + T∗(3) . . . T∗∗[1](3) × T∗∗[2](2) × T∗∗[3](2) ×
(

1
1

)
(26)

MRCCSD + T∗(3)− a(4) . . . T∗−[1](3) × T∗−[2](3) × T∗−[3](2) ×
(

1
1

)
(27)

MRCCSD + T∗(3)− b(4) . . . T∗+[1](3) × T∗+[2](2) × T∗+[3](3) ×
(

1
1

)
(28)

MRCCSD + T∗(4) . . . T∗0[1](3) × T∗0[2](3) × T∗0[3](3) ×
(

1
1

)
(29)

The final actual bondonic matter regards the possible generalization of the previously
advanced form for the IP–bondonic perturbative expression; the general form is now
proposed as follows:

B[N](k) =


TT+/+, TT−/−, TT0/0, TT∗/∗

TS+/0, TS0/+, TS−/∗, TS∗/−

ST+/∗, ST0/−, ST∗/+, ST−/0

SS0/∗, SS+/−, SS−/+, SS∗/0

 = 2−(k+l)−1N2

(
N

1
2 ∑
<

ˆ
o−1

+ N
1
2 ∑
>

ˆ
o−1
)[(

kS2
∨

1

)
+

(
kS2
∧ + 1
1

)]
(30)

It nevertheless displays the following conceptually valid features: it naturally generalizes
the k-order of interaction by the electronic spinning eigenvalue in bonding (S2

∨,∧); it corrects
the N2 quadratic energy that is the generically assumed dependence in the bonding (via
ionization and affinity averaging in bonding equilibrium) of adducts’ binding, such as the
Parr approximation of atoms-in-molecule energy of bonding [83], to the actual quantum
dynamics refinement, due to creation–annihilation life-line (contraction and superposition)
of electrons/holes (numbers, also fractional, due to their quasi-particle/weaving nature)
in bonding, by bondons. This way, the actual bondonic higher-order expansion also re-
opens the E=E(N) general dependence in bonding, with direct conceptual consequences
in the deeper understanding of chemical reactivity phenomenology, indices (especially
electronegativity and chemical hardness), and their allied principles; however, it naturally
recovers the IP–bondonic term once all the creation–annihilation operators and spinning
sectors’ eigenvalues are respectively replaced with the actual entries for the TT+/+[N](k)

term of Table 1.

5. Computational Details

The elements of the effective Hamiltonian fN, vN, wN are obtained from contraction

of the CC amplitudes
ˆ
T
(0,0)

1 and
ˆ
T
(0,0)

2 , with Fock matrix elements fa
i and two-electron

Slater integrals vab
ij . These are then stored as effective operators. These effective operators

latter contract with the FSCC operators
ˆ
T
(1,0)

1 ,
ˆ
T
(1,0)

2 ,
ˆ
T
(1,0)

3 , to provide the contribution to
the FSCCSD+(T) diagrams. We have rearranged the loop structure to maintain the N7

power algorithm.
For the test of the theory, we have taken three examples Li2, BeO, and CH+. For small

molecules, the calculation of electron affinity of these molecules is a challenge. For Li2, we
have calculated both the vertical electron affinity (VEA) at the experimental inter-nuclear
distance 5.051 a.u., and the adiabatic electron affinity (AEA) of Li2, for which the ground-
state geometry of Li−2 (6.0 a.u. inter-nuclear distance) is used. We have used four different
basis sets, A, B, C and D, as will be explained later in this section. Since we are interested
in the lowest electron affinity of the di-lithium molecule, we have reported only one value.
However, in two of the bases, basis-B and -D, as will be explained later, the four particles
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are reasonably close-lying and are treated as active particles. In the case of two other
bases—A and C—we have taken only one active particle. In these two cases, the separation
of this one active particle from the rest of what is termed inactive subspace is sufficient
not to warrant any convergence problem. In the cases of four active particles, due to the
symmetry, the effective Hamiltonian turned out to be diagonal. It may be mentioned that
in our code, we have not used symmetry explicitly.

To obtain AEA of Li2, we first calculate the vertical electron affinity of Li2 at the
geometry of Li2−, using a similar number of active particles. These electron affinities can
be called the vertical ionization of Li−2 , within the Franck–Condon envelope of the anion
ground-state geometry. These are reported as the vertical ionization potentials of Li−2 .
Then, by subtracting these from the ground-state energy of Li−2 at the Li−2 geometry, we
obtain the total energy of Li−2 in several schemes. Finally, subtracting from the ground-state
energy of Li2 at the neutral Li2 geometry, AEA of Li2 is obtained. The adiabatic electron
affinity calculation is thus no longer a direct calculation.

The basis sets that are used for the calculations are of DZVP and TZVP quality,
based on Dunning’s correlation consistent basis set in the absence and presence of diffuse
functions. The basis sets are constructed starting with a polarized split-valence basis set,
obtained from the Gamess-US package. This basis-A (3s2p1d) is further improved by the
addition of an extra set of diffuse functions [84], without altering the core and valence
shell exponents, leading to a 4s3p1d basis set (basis-B). The need for extra diffuse s and p
functions to the existing basis set is important for calculations of electron affinity. The basis-
C (4s3p1d) is just a TZVP-type basis set and the addition of an extra set of diffuse functions
to the basis results in basis-D (5s4p1d). The detailed basis sets have been presented in the
Supplementary Materials (SI-1). An extensive discussion of the results, with the inclusion of
different schemes of triples and differing bases sets, has been presented in the next section.

As the next example, we have calculated the vertical electron affinity of BeO. It is well
known that the determination of the electron affinity of the BeO molecule is quite difficult,
due to the significant mobility of the electronic charge for BeO along the bond axis, due
to the 2s-2p degeneracy of Be. The RHF of BeO is the 1∑ determinant

∣∣∣1σ22σ23σ24σ21Π4
∣∣∣.

The LUMO of BeO is 5σ and the next unoccupied orbital 2Π is quite close. Hence, due
to the quasi-degeneracy, we have included three active particles, consisting of σ and Π
symmetry (5σ and 2Π). However, what is of relevance is the electron affinity resulting
from the electron attachment in the LUMO of the σ symmetry (i.e., 5σ orbital). Thus, BeO
is a prototype example of a difficult molecule, where the multi-determinant character of
the reference is required. This allows a more extensive test of the code generated. Due to
the symmetry, the three-dimensional effective Hamiltonian is diagonal, with the diagonal
elements corresponding to the two states corresponding to Π being equal. The calculations
are conducted at the Be–O bond distance of 2.515 a.u., using two basis sets. The basis sets
used are of standard DZVP and aug-cc-pVDZ quality. The results are presented, analyzing
the importance of triples as well as basis sets.

As a final example, we have presented the VEA of CH+ at the equilibrium geometry
of the CH radical, i.e., 1.129 a.u. The motivation of carrying out the calculations at the
equilibrium geometry of the CH radical is to compare this against the experimental vertical
ionization potential of the CH radical. The four different basis sets have been used. Basis-A
consists of the cc-PVDZ basis, and basis-B is the aug-cc-PVDZ basis. Basis-C and D are the
cc-PVTZ and aug-cc-PVTZ bases, respectively. We used all three holes of CH+ as active,
but present the lowest EA in the table, which turns out to be the lowest IP of the CH radical.

6. Results and Discussion

First, we present the result of the EA of Li2 in the different schemes proposed. The
result presented is that of the state corresponding to the only bound state of the Li2 anion.

Since the anion has the geometry of 6.0 a.u., the adiabatic calculations involved the
difference of energy at the Li−2 geometry of 6.0 a.u., and that at the neutral Li2 geometry.
The adiabatic ones are expected to be closer to the experimental geometry.
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For comparison, the adiabatic experimental EA is 0.437 ± 0.009 eV [84] and an earlier
reported theoretical calculation provided a result of 0.90 eV [85]. Table 3 presents the
vertical electron affinity of Li2. In the smallest basis-A, which is of just DZVP quality,
using one active particle, we observe that the FSMRCCSD calculation underestimates
the electron affinity. Triples at the third order do not improve the results, as reflected
by the T∗(3) results. A more significant change takes place at the T∗ − a(4) level, where
ˆ
T
(1,0)

2 amplitudes are corrected at the third order, due to second-order triples, and the
resulting effective Hamiltonian gets corrected at the fourth order. The result changes the
electron affinity towards the experiment. At the T∗ − b(4) and T∗(4) level, the results
oscillate. It is gratifying to note the improvement of the result at different fourth-order
schemes, compared to third-order triples, as well as FSMRCCSD. We can only expect
further improvement where the adiabatic electron affinity is presented. It is noteworthy to
observe that basis-A is the smallest of the bases and does not contain any diffuse functions.

Table 3. Vertical electron affinity of Li2 using various basis sets at inter-nuclear separation of 5.05 a. u.

Methods
Results (eV)

Basis-A (3s2p1d) Basis-B(4s3p1d) Basis-C(4s3p1d) Basis-D(5s4p1d)

MRCCSD 0.201 0.268 0.241 0.279
MRCCSD+T*(3) 0.190 0.254 0.228 0.265

MRCCSD+T*−a(4) 0.279 0.316 0.305 0.329
MRCCSD+T*−b(4) 0.246 0.290 0.274 0.303
MRCCSD+T*b(4) 0.253 0.294 0.280 0.307

Experimental [84,86] 0.437 ± 0.009

If we turn our attention to basis-B, which includes a diffuse set of functions on to
basis-A, we observe an improvement in the results. The calculations are reported using
four active particles. Due to the symmetry of the active particles, the effective Hamiltonian
is fully diagonal, as mentioned earlier, and it is gratifying to note that the code, without
explicit use of symmetry, reproduces that. As highlighted in the earlier section, however, we
present the result of only one state, which corresponds to the lowest bound Li2 anion. The
trends of different theoretical schemes are similar, in that the significant improvement takes
place at the T∗ − a(4) level itself. As expected, the diffuse functions improve the results
significantly. For basis-C, which includes only extended valence functions in addition to
basis-A, we have again taken only one active particle, for the same reason as in the case of
basis-A. The general trends, in terms of theory for the EA presented, are again the same.
There is an improvement compared to basis-A, but the values decrease compared to basis-B,
showing that the diffuse functions are more important than the valence functions.

Basis-D includes both additional valence and diffuse functions, and thus is the most
extensive basis used for the example molecule. As in basis-B, we have taken four active
particles, since the addition of diffuse functions in the basis brings the first four particles
closer. We have reported one relevant EA in this case too. The effective Hamiltonian, as
expected, is completely diagonal. We find similar trends of results in different theoretical
approximations, highlighting the importance of fourth-order triples. The results are even
better than either basis-B or -C, which is to be expected. All these are expected to increase
further for adiabatic calculations, bringing them closer to the experimental value. The
effects of diffuse functions, as well as additional valence sets, improve the EA. Both
these additional basis functions stabilized the neutral and anion molecules, though the
stabilization is more pronounced for the anion, resulting in an increase in EA. Among these,
the extra diffuse set of functions plays a more important role.

In Table 4, we have presented the vertical IP of Li−2 in the four bases. This distance of
Li−2 is larger than that of Li2. These are calculated as the vertical EA of Li2 at the geometry
of Li−2 . The number of active particles that is considered is the same as in the case of the
vertical EA calculation in each of the four cases. In basis-B and -D, the effective Hamiltonian
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turns out to be completely diagonal. The general trends are similar. Compared to the
CCSD level, the T∗(3) has no significant change. The major improvement takes place at the
T∗ − a(4) level in all the bases. Using these results and the ground-state energy of Li2 at
the CCSD level, at the geometry of Li2 and Li−2 , we can calculate the adiabatic EA, which is
presented in Table 5.

Table 4. Vertical ionization potential of Li−2 using various basis sets at inter-nuclear separation of 6.0 a. u.

Methods
Results (eV)

Basis-A (3s2p1d) Basis-B (4s3p1d) Basis-C (4s3p1d) Basis-D (5s4p1d)

MRCCSD 0.356 0.421 0.399 0.435
MRCCSD+T*(3) 0.358 0.416 0.399 0.430

MRCCSD+T*−a(4) 0.455 0.499 0.491 0.515
MRCCSD+T*−b(4) 0.424 0.472 0.461 0.488
MRCCSD+T*b(4) 0.436 0.481 0.472 0.497

Table 5. Total energy of Li−2 in a.u.and adiabatic electron affinity of Li2 in eV using various basis sets at inter-nuclear
separation of 6.0 a. u.

Methods Basis-A (3s2p1d) Basis-B (4s3p1d) Basis-C (4s3p1d) Basis-D (5s4p1d)

Total Energy of Li2− (a.u.)
MRCCSD −14.9122 −14.9148 −14.9415 −14.9430

MRCCSD+T*(3) −14.9123 −14.9147 −14.9415 −14.9428
MRCCSD+T*−a(4) −14.9159 −14.9177 −14.9449 −14.9459
MRCCSD+T*−b(4) −14.9147 −14.9167 −14.9438 −14.9449
MRCCSD+T*b(4) −14.9152 −14.9171 −14.9442 −14.9452

Results (eV)
MRCCSD 0.225 0.291 0.267 0.303

MRCCSD+T*(3) 0.228 0.286 0.267 0.298
MRCCSD+T*−a(4) 0.324 0.369 0.360 0.384
MRCCSD+T*−b(4) 0.293 0.342 0.329 0.357
MRCCSD+T*b(4) 0.306 0.351 0.340 0.365

Experimental [84,86] 0.437 ± 0.009

The general trends are similar and fourth-order correction turns out to be very impor-
tant. One can observe the results closer to the experiment. In the most extensive basis, i.e.,
basis-D, the adiabatic EA turns out to be 0.365 eV, which is very close to the experimental
value of about 0.437 ± 0.009 eV.

In Table 6, we present the results of the vertical electron affinity of BeO, only for the
5σ orbital, resulting in, out of three active particles, 5σ and 2π. We present the results in the
DZVP and aug-cc-pVDZ basis. In each of the bases, the effective Hamiltonian matrix turns
out to be diagonal, as is expected, due to the symmetry. We, however, report the only state
for which there is a positive EA. Here, we find that, compared to the experimental value, the
effect of triples fails to improve the results. However, as soon as these are computed using
fourth-order schemes, we note the improvement towards the experiment. It highlights the
importance of fourth-order triples, compared to the third order. In particular, we observe
that in the aug-cc-pVDZ basis, which includes diffuse functions, the results are remarkably
close to the experimental value, keeping in view that this is the vertical electron affinity
calculation. We have also reported CCSD(T) values, which are very accurate results with
triples. We observe that our results at the T∗ − a(4) and T∗ − b(4) level are quite close to
the full T*(4) results, as well as the CCSD (T) results, in each of the bases, and in the more
extensive basis the result is indeed remarkably close to the experiment [84,86].
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Table 6. Vertical electron affinity of BeO using various basis sets at inter-nuclear separation of 2.515 a. u.

Methods
Results (eV)

Basis-I Basis-II

MRCCSD 1.81 2.05
MRCCSD+T*(3) 1.66 1.92

MRCCSD+T*−a(4) 1.81 2.09
MRCCSD+T*−b(4) 1.80 2.07
MRCCSD+T*b(4) 1.84 2.12
CCSD (T) [87,88] 1.79 2.18

Experimental [84,86] 2.15 ± 0.05

Table 7 presents the results of the vertical electron affinity of CH+, or the vertical
ionization potential of the CH radical. The lowest ionization potential of the CH radical is
reported under the experiment column at the experimental bond length of 1.129 a.u. This
is an interesting application, where the ionization potential of a radical is computed as the
electron affinity of the corresponding cation. Five different methods, one with MRCCSD,
and four other triples-corrected ones, are presented. What is relevant for this paper is the
three partial and full fourth-order triples-corrected schemes. The trends of the methods are
similar in each case. From T∗(3), to T∗ − a(4), the values increase. At the T∗ − b(4) level,
the result decreases, which is followed by a marginal decrease at the full T∗(4) level. What
has transpired from these is the fact that the T∗ − b(4) level results are nearly the same
as the full T∗(4) results. Obviously, these partial fourth-order results take less computing
time, even at the T∗ − a(4) level, and the results are quite satisfactory. One observes the
effect of diffuse function as one that is evident from the results of basis-A to basis-B, and
similarly from basis-C to basis-D. Even with an oscillating trend, the main outcome is the
efficacy of the partial fourth-order schemes, as in the previous cases.

Table 7. Vertical electron affinity of CH+ using various basis sets at inter-nuclear separation of 1.12 a. u.

Methods
Results (eV)

Basis-A Basis-B Basis-C Basis-D

MRCCSD 10.307 10.528 10.409 10.564
MRCCSD+T*(3) 10.217 10.416 10.321 10.450
MRCCSD+T*−a(4) 10.401 10.706 10.508 10.722
MRCCSD+T*−b(4) 10.382 10.680 10.487 10.696
MRCCSD+T*b(4) 10.366 10.675 10.474 10.691

Experimental
[84,86] 10.64

7. Computational Cost

We now look at the computational cost of different fourth-order schemes. We note that
the schemes of third-order and fourth-order triples are calculated in the order MRCCSD+T*(3),
MRCCSD+T*−a(4), MRCCSD+T*−b(4), and MRCCSD+T*(4). All of these scale as N7. How-
ever, third-order triples are calculated first and the equations contain very few diagrams.
With a low prefactor, these calculations are fast. The next scheme computed is T*−a(4),
followed by T*−b(4), and finally the full fourth order. Clearly, the computational times
required go up in the same order. However, it is important to note that, in terms of diagrams,
the two latter schemes T*−b(4) and the full fourth order, have more in number and thus
contain a larger prefactor. The typical computing time to calculate T*(4) is about 4 times the
time that is taken for T*−a(4), for the calculations of EA for the molecules that we presented.
The codes are not parallelized, and thus the exact computing times are not of much interest.
The prefactor for the T*−a(4) scheme is much smaller compared to the prefactor for T*−b(4).
From the point of view of the reliability of the numbers vis-à-vis the computational time,
the T*−a(4) scheme is a promising candidate for the approximate inclusion of fourth-order
triples to EA calculation.
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8. Conclusions

The approximate triples models of the Fock-space coupled-cluster method,
MRCCSD+T∗(3), partially corrected the fourth-order schemes MRCCSD+T*−a(4) and
MRCCSD+T*−b(4), and fully corrected MRCCSD+T*(4) schemes have been presented for
direct EA calculation, based on the perturbative inclusion of triples on the full singles and
doubles model. The EA calculation can be used for IP calculations of the corresponding
anion. Model calculations of EA on Li2, BeO, and CH+ in different basis sets have been
presented. The effects of diffuse and valence basis sets have been analyzed. For all the
cases, we find that the diffuse functions improve the EA. It is important to stress that in all
the cases, the partial triples at third order do not improve the results. However, different
schemes of partial fourth order offer improvements and are in significant agreement with
the experiment. The a(4) scheme is the computationally least expensive, followed by the
b(4) and full scheme. What is instructive is to note that a(4) itself provides results that are
quite reliable. The adiabatic EA calculations for Li2 are, as expected, even closer to the
experiment [84]. In the case of Li2, we also note significant improvement of the earlier
theoretical calculation [89], which reports a value of 0.90 eV for adiabatic EA, which is
higher than the experimental EA. To conclude, it appears that these partial fourth-order
schemes of FSMRCC methods are extremely promising approaches for EA calculations,
while the newly emerging bondonic formalism also successfully encompassed the affin-
ity effects, yet in a more coupling complexification, respecting the counterpart earlier
ionization framework.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168953/s1, Supplementary Materials (SI-1) contains the information on four basis sets,
A, B, C, D (as referred in the Section 5) of Li2 that have been used to obtain vertical EA.
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