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Figure S1. Procedure for isolating the ER-enriched fraction by density gradient ultracentrifugation. (a) A supernatant 
S4,000 loaded on the top of 31% (w/w) sucrose solution. (b) A two-step density gradient after ultracentrifugation. The 
supernatant was removed and focused microsomes were overlaid with 27%, 19%, and 8% (w/w) sucrose solutions. (c) A 
four-step gradient after the final ultracentrifugation. The 27/31% interface enriched with ER microsomes was collected. 
Arrows indicate interphases between the two gradient-forming solutions, ER – endoplasmic reticulum-enriched fraction. 

 

Figure S2. Elimination of co-migrating chloroplasts by optimizing the initial centrifugation prior to density-gradient sep-
aration. The crude homogenate was centrifuged at speeds between 2,000 and 12,000 × g. The parent homogenate and the 
resulting supernatants were then subjected to Western blot analysis. The following organelle-specific markers were im-
munodetected: endoplasmic reticulum – ER (Lumena-binding protein, BiP), chloroplasts – Chloro (D1 protein of photo-
system II, PsbA) and nuclei – Nucl (Histone 3, H3). 

 

 

Figure S3. Reproducibility of ER isolations visualized using a histogram showing pairwise comparisons of protein identi-
fications (in %). 
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Figure S4. KEGG pathway enrichment analysis. Significantly enriched KEGG pathways are sorted according to the –Log 
of their p-value. 

 

 

Figure S5. Total process efficiency (%) of solid-phase extraction (SPE) protocols. The recovery achieved using a conven-
tional HLB column [1] was compared to that for an in-tip µSPE protocol [2]. Gradient-forming sucrose solutions were 
spiked with a mixture of six auxin standards (1 pmol each). Recoveries of standards were evaluated by LC-MS/MS. Values 
are mean recoveries (%) of all tested auxin standards (n=3). Error bars indicate the s. d. 
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Tables S1–S4. Tables are available in attached in zip file. 

Table S1. Protein and peptide identification characteristics for analyses of ER isolates and control samples (n=5 for both) 
as provided by MaxQuant software version 1.6.10.43 [3]. 

Table S2. A list of all identified proteins assigned as ER-located. 

Table S3. Complete functional annotation clustering results for the proteins assigned as ER-located, as downloaded from 
DAVID Bioinformatics Resources 6.8 [4]. 

Table S4. Complete results of a KEGG pathways enrichment analysis for the proteins assigned as ER-located as down-
loaded from DAVID Bioinformatics Resources 6.8 [4]. 

Table S5. Levels of IAA metabolites levels and their relative abundance in Arabidopsis seedlings, an organelle suspension, 
and the ER-enriched fraction. Values are mean (n=5).  

Compound Crude extract Organelle suspension ER fraction 

  (pmol/g FW) (%) (fmol/ml) (%) (fmol/ml) (%) 

IAA 102.1 1.7 11,451.4 4.8 832.3 8.8 

IAAsp 25.1 0.4 2,265.7 1.0 15.5 0.2 

IAGlu 100.3 1.7 9,835.0 4.1 111.0 1.2 

IAA-glc 78.2 1.3 8,883.5 3.7 118.3 1.2 

oxIAA 909.2 15.6 36,105.3 15.2 975.6 10.3 

oxIAA-glc 4,629.0 79.2 168,948.3 71.1 7,455.4 78.4 

Table S6. Endogenous levels (fmol/µg of proteins) of auxin metabolites in the Arabidopsis crude extract and ER-enriched 
fraction. The mean abundance ± s.d. is given (n=5) for indole-3-acetic acid (IAA), IAA-aspartate (IAAsp), IAA-glutamate 
(IAGlu), IAA-glucose (IAA-glc), 2-oxoindole-3-acetic acid (oxIAA), oxIAA-glucose (oxIAA-glc) 

Compound Crude extract ER fraction 

  fmol/µg of proteins 

IAA 11.7 ± 0.9 718.1 ± 34.0 

IAAsp 2.9 ± 0.1 13.3 ± 2.7 

IAGlu 11.5 ± 0.9 95.7 ± 18.3 

IAA-glc 8.9 ± 0.8 102.0 ± 16.6 

oxIAA 103.9 ± 10.8 841.7 ± 150.0 

oxIAA-glc 529.0 ± 13.7 6,432.1 ± 1,244.9 
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