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Abstract: Chimeric antigen receptor (CAR) T-cells (CAR T-cells) are a promising therapeutic approach
in treating hematological malignancies. CAR T-cells represent engineered autologous T-cells, expressing
a synthetic CAR, targeting tumor-associated antigens (TAAs) independent of major histocompatibility
complex (MHC) presentation. The most common target is CD19 on B-cells, predominantly used for the
treatment of lymphoma and acute lymphocytic leukemia (ALL), leading to approval of five different
CAR T-cell therapies for clinical application. Despite encouraging clinical results, treatment of other
hematological malignancies such as acute myeloid leukemia (AML) remains difficult. In this review, we
focus especially on CAR T-cell application in different hematological malignancies as well as strategies
for overcoming CAR T-cell dysfunction and increasing their efficacy.

Keywords: CAR T-cells; hematological malignancies; leukemia; lymphoma

1. Introduction

In cell-mediated immune responses, T-lymphocytes (T-cells) play a pivotal role in
surveilling and eliminating tumor cells or pre-malignant cells. If T-cell activity is impeded,
cancer can develop [1]. Since many cancer types acquire the ability to silence anti-cancer
immune responses, scientists have developed strategies to fight back with immunotherapy,
based on boosting a patient’s own immune system to attack the cancer cells [2]. T-cell-
based adoptive immunotherapy is an approach to modify and redirect T-cells against
cancer cells. As a part of this, CAR T-cell therapy is a relatively new treatment option,
based on reprogramming a patient’s own T-cells with a CAR construct and returning
them into the patient’s blood, where they start to attack cancer cells [3]. This technique
was first demonstrated by the Eshhar lab, which paved the way for a chimeric cancer
therapy [4]. The CAR itself functionally replaces the endogenous T-cell receptor (TCR)
and is a hybrid protein composed of four different components. The extracellular domain
is usually a single-chain variable fragment (scFv) derived from a Fab or a monoclonal
antibody coupled via a flexible linker determining the antigen specificity. The hinge region
derived from CD4 or IgG4 connects the extracellular- to the transmembrane domain and
is important for conformational flexibility. The intracellular domain is composed of a
co-stimulatory domain like CD28, 4-1BB, ICOS or OX40 imitating the costimulatory signal
of the TCR during activation. The stimulatory domain represents the CD3ζ chain of a
TCR or FcRγ finalizing the activation process [5–7]. The activated CAR T-cells specifically
identify targets on cancer cells leading to their destruction. A main advantage herein is
that the recognition is unrestricted to the MHC. The first application field of CAR T-cell
therapy has been hematological malignancies like ALL, chronic lymphocytic leukemia
(CLL) and multiple myeloma (MM) since they are easier to target than solid cancers in
regard to finding an adequate tumor antigen [8,9]. So far, five CAR T-cell therapies have
been approved by the food and drug administration (FDA), four of them targeting CD19,
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the most frequently used antigen. Recently, in March this year, an anti-BCMA CAR T-
cell therapy (Idecabtagene viclaucel) for the treatment of multiple myeloma has been
approved [10]. However, various hematological diseases such as acute myeloid leukemia
(AML) or Richter’s syndrome still lack successful breakthroughs in CAR T-cell therapy for
treatment of those diseases [11]. In this review, we want to provide an updated overview
of CAR T-cell treatment options in hematological malignancies as well as address strategies
to overcome CAR T-cell dysfunction and new approaches for combination with other
therapies, which will undoubtedly change the field of autologous T-cell immunotherapy.

2. CAR T-Cell Therapy in Hematologic Malignant Neoplasms

Until today, CAR T-cell therapy is mainly performed in the context of hematological
malignancies, but an increasing number of trials are also conducted in solid tumor pa-
tients (Figure 1; clinicaltrials.gov) [12]. In this section, we focus on CAR T-cell therapy in
leukemias, lymphomas and myelomas.
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and all hits were manually filtered for each category shown.

2.1. CAR T-Cell Therapy in Acute Lymphoblastic Leukemia

ALL is caused by malignant precursor B- or T-lymphocytes affecting normal blood
cell production in the bone marrow [14]. It is the most common form of leukemia in
children with a better prognosis compared to adults [15]. The incidence of B-ALL in adults
is much higher compared to T-ALL [16]. Frontline therapy is usually chemotherapeutics.
In high-risk patients, classified based on immunophenotype, somatic genetic alterations,
site of relapse, prior therapy and time until relapse, an allogeneic hematopoietic stem
cell transplantation in first remission as well as targeted immunotherapy is additionally
advised [17,18]. To date, one CAR T-cell therapy is approved by the FDA, namely Kym-
riah [19] by Novartis, demonstrating marked effects in treating B-ALL, with 81% overall
remission within 3 months [20]. Kymriah targets CD19, a B-cell surface marker, leading
to a well tolerable B-cell aplasia as an off-tumor effect [21]. Since then several other trials
started using different CAR constructs, stimulatory and co-stimulatory domains and ad-
justed manufacturing processes, because some patients still become insensitive to CAR
T-cell therapy due to antigen loss of the tumor or CAR T-cell exhaustion [22]. Therefore,
other targets instead of CD19 are being used. Currently more than a hundred clinical
studies are registered investigating multiple targets, varying from CD20 as a potential
target to bispecific CAR T-cells using CD19 and B-cell maturation antigen (BCMA) [23]. The
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AMELIA study using CD19 and CD22 as target achieved over 75% complete responders
in three different groups varying in the administered dose of CAR T-cells (NCT03289455).
To treat T-ALL, CAR T-cell therapies in clinical trials are targeting CD7 (NCT04572308,
NCT04033302) or CD5 (NCT04594135) for example.

2.2. CAR T-Cell Therapy in Chronic Lymphocytic Leukemia

CLL is a very heterogeneous disease characterized by the accumulation of CD5/CD19
double-positive B cells in peripheral blood and lymphoid compartments. CLL is accompa-
nied by immune dysregulation such as T-cell abnormalities including impaired synapse
formation, impaired proliferative capacity of T-cells, exhausted T-cell phenotype and a
diminished ability for T-cells to execute cytotoxicity [24]. The risk of suffering from the dis-
ease increases with age and is more common in the western world [24,25]. The conventional
therapy for symptomatic CLL patients includes monoclonal antibodies, chemotherapy and
immunotherapy depending on diagnosis and progression of the disease [25,26]. Although
there are already a plethora of new therapeutics including BTK inhibitors, PI3K inhibitors,
BCL2 inhibitors and Fc-engineered monoclonal antibodies for example, CLL is still mostly
incurable [25]. CAR T-cell therapy has been investigated for patients with relapsed or
refractory disease using mostly CD19 as a target. Compared to ALL or diffuse large B-cell
lymphoma (DLBLC), response rates are by far worse in CLL. In a study by Geyer et al.,
the overall response rate was only 38% and the complete response rate was 25% with a
median overall survival of 17 month [27]. Frey et al. investigated an overall response rate
of 44% with only 28% of complete responders. The median overall survival was 64 month
in this study [28]. Despite the challenges and relatively low response rates in CLL, there
are potential applications for CAR T-cell therapy in CLL. Some clinical studies are focusing
on CAR T as a consolidation therapy for patients with incomplete remissions [29]. Fur-
thermore, this could be a potential application in elderly patients with comorbidities as a
therapy with less adverse events compared to an allogeneic transplantation.

CAR T-Cell Therapy in RICHTER’S Syndrome

Richter’s syndrome is usually the transformation of a CLL into a higher malignant
form such as a diffuse large B-cell lymphoma with a relatively poor prognosis. The disease
is very aggressive and the median survival is five to eight months [30]. Since many patients
with Richter’s syndrome have undergone extensive treatment before the transformation of
the disease, treatment options are limited. In younger patients, an allogeneic hematopoietic
stem cell transplant (HSCT) is indicated, in adult patients an immunotherapy is indi-
cated [31]. Although the CAR T-cell therapy was firstly examined in CLL, it may help
also Richter’s syndrome patients with limited treatment options [30,31]. The Mayo clinic
in Rochester, Minnesota, started a clinical trial very recently in May this year enrolling
patients with relapsed/refractory B cell malignancies including Richter’s syndrome to be
treated with CD19 directed CAR T-cell therapy (NCT04892277). Kittai et al. reported in
their study at the Ohio State University James Comprehensive Cancer Center about nine
patients receiving the CD19-directed CAR T-cell therapy axicabtagen-ciloleucel [32]. Eight
of the nine patients were pretreated with kinase inhibitors and one patient died due to
an infection. Five of these eight patients showed a complete response and three a partial
response. So far, only one patient relapsed. Despite these encouraging results, far more
investigation in this field is needed.

2.3. CAR T-Cell Therapy in Lymphoma

The first approved CAR T-cell therapy was the CD19-directed Kymriah for treating
relapsed and refractory ALL and diffuse large B cell lymphoma (DLBCL) [19]. DLBCL is
one of the most common forms of non-hodgkin lymphomas (NHL) and make up to 40% of
all lymphomas [33]. In the ZUMA study, patients with refractory large B-cell lymphomas
were treated with CD19 targeted CAR T-cells (Yescarta) showing 58% complete responders
and 25% partial responders [34]. Durable responses of over two years could be seen,
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leading to the FDA approval of Yescarta (axicabtagene ciloleucel) in 2017 [35,36]. Recently
in March 2021, a new CAR T-cell therapy was approved by the FDA, namely Breyanzi
(Lisocabtagene marleucel) for treating refractory large B-cell lymphomas, such as DLBCL,
high grade B-cell lymphoma, primary mediastinal large B-cell lymphoma and follicular
lymphoma [37]. For the treatment of mantle cell lymphoma (MCL), the FDA approved
the anti-CD19 CAR T-cell therapy Tecartus (Brexucabtagene autoleucel) [38]. So far, only
CD19 targeted therapies for B cell lymphoma are approved indicating a need for changing
the focus also to other targets. A study from 2014 (NCT01735604) revealed a response in
4 out of 7 patients treated with CD20 CAR T-cells [39]. Another potential target is CD30,
a membrane protein on activated B-and T-cells belonging to the TNF receptor family. In
a study treating Hodgkin lymphoma (HL) patients with CD30 CAR T-cells, seven out of
18 patients achieved a partial response [40]. Further investigation will be necessary to
unravel new targets making CAR T-cell therapy applicable for a wide variety of patient’s
characteristics [41].

2.4. CAR T-Cell Therapy in Multiple Myeloma

In multiple myeloma, malignant plasma cells accumulate in the bone marrow repress-
ing normal hematopoietic cell production and further repressing osteoblast function [42].
This leads to the production of complete and incomplete immunoglobulins, so called para-
proteins with no function. To date, the disease is almost incurable and various therapies,
including chemotherapy, HSCT and immunomodulatory drugs, can only keep the disease
stable over time and relieve symptoms [43]. CD19 targeted CAR T-cell therapies seem to be
incapable of curing MM and achieve only minor effects in MM patients since CD19 is only
expressed in low amounts on their surface [44]. Since then, several clinical trials are investi-
gating different targets, above all, BCMA, which is expressed on mature B-cells and plasma
cells, making it a promising target for CAR T-cell therapy in MM [42]. In a phase I CRB-402
clinical trial, CAR T-cells targeting BCMA (NCT03274219) were tested, showing a response
rate of 86%. Further studies are investigating new targets and currently over hundred are
registered for treating MM with CAR T-cell therapy [13]. CD138 or Syndecan-1 is especially
expressed on MM cells and is therefore an interesting new target. A small clinical study
(NCT01886976) assessed the safety and efficacy of a CD138 directed CAR T-cell therapy
and explored a response rate of 80% showing a stable disease for over three months [45].
Recently, the first anti-BCMA CAR T-cell therapy named Abecma (Idecabtagene vicleucel)
has been approved by the FDA for the treatment of relapsed and refractory MM.

2.5. CAR T-Cell Therapy in Acute Myeloid Leukemia

AML is a disease of the myeloid blood cell lineage arising mostly from genetic or
epigenetic changes affecting normal blood cell production in the bone marrow [46]. Be-
sides chemotherapy, an allogeneic hematopoietic stem cell transplantation can help to
induce complete remission. Since AML is a genetically heterogeneous disease, charac-
terizing the disease determines therapy options [47]. The major limitation for the us-
age of a CAR T-cell therapy in AML is the absence of a targetable antigen since many
myeloid antigens are also expressed on healthy hematopoietic stem and progenitor cells
(HSPCs) leading to destruction of the bone marrow [11]. As a consequence, targets have
to be chosen carefully while achieving only minor and tolerable toxicities for the patients.
The first AML CAR T-cell therapy was directed against the Lewis Y antigen showing
only very limited efficacy [48]. By now, over twenty clinical trials are enrolling and re-
cruiting patients for CAR T-cell therapy in AML targeting predominantly CD123, CD33
and CLL-1. CD123 and CD33 are mainly expressed on AML blasts; however, they can
also be found on healthy HSCPs [49]. CLL-1 is highly expressed in AML but also on
monocytes and other non-hematological cells [50]. Since the response rates are lim-
ited so far, scientists go for combinatory targets in CAR T-cell therapy. For example,
patients are currently being recruited at Zhujiang hospital in China for treatment with
CD38/CD33/CD56/CD123/CD117/CD133/CD34/Mucl-CAR T-cells (NCT03473457). A
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clinical trial at the Dana-Farber Cancer Institute in Boston, Massachusetts, used CAR T-cells
targeting NKG2D-ligands (NCT02203825), which showed very poor responses in acute
myeloid leukemia/myelodysplastic syndrome or relapsed/refractory multiple myeloma,
with all patients receiving follow-up alternative therapies [51]. Further clinical trials target
other antigens such as CD44v6 (NCT04097301), which are currently recruiting patients.

3. Overcoming CAR T-Cell Dysfunction

Antigen recognition is a crucial point in CAR T-cell therapy since many patients
experience a relapse because the tumor cells become negative to the target antigen. Con-
versely, off-target cross reactivity in CAR T-cell therapy is still a problem. Hence, a major
challenge is to improve the antigen recognition and specificity of CAR T-cells. Bispecific
CAR T-cells recognize two or more tumor associated antigens simultaneously, for example,
CD19 and CD20 [52]. Furthermore, mixing different CAR T-cells that target the same
antigen or tandem CARs (TanCAR) co-targeting two different tumor antigens may en-
hance therapeutic efficacy [53]. Enhancing proliferative capacity and persistence of CAR
T-cells can be addressed via optimizing costimulatory signaling domains. Incorporating
one or more costimulatory domains into the CAR construct can influence their effector
function. CD28 and 4-1BB are widely used, but ICOS, OX40, CD27 and many more are
also under investigation [54–58]. CAR T-cells based on 4-1BB costimulation are known to
have a greater persistence while CD28 costimulation enhances proliferation and tumor
elimination [59]. Another strategy is to modify cytokine expression via so-called T-cells
redirected for universal cytokine killing (TRUCKS). Those 4th generation CAR T-cells
deliver a transgenic protein of interest to the targeted tissue upon antigen encountered
signaling. In detail, those CAR T-cells are synthetically engineered to express an inducible
expression cassette driven by a transcription factor, leading to the expression of the trans-
genic cytokine upon signaling [60]. Furthermore, Shum et al. created transgenic T-cells
with IL-7 receptors (C7R) incorporated in the CAR construct. Constitutive signaling is
promoted when encountering an antigen, thus activating intracellular STAT5 signaling,
the major IL-7 signaling nodal point, supporting anti-tumor activity [61]. Optimization
of structural components can also include knocking out negative regulators, which is
a powerful tool to overcome an immunosuppressive tumor microenvironment (TME).
Immune checkpoint inhibitors play pivotal roles in tumors—the T-cell interactions lead
to T-cell exhaustion, tolerance and ultimately dysfunction [62]. The CRISPR/Cas9 tool
enables one to knockout immune checkpoint molecules such as PD-1, CTLA-4 and LAG3
in CAR T-cells [63]. The knockout of negative regulators such as transcription factors,
for example NR4A, correlating with PD-1 and TIM3 gene expression, can help to induce
tumor regression [64]. Expression of a dominant negative receptor (DNR) on the surface
of a CAR T-cell targets the same goal. Engineered PD-1 DNR lacks PD-1 transmembrane
and intracellular signaling domains augmenting CAR T-cell cytotoxicity [65]. Another
synthetic biology approach is chimeric switch receptors (CSRs), which convert negative
into positive signals by reversing the suppression of inhibitory molecules [66]. Liang et al.
engineered CD19-targeted CAR T-cells expressing a PD-1 CSR, treating patients with post
CD19 CAR T-cell failure to suppress PD-1/PD-L1-mediated T-cell exhaustion. Three of six
patients achieved a complete response [67]. To abrogate and limit the cytotoxicity of CAR
T-cells, they can be engineered with safety switches, which can inactivate and eliminate
the CAR T-cells drug. Safety switches include suicide genes such as caspase 9 (iCasp9)
fused with a FK506 binding protein, incorporated into the CAR, leading to dimerization
and ultimately apoptosis upon addition of a synthetic inducer of dimerization drug [68].
Moreover, limiting CAR T-cell long term persistence can also prevent toxic effects. This
can be achieved by using therapeutic antibodies, which specifically recognize CAR T-cells,
leading to their elimination. These are just examples of all of the available powerful tools to
modify CAR T-cells. Increased development of synthetic biology interventions are needed
to facilitate personalized medicine in the field of CAR T-cell therapy.
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4. CAR T-Cell Therapy and Combination Therapies

For lymphoma and ALL, CAR T-cell therapy has shown remarkable results in treating
patients, but for CLL for example, results are not as promising [27]. Therefore, several stud-
ies are investigating CAR T-cell therapy in combination with other therapies to maximize
the therapeutic efficacy but preserving patient safety at the same time. A research focus
lies also on CAR natural killer cells (NCT04887012, NCT04887012) and CAR natural killer
T-cells (NCT03294954).

4.1. Monoclonal Antibodies

Monoclonal antibodies used for cancer treatment either target tumor-associated anti-
gens to induce cytotoxicity or are used to block receptor–ligand interactions. In this regard,
immune checkpoint inhibitors are antibodies that block the inhibitory T-cell receptor
CTLA-4 (Ipilimumab) or PD-1 (Pembrolizumab), which leads to reactivation of silenced
cancer-specific T-cells [69,70]. As CAR T-cells also express multiple inhibitory receptors,
combining CAR T-cell therapy with checkpoint blockage could possibly prevent the ex-
haustion and silencing of CAR T-cells. Chong et al. described a successful increase in CAR
T-cell efficacy after treating a refractory DLBCL patient with pembrolizumab [71]. Only a
few clinical studies so far are combining CAR T-cell therapy with monoclonal antibodies for
the treatment of hematological malignancies (NCT04381741, NCT04703686, NCT03310619)
and for the treatment of solid cancers (NCT03179007, NCT02862028, NCT01454596). In
light of these results, combinatory therapy of CAR T-cells and monoclonal antibodies will
be of more importance to emerge new strategies in fighting against cancers.

4.2. Small Molecule Inhibitors

Drugs smaller than 500 Daltons targeting distinct molecule portions are considered
as small molecule inhibitors. Due to their size they are able to pass through the cell
membrane to act intracellularly, antagonizing different pathways correlated with cancer
development [72]. Tyrosine and serine kinase inhibitors are most frequently used to
treat cancer patients targeting tumor survival, growth and metastasis [73]. The most
promising target is the mitogen-activated protein kinase (MAPK) pathway since it is
involved in multiple cellular functions. MEK inhibitors as well as BRAF inhibitors have
shown impressive results for the treatment of solid cancer [74]. A clinical trial combining
CAR T-cells and a BRAF inhibitor revealed mixed results as tumor infiltrating lymphocytes
(TILs) were inhibited showing that the complexity of targeting that pathway in combination
with adoptive T-cell therapy remains to be elucidated [75]. Since the PI3K/Akt/mTOR
signaling cascade is a major key player in regulating the cell cycle, researchers demonstrated
that Akt inhibition ex vivo could enhance antitumor immunity in CAR T-cell therapy [76].
Concerning mTOR inhibition, Huye et al. created rapamycin resistant anti-CD19 CAR
T-cells and found out that those had an increased antitumor activity in Burkitt’s lymphoma
and ALL cell lines [77]. One unpublished clinical trial is currently enrolling CLL and
DLBCL patients in the United States, Australia and Europe for a combinatory therapy of
CAR T-cells with Ibrutinib (NCT03960840). Furthermore, Fraietta et al. found out that
Ibrutinib therapy administered before and during CAR T-cell treatment in CLL patients
could improve CAR T-cell expansion and downregulation of inhibitory receptors [78].

4.3. Oncolytic Viruses

Oncolytic viruses target and eliminate tumor cells without damaging healthy tissue
in two different ways. Firstly, through a direct attack, in which the virus infects and
enters the cells, leading to cell lysis. Secondly, through expression of viral antigens in
infected cancer cells, which leads to their subsequent recognition and destruction by
cytolytic T-cells [79]. This principle was studied in MM cells using adenovirus serotype
5, showing oncolysis in infected malignant cells, suggesting an application also in other
hematological malignancies [80]. Nishio et al. designed an oncolytic adenovirus armed
with the chemokine genes RANTES and IL-15 leading to CAR T-cell recruitment, prolonged
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persistence and enhanced survival in neuroblastoma cell lines [81]. This could be an
interesting attempt at combining CAR T-cells with oncolytic viruses for the treatment of
hematological malignancies but also for solid cancer, where one phase I trial is running
using a binary oncolytic adenovirus and HER2-targeted CAR T-cells (NCT03740256) for
the treatment of HER2 positive solid tumors.

4.4. Proinflammatory Cytokines

Cytokines can tremendously influence T-cell function such as expansion, persistence
and effector activity. In addition to the engineered co-expression of cytokines in CAR
T-cells discussed in Section 3, cytokines can be administered intravenously to patients.
For example, interleukin 2 (IL-2) influences T-cell growth, expansion and cytotoxicity, and
is approved by the FDA for the usage in cancer treatment [82]. Several clinical trials are
testing the combination of CAR T-cell therapy with IL-2 (NCT00924326, NCT00019136,
NCT04119024, NCT03098355), revealing enhanced persistence of CAR T-cells and durable
remissions in vivo in different tumor entities such as lymphoma, ovarian cancer and
melanoma [83]. However, IL-2 is a double-edged sword as high IL-2 dosages can decrease
central memory T-cells [84]. Other investigated cytokines such as IL-7 and IL-15 showed
increased CAR T-cell cytotoxicity compared to IL-2 in ALL/CLL patients [85]. Most clinical
trials are comparing IL-2 and IL-7/IL-15 activity in lymphoma patients (NCT02652910,
NCT04186520, NCT03929107, NCT02992834), revealing the demand for testing combinatory
approaches of CAR T-cells and proinflammatory cytokines.

5. Adverse Events of CAR T-Cell Therapy

Toxic effects frequently accompany curative effects of a CAR T-cell therapy. The
most frequent side effect is the cytokine release storm (CRS), where excessive release
of cytokines is triggered by CAR T-cell activation, proliferation and enhanced killing,
manifesting in a broad range of clinical symptoms such as fever, tachycardia and pyrexia
or even death [86]. Tocilizumab, a monoclonal antibody against the IL-6 receptor, acting
as an immunosuppressant is often used for the treatment of CRS [87,88]. Besides CRS,
tumor lysis syndrome (TLS) is a common toxicity upon CAR T-cell treatment. Due to mass
destruction of malignant cells, their cellular components are rapidly released, leading to
hepato- and nephrotoxicity. Overlapping with CRS, TLS can also lead to cardiac arrhythmia.
Management of TLS should therefore include prevention of cardiac dysrhythmias as well
as prevention of renal function [89]. A prevalent side effect includes neurotoxicity, which is
generally associated with CRS. As CAR T-cells also migrate into the cerebrospinal fluid,
high levels of cytokines in the cerebrum can lead to aphasia, delirium, seizures and syncope
for example. For the management of neurotoxicity, corticosteroids are favored as they
can pass the blood–brain barrier [90]. Furthermore, on-target off-tumor effects frequently
occur when the CAR-target antigen is not exclusively expressed on tumors but also on
healthy tissue. For example, B-cell aplasia occurs as an on-target off-tumor effect since
CD19 targeted CAR T-cells also eliminate CD19 positive B-cells. However, B-cell aplasia
upon CAR T-cell therapy is usually well-tolerated [91].

6. Conclusions

Immunotherapy and especially CAR T-cell therapy has demonstrated outstanding
response rates in subgroups of patients with hematological malignancies, leading to emer-
gence of CAR T-cells as a major breakthrough in cancer immunotherapy. Furthermore,
the fifth CAR T-cell therapy has been approved by the FDA (Breyanzi), underlining that
CAR T-cells have become a valid therapy option for refractory blood cancer and points
to the promising potential of this therapy approach. However, in some hematological
malignancies, response rates are low and patients still relapse. Additionally, for some
hematological malignancies such as Richter syndrome, data is still very thin with only
a low number of patients enrolled in clinical studies so far. In addition, adverse events
frequently accompany CAR T cell therapy, showing that this therapeutic approach still
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needs to be optimized in regard to safety and efficacy. However, so far, four out of the five
FDA-approved CAR T cell drugs target CD19 (Breyanzi, Kymriah, Tecartus and Yescarta)
and only one targets a different antigen (BCMA, Abecma). Comparing these drugs with the
expanding list of targets currently investigated in many clinical studies gives confidence
that the number of approved CAR T constructs as well as the list of targets are still growing.
This is particularly important as suitable targets for some entities such as AML are still
missing. Aside from the quest for novel targets, a large panel of innovative approaches
are expected to markedly improve CAR T cell therapy, which have been discussed in this
review and comprise the development of bispecific CAR T cells, improved CAR constructs,
genetic modification of CAR T cells and combination treatments with other drugs. Regard-
ing all these technical possibilities, it is expected that the next generation of CAR T cells will
hopefully serve as a safe and highly effective weapon to fight hematological malignancies.
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TanCAR tandem CAR
T-cells T-lymphocytes
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TILs tumor infiltrating lymphocytes
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TRUCKS T-cells redirected for universal cytokine killing
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