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Abstract: Heat shock protein 27 (HSP27) is one of the small molecular chaperones and is involved in
many cell mechanisms. Besides the known protective and helpful functions of intracellular HSP27,
very little is known about the mode of action of extracellular HSP27. In a previous study, we showed
that intravitreal injection of HSP27 led to neuronal damage in the retina and optic nerve after 21 days.
However, it was not clear which degenerative signaling pathways were induced by the injection. For
this reason, the pathological mechanisms of intravitreal HSP27 injection after 14 days were investigated.
Histological and RT-qPCR analyses revealed an increase in endogenous HSP27 in the retina and an acti-
vation of components of the intrinsic and extrinsic apoptosis pathway. In addition, an increase in nucleus
factor-kappa-light-chain-enhancer of activated B cells (NFκB), as well as of microglia/macrophages and
T-cells could be observed. In the optic nerve, however, only an increased apoptosis rate was detectable.
Therefore, the activation of caspases and the induction of an incipient immune response seem to be the
main triggers for retinal degeneration in this intravitreal HSP27 model.

Keywords: glaucoma; heat shock protein 27 (HSP27); retinal ganglion cell degeneration; apoptosis;
T-cells; microglia; NFκ-B

1. Introduction

Heat shock proteins (HSPs) are molecular chaperones, and they are upregulated in
response to physiological and environmental stressors [1]. In general, HSPs are attributed
protective functions, such as protein stabilization and reduction of apoptosis. HSPs can be
classified into different groups according to their molecular weight [2]. Larger proteins,
such as HSP70 and HSP60 chaperones, are found in the cytosol, endoplasmic reticulum,
mitochondria, and the cell nucleus, as well as in the extracellular environment [3,4].

One of the smaller HSPs is HSP27, also known as HSP25 or heat shock protein beta-1
(HspB1). It is ubiquitously expressed and is involved in various biological functions [5].
Intracellularly, HSP27 can inhibit the cytochrome C-mediated activation of caspases in the
cytosol [6]. Furthermore, HSP27 can indirectly prevent the activation of BCL-2-associated
X protein (Bax) [7]. Extracellularly, HSP27 can serve as a signal molecule and bind to
membrane receptors, such as toll-like receptors (TLRs). In mouse coronary endothelial cells,
extracellular HSP27 interaction between TLR2 and TLR4 was observed, which then led to
nucleus factor-kappa-light-chain-enhancer of activated B cells (NFκB) phosphorylation [8].
In addition, the treatment of human macrophages with recombinant HSP27 led to increased
NFκB transcriptional activity. Treatment of macrophages with HSP27 also resulted in
increased expression of a variety of genes, including proinflammatory factor interleukin
(IL)-1β and tumor necrosis factor α. Increased anti-inflammatory factors, such as IL-10 and
GM-CSF, were also detected at both mRNA and protein levels [9]. This suggests that the
mode of action of HSP27 may depend on the localization.
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In recent years, studies have been carried out to analyze the relationship among neuronal
diseases and HSPs. One of these diseases is glaucoma, whose main feature is the destruction of
retinal ganglion cells (RGCs) and their axons [10]. Studies in donor eyes of glaucoma patients
demonstrated an increased expression of HSP27 in the nerve fiber layer, RGCs, retinal vessels,
and optic nerve heads [11]. Furthermore, increased HSP27 levels in the retina were also detected
in various glaucoma models [12]. For example, laser photocoagulation of episcleral and limbal
veins induced glaucoma in an animal model. It was observed that the expression of HSP27 was
increased in RGCs and retinal astrocytes of laser treated eyes [13]. In the same publication, it
was assumed that prolonged HSP27 expression is a cell-specific phenomenon and could serve
as a warning sign for neuronal damage. Tezel et al. postulated that the increased expression
of HSPs in glaucomatous eyes may initially serve to protect cells from further destruction and
facilitate repair. However, the authors also assumed that long-lasting HSP expression could
recruit immune responses that contribute to disease progression [11]. Lately, some investigations
have also demonstrated that an upregulation of HSPs might be problematic and cause neuronal
loss. For example, Chen et al. noted that HSP27 upregulation induced an immune mediated
neural damage through activating HSP-specific CD4+ T-cell response [14]. In animal models,
it was observed that systemic administration of HSP27 led to glaucoma-like damage [15,16].
Recently, we also demonstrated that intravitreal injection of HSP27 induced a degeneration of
RGCs and the optic nerve neurofilament after 21 days [17]. These results suggest that HSP27
may be involved in degenerative mechanisms. However, it is not clear which pathological
mechanisms are activated by the increased extracellular HSP27 concentration.

Therefore, this study deals with the possible pathological mechanisms induced
through intravitreal HSP27 injection, with a focus on caspase and immunological response
in retina and optic nerve.

2. Results
2.1. Increased Heat Shock Protein Levels on Protein and Gene Level

To investigate the level and localization of HSP27, an antibody against HSP25, known
as the rodent HSP27, was used (Figure 1A). After HSP25 staining, an area evaluation of the
HSP25+ signal was performed. The native (0.5 ± 0.1%) and the PBS (0.4 ± 0.2%) groups
showed very similar HSP25+ area size (p = 1.0). In contrast, the HSP25+ staining area in the
HSP27 group (1.8 ± 0.5%) was increased (HSP27 vs. native: p = 0.017 and HSP27 vs. PBS:
p = 0.014; Figure 1B).

To identify the localization of HSP25, it was stained in combination with a marker
against neuronal cells (NeuN) and astrocytes (GFAP). According to these overview stains,
we noted that HSP25 was mainly located in the ganglion cell layer (GCL). However, a
stronger colocalization between HSP25 and GFAP was observed, suggesting that HSP25
was released by astrocytes (Figure 1A, detail).

In order to evaluate the HSP27 (Hspb1), HSP90 (Hsp90aa1), and HSP70 (Hspb70) ex-
pression on mRNA level, RT-qPCR analyses were performed. Compared to controls, a
significant upregulation of relative Hspb1 expression was detected in the HSP27 group
(HSP27 vs. native: 1.8-fold expression, p = 0.040 and HSP27 vs. PBS: 2.5-fold expres-
sion, p = 0.010, Figure 1C). In contrast, the relative expression of Hsp90aa1 in the HSP27
group was only increased as compared with the PBS group (1.5-fold expression, p = 0.002,
Figure 1D). No differences in the relative expression of Hsp90aa1 could be measured be-
tween the HSP27 and native group (1.0-fold expression, p = 0.990). Similar results were
obtained for the relative expression of Hspb70. No differences were found between the
HSP27 group and the native group (0.7-fold expression, p = 0.108), as well as the PBS group
(0.8-fold expression, p = 0.377, Figure 1E).
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Figure 1. Localization and expression level of heat shock proteins. (A) Heat 
shock protein 25 (HSP25, green), astrocytes (GFAP, red), neuronal cells 
(NeuN, red), and cell nuclei (DAPI, blue) were stained on retinal cross-sec-
tions. The detail view revealed that HSP25 signals were rather colocalized 
with GFAP signals than with NeuN signals (detail). (B) The HSP25 signal was 
strongly increased in the heat shock protein 27 (HSP27) group as compared 
with the native (p = 0.017) and PBS group (p = 0.014). (C) Compared to con-
trols, a significant increase in Hspb1 mRNA expression was measured in 
HSP27 treated retinae (HSP27 vs. native: p = 0.040 and HSP27 vs. PBS: p = 
0.010). (D) Via RT-qPCR, a significant increase in Hsp90aa1 mRNA expression 
was also observed in the HSP27 group as compared with the PBS group (p = 
0.002), but not compared with the native group. (E) In contrast, the relative 
mRNA expression of Hspb70 was similar in all groups. Scale bars = 20 μm. 
GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer. * 
p < 0.05 and ** p < 0.01. Immunohistology = mean ± SEM, RT-qPCR = median ± 
quartile + minimum/ maximum. Dashed line represents the relative expres-
sion level of the control group. 

Figure 1. Localization and expression level of heat shock proteins. (A) Heat shock protein 25 (HSP25,
green), astrocytes (GFAP, red), neuronal cells (NeuN, red), and cell nuclei (DAPI, blue) were stained
on retinal cross-sections. The detail view revealed that HSP25 signals were rather colocalized with
GFAP signals than with NeuN signals (detail). (B) The HSP25 signal was strongly increased in
the heat shock protein 27 (HSP27) group as compared with the native (p = 0.017) and PBS group
(p = 0.014). (C) Compared to controls, a significant increase in Hspb1 mRNA expression was measured
in HSP27 treated retinae (HSP27 vs. native: p = 0.040 and HSP27 vs. PBS: p = 0.010). (D) Via RT-
qPCR, a significant increase in Hsp90aa1 mRNA expression was also observed in the HSP27 group as
compared with the PBS group (p = 0.002), but not compared with the native group. (E) In contrast, the
relative mRNA expression of Hspb70 was similar in all groups. Scale bars = 20 µm. GCL, ganglion cell
layer; IPL, inner plexiform layer; INL, inner nuclear layer. * p < 0.05 and ** p < 0.01. Immunohistology
= mean ± SEM, RT-qPCR = median ± quartile + minimum/ maximum. Dashed line represents the
relative expression level of the control group.
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2.2. Unaltered Number of Retinal Ganglion Cells but Increased Apoptosis Rate

To analyze neuronal degeneration, we quantified the number of RGCs and the number
of RGCs in apoptotic stage using RBPMS and Bax (Figure 2A). The number of RGCs was
almost equal in the HSP27 group (96.6 ± 5.6%), the PBS (98.2 ± 6.0%, p = 0.991), and the
native group (100.0 ± 12.4%, p = 0.959, Figure 2B). Both control groups also demonstrated
comparable RGC counts (native vs. PBS: p = 0.987). Regarding the number of Bax+ and
RBPMS+ cells, no differences could be observed in the HSP27 group (11.3 ± 1.9%) when
compared with both controls (PBS 10.2 ± 1.8%, p = 0.887 and native 8.4 ± 1.0%, p = 0.450).
Similar numbers of apoptotic RGCs were also observed in the PBS and the native group
(p = 0.730, Figure 2C).

In order to evaluate the mRNA level, expression of Pou4f1, a marker for RGCs, was
analyzed via RT-qPCR. The investigation showed no differences in the relative expression
of Pou4f1 between the groups (HSP27 vs. native: 0.7-fold expression, p = 0.139 and
HSP27 vs. PBS: 1.1-fold expression, p = 0.639, Figure 2D). In contrast, the analysis of mRNA
expression of caspase 3 (Casp3), 8 (Casp8), and 9 (Casp9) demonstrated strong changes in
HSP27 retinae. Regarding the relative Casp3 expression, a significant upregulation could
be measured in the HSP27 group (HSP27 vs. native: 1.6-fold expression, p = 0.003 and
HSP27 vs. PBS: 1.6-fold expression, p = 0.042, Figure 2E). Investigation of the relative
Casp8 mRNA revealed a significant elevation in the HSP27 group in relation to the native
(1.5-fold expression, p = 0.039) and the PBS group (1.6-fold expression, p = 0.046, Figure 2F).
The relative expression of Casp9 was also increased in HSP27 retinae as compared with
the native group (1.5-fold expression, p = 0.024) and the PBS group (1.3-fold expression,
p = 0.029, Figure 2G).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 20 

 

 
Figure 2. Constant number of retinal ganglion cells but increased apoptosis 
rate. (A) Retinal ganglion cells (RGCs) in the retina were marked with RBPMS 
(green), apoptotic RGCs with Bax (red), and cell nuclei with DAPI (blue). (B) 
RBPMS cell count revealed no differences among the HSP27, the PBS, and the 
native group. (C) Bax+ cell counts also demonstrated no differences among the 
groups. (D) The expression level of Pou4f1 (marker for RGC), investigated by 
RT-qPCR, was similar in the groups. (E) The relative expression of Casp3 
mRNA was significantly increased in the HSP27 group as compared with the 
native group (p = 0.003) and the PBS group (p = 0.042). (F) Via RT-qPCR, an 
increase in Casp8 mRNA expression was detected in HSP27 retinae as com-
pared with both control groups (native: p = 0.039 and PBS: p = 0.046). (G) The 
mRNA expression of Casp9 was also increased in HSP27 animals as compared 
with the native group (p = 0.024) and PBS group (p = 0.029). Scale bar = 20 μm. 
GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer. * 
p < 0.05 and ** p < 0.01. Immunohistology = mean ± SEM, RT-qPCR = median ± 
quartile + minimum/maximum. Dashed line represents the relative expression 
level of the control group, solid line represents 100%. 
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To investigate further degenerative mechanisms, the NFκB signal 

was investigated by immunohistochemistry (Figure 3A) and the rela-
tive mRNA expression of NFκB (Nfκb), protein kinase D (Prkd1), p38 

Figure 2. Constant number of retinal ganglion cells but increased apoptosis rate. (A) Retinal ganglion
cells (RGCs) in the retina were marked with RBPMS (green), apoptotic RGCs with Bax (red), and
celld nuclei with DAPI (blue). (B) RBPMS cell count revealed no differences among the HSP27, the
PBS, and the native group. (C) Bax+ cell counts also demonstrated no differences among the groups.
(D) The expression level of Pou4f1 (marker for RGC), investigated by RT-qPCR, was similar in the
groups. (E) The relative expression of Casp3 mRNA was significantly increased in the HSP27 group
as compared with the native group (p = 0.003) and the PBS group (p = 0.042). (F) Via RT-qPCR, an
increase in Casp8 mRNA expression was detected in HSP27 retinae as compared with both control
groups (native: p = 0.039 and PBS: p = 0.046). (G) The mRNA expression of Casp9 was also increased
in HSP27 animals as compared with the native group (p = 0.024) and PBS group (p = 0.029). Scale bar
= 20 µm. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer. * p < 0.05 and
** p < 0.01. Immunohistology = mean ± SEM, RT-qPCR = median ± quartile + minimum/maximum.
Dashed line represents the relative expression level of the control group, solid line represents 100%.

2.3. HSP27 Could Activate the NFκB Signal Pathway

To investigate further degenerative mechanisms, the NFκB signal was investigated
by immunohistochemistry (Figure 3A) and the relative mRNA expression of NFκB (Nfκb),
protein kinase D (Prkd1), p38 (Mapk14), and serine/threonine kinase 1 (Akt1) was deter-
mined via RT-qPCR (Figure 3). Fourteen days after intravitreal HSP27 injection, more
NFκB+ cells in the GCL were noted in this group (196.3 ± 24.6%) when compared with
native (100.0 ± 16.2%, p = 0.008) and PBS retinae (121.9 ± 19.3%, p = 0.043). Both controls
had similar NFκB+ cell counts (p = 0.731, Figure 3B).
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PBS group (p = 0.017). (D) Regarding Prkd1 mRNA expression, no differences were noted. (E) The relative 
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Figure 3. Increased NFκB signals after HSP27 injection. (A) Nucleus factor-kappa-light-chain-
enhancer of activated B cells (NFκB, green) and DAPI (blue) were stained on retinal cross-sections.
(B) More NFκB signals were noted in the HSP27 group than in the native (p = 0.008) and PBS group
(p = 0.043). (C) The relative NfκB mRNA expression level in the HSP27 group was increased as
compared with the native group (p = 0.049) and PBS group (p = 0.017). (D) Regarding Prkd1 mRNA
expression, no differences were noted. (E) The relative Mapk14 mRNA expression level in HSP27
retinae was similar as compared with both control groups. (F) Analysis of relative Akt1 mRNA
expression revealed no differences among the groups. Scale bar = 20 µm. GCL, ganglion cell layer;
IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer. * p < 0.05 and
** p < 0.01. Immunohistology = mean ± SEM, RT-qPCR = median ± quartile + minimum/ maximum.
Dashed line represents the relative expression level of the control group, solid line represents 100%.

The RT-qPCR results were in accordance with histological data. The HSP27 group
displayed a significantly higher expression of Nfκb mRNA expression than the native
(1.7-fold expression, p = 0.049) and PBS group (2.0-fold expression, p = 0.017; Figure 3C).
In contrast, the relative expression of Prkd1 was comparable in all three groups (HSP27
vs. native: 0.9-fold expression, p = 0.455 and HSP27 vs. PBS: 1.0-fold expression, p = 0.905,
Figure 3D). The relative Mapk14 mRNA expression level in HSP27 retinae was also similar
to both control groups (HSP27 vs. native: 0.7-fold expression, p = 0.103 and HSP27 vs.
PBS: 1.0-fold expression, p = 0.859, Figure 3E). Likewise, the analysis of relative Akt1
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mRNA expression revealed no differences between the groups (HSP27 vs. native: 0.8-fold
expression, p = 0.378 and HSP27 vs. PBS: 1.4-fold expression, p = 0.444, Figure 3F).

2.4. Increased Microglia/Macrophages and T-Cell Number in Retinae through HSP27

We used the antibody Iba1, which labels the whole microglia/macrophage popula-
tion [18], and ED1, which labels activated microglia/macrophages, for staining (Figure 4A).
At day 14, the number of microglia/macrophages in the HSP27 group (180.0 ± 26.3%)
was increased as compared with the native (100.0 ± 9.7%, p = 0.015) and the PBS group
(104.6 ± 15.1%, p = 0.022, Figure 4B). The native and the PBS group showed no differences
(p = 0.982). The number of active microglia/macrophages doubled in the HSP27 group
(14.6 ± 8.6%) as compared with the native group (5.3 ± 4.8%, p = 0.013) and the PBS group
(6.7 ± 2.8%, p = 0.034). Both controls displayed similar numbers of ED1+ and Iba1+ cells
(p = 0.988, Figure 4C).
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Figure 4. Intravitreal HSP27 injection induced microglia/macrophage and T-Cell response. (A) Mi-
croglia/macrophages (Iba1, red) in an active state (ED1, green, arrows) were marked on retinal cross-
sections. DAPI (blue) was used to visualize cell nuclei. (B) HSP27 increased the number of microglia
(native, p = 0.015 and PBS, p = 0.022). (C) In HSP27 retinae, a higher number of ED1+ and Iba1+ cells was
noted as compared with both controls (native: p = 0.013 and PBS: p = 0.034). (D) CD3+ T-cells (green)
and cell nuclei (DAPI, blue) were stained in retinae. (E) More T-cells were counted in HSP27 retinae
than in both controls (native: p = 0.008 and PBS: p = 0.015). Scale bar = 20 µm. GCL, ganglion cell layer;
IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear
layer. * p < 0.05 and ** p < 0.01. Immunohistology = mean ± SEM. Solid line represents 100% cells.
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Recently, it was speculated whether the increased concentration of HSP27 in glaucoma
patients leads to a specific immune response. First investigations showed that high HSP27
concentrations caused a reaction of the T-cells [14]. Hence, retinal T-cells were stained with
the marker CD3 (Figure 4D). Overall, only a few T-cells could be detected in the entire
retina. However, cell counts revealed differences among the groups. At day 14, the HSP27
group revealed more T-cells (335.3± 62.9%) than the native group (100.0± 22.1%, p = 0.008)
or the PBS one (127.3 ± 45.9%, p = 0.015, Figure 4E). No difference was noted between the
PBS and native group (p = 0.919).

2.5. Unaltered HSP25 and NFκB Signals in Optic Nerves

The HSP27 signal was also histologically examined with an antibody against the
rodent homologue HSP25 in the optic nerve (Figure 5A). Interestingly, the evaluation of
the percentage area of labelled HSP25 did not show any significant differences among
the HSP27 optic nerves (22.5 ± 3.7%), the native animals (19.5 ± 1.6%, p = 0.769), and the
PBS group (20.7 ± 3.5%, p = 0.904). In addition, between the PBS and native groups no
differences were noted (p = 0.962, Figure 5B).
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Figure 5. Constant HSP25 expression and unchanged NFκB signal in the optic nerve. (A) HSP25 (green),
NFκB (red), and cell nuclei (DAPI, blue) were labeled on optic nerve longitudinal sections. (B) The
evaluation of the percentage area of the HSP25 signals showed no differences among the three groups.
(C) The counting of the NFkB+ signals also showed no differences among the groups. Scale bar = 20 µm.
Immunohistology = mean ± SEM. Solid line represents 100% cells.

In addition, NFκB was histologically examined in the optic nerve, since it is an
important transcription factor (Figure 5A). The number of NFκB+ cells was equal in all
three groups (native: 100.0 ± 6.9%, PBS: 108.9 ± 10.7%, and HSP27: 102.1 ± 5.8%, HSP27
vs. native: p = 0.982, HSP27 vs. PBS: p = 0.822, and PBS vs. native, p = 0.719, Figure 5C).
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2.6. Increased Apoptosis Rate in the Optic Nerve

The neurofilament of optic nerves was stained with SMI-32 (Figure 6A). No differences
among the PBS group (1.1± 0.1 mean score), the HSP27 group (1.3± 0.2 mean score), and the
native group (1.1 ± 0.1 mean score) were detected regarding the SMI-32 score (PBS vs. native:
p = 0.972, HSP27 vs. native: p = 0.223, and HSP27 vs. PBS: p = 0.153, Figure 6B).
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Figure 6. The optic nerves show an increased rate of apoptosis after HSP27 injection. (A) The antibody
against SMI-32 (green) was applied to identify the neurofilaments in the optic nerve. Cleaved caspase 3
(red) was used to detect apoptotic cells and cell nuclei were stained with DAPI (blue). (B) Fourteen days
after HSP27 injection, no effects on the neurofilament were noted via SMI-32 scoring. (C) The number of
DAPI+ cell nuclei did not change significantly. (D) The cleaved caspase 3 cell count revealed an increase
of apoptotic cells in the HSP27 group as compared with the native group (p < 0.001) and PBS group
(p < 0.001). Scale bar = 20 µm. *** p < 0.001 and immunohistology = mean± SEM. Solid line represents
100% cells.

Apoptotic cells were investigated in the optic nerve via immunohistochemistry using
a cleaved caspase 3 antibody (Figure 6A). To determine the number of degenerated cells in
the optic nerve, DAPI+ cells, as well as cleaved caspase 3+ and DAPI+ cells, were counted.
The number of nuclei was slightly, but not significantly reduced in the optic nerves of the
HSP27 group (78.9 ± 3.6%) as compared with the native group (100.0 ± 6.7%, p = 0.061)
and the PBS group (99.2 ± 7.5%, p = 0.074). No difference could be seen between the
native and the PBS groups (p = 0.995, Figure 6C). In contrast, the number of apoptotic cells
was significantly higher in the HSP27 group (2.7 ± 0.4%) as compared with the native
(0.3 ± 0.1%, p < 0.001) and the PBS optic nerves (0.7 ± 0.3%, p < 0.001). Native and PBS
optic nerves demonstrated similar, low numbers of apoptotic cells (p = 0.633, Figure 6D).
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2.7. Constant Number of Microglia/Macrophages and T-Cells in the Optic Nerves

Microglia/macrophages, as well as activated microglia/macrophages, were also visu-
alized in the optic nerve (Figure 7A). The counting of the Iba1+ signals showed no differ-
ences among the groups (native: 100.0 ± 10.4%, PBS: 91.8 ± 6.1%, HSP27: 105.0 ± 5.2%,
HSP27 vs. native: p = 0.889, HSP27 vs. PBS: p = 0.454, and PBS vs. native: p = 0.732,
Figure 7B). The number of ED1+ and Iba1+ signals was also statistically equal in the native
(9.1 ± 1.4%), the PBS (9.1 ± 1.4%), and the HSP27 (12.9 ± 3.3%) groups (PBS vs. native:
p = 1.000, HSP27 vs. native: p = 0.469, and HSP27 vs. PBS: p = 0.459, Figure 7C).
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Figure 7. Constant number of microglia/macrophages and T-cells in the optic nerve. (A) Mi-
croglia/macrophages (Iba1, green) and microglia/macrophages in active state (ED1, red), as well as nu-
clei (DAPI, blue), were marked in the optic nerve. (B) The number of microglia/macrophages was com-
parable in all groups. (C) Likewise, no differences among the native group, the PBS group, and the HSP27
group could be observed regarding to the number of activated microglia/macrophages. (D) T-cells (CD3,
green) and nuclei (DAPI, blue) were stained in the optic nerve. (E) Evaluation of the CD3+ signals showed
no significant differences among the groups. Scale bar = 20µm. Immunohistology = mean ± SEM. Solid
line represents 100% cells.
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The number of CD3+ T-cells was examined in the optic nerve (Figure 7D). Only very
few positive signals could be detected. Counting of CD3+ signals revealed no differ-
ences among the native group (100.0 ± 40.0%), the PBS group (114.3 ± 48.3%), and the
HSP27 group (128.6 ± 50.4%, PBS vs. native: p = 0.974, HSP27 vs. native: p = 0.902, and
HSP27 vs. PBS: p = 0.974, Figure 7E).

3. Discussion

HSP27 is a small chaperone and is considered to be a protective protein in the intracel-
lular environment. The extracellular mode of action of HSP27 has only been investigated in
a few cases. In this study, we demonstrated that extracellular HSP27 induced degenerative
signaling pathways, including caspase activation, hence, leading to cell death.

3.1. Endogenous HSP as a Response to Stress

Fourteen days after intravitreal HSP27 injection, the HSP response in retinae and optic
nerves was examined. Many neuronal diseases result in an increased intracellular expres-
sion of HSPs. Since these diseases are often accompanied by an accumulation of insoluble
protein aggregates or amyloid fibrils in neurons or glial cells, it is assumed that HSP27 is
increasingly expressed to reduce this accumulation. For example, neurons of Alzheimer’s
patients display a colocalization of Lewy’s bodies and HSP27 [19]. Many other studies also
point to a stress-dependent induction of HSP27 [20–23]. Therefore, the increased protein
and mRNA concentration of endogenous HSP27, in our study, suggests that intravitreal
HSP27 injection exerted a form of stress on retinal cells. The reaction appeared to be
concentrated in the GCL, as elevated HSP25+ signals were detected histologically mainly
in this layer. This was consistent with other studies that found elevated levels of HSP27
in the GCL of rodents with glaucomatous damage, optic nerve injury, or induced retinal
damage [12,13,24]. After closer analysis, the astrocytes appeared to be associated with
HSP27 in our study. This is in accordance with investigations in eyes from an experimental
rat glaucoma model and the DBA/2J mice. There, it was shown that increased HSP27
and phosphorylated HSP27 occurred mainly in glial cells [25]. Considering gene level, the
expression of HSP27 was enhanced while the analysis of HSP70 presented no differences
among the groups. Furthermore, the expression of HSP90 seemed to be increased as well.
Therefore, intravitreal injection of HSP27 seems to induce endogenous expression of HSPs
in the retina. Possibly this is a response to the degenerative signaling pathways. Interest-
ingly, we could not detect an increased HSP27 expression in the optic nerve. Therefore, the
optic nerve does not seem to be exposed to the same stress response from HSP27 injection.

3.2. Activation of Caspase-Dependent Cell Death

In a previous study, it was demonstrated that intravitreal HSP27 injection led to a
loss of retinal ganglion and amacrine cells after 21 days [17]. However, no degenerative
signaling pathways or apoptotic signals were identified at that time. For this reason,
RGCs and apoptotic signaling pathways were studied at an earlier stage, i.e., 14 days
after injection, in the current study. Interestingly, after 14 days, no effects on RGCs were
detected, cell counts were comparable in the three groups. This is in contrast to intravitreal
injections of other proteins. For example, the injection of S100B induced the loss of RGCs
and amacrine cells after 14 days [26]. Likewise, the intravitreal injection of N-methyl-D-
aspartate (NMDA) or glutamate caused a rapid degeneration of the RGCs already after
2–3 days [27,28]. The reason for the different times of degeneration lies in the mode of
action of the injected substances. Intravitreally injected NMDA or glutamate mediates
a rapid response and receptor mediated cell death by excitotoxicity [29]. The mode of
action of extracellular HSP27 is still largely unknown. However, there are studies that have
described HSP27 as an extracellular signaling molecule. Some membrane receptors for
extracellular HSP could be identified. These include cluster of differentiation (CD) CD91,
CD40, CD36, CD14, TLRs, and scavenger receptor-A (SR-A) [30]. In human microvascular
endothelial cells, TLR3 has been identified as the receptor targeted by HSP27, which led
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to activation of NFκB and secretion of interleukin 8 and vascular endothelial growth
factor [31]. Although not much is known about apoptotic signaling pathways related to
extracellular HSP27, our investigations suggest that extracellular HSP27 can induce both
intrinsic and extrinsic apoptosis, since mRNA levels of both Casp8 and Casp9 were elevated.
Possibly, the injection of HSP7 also led to a TLR binding. Depending on the TLR, different
signaling pathways can lead to apoptosis. For example, the binding to TLR2 leads to the
recruitment of caspase 8 via several signaling pathways, which in turn leads to cleaved
caspase 3 inducing apoptosis [32]. TLR3-initiated apoptosis seems to be mainly triggered
by caspase 8 and carried out by caspase 3 [33]. It is also possible that the extrinsic and
intrinsic apoptosis signaling pathways influence each other. Activated caspase 8 is able to
cleave BH3 interacting-domain death agonist (BID), a pro-apoptotic member of the Bcl-2
family. After cleavage, shortened BID translocates from the cytoplasm into mitochondria
and promotes cytochrome c release, which leads to caspase 9 activation, and finally induces
apoptosis [34]. In addition, shortened BID and the simultaneous initiation of the intrinsic
and extrinsic apoptosis pathway was detected in the glaucomatous eyes of an experimental
rat glaucoma model [35]. This indicates that both apoptotic signaling pathways might be
activated in glaucoma.

In this intravitreal HSP27 injection model, neuronal degeneration also seems to occur
by activation of intrinsic and extrinsic apoptosis pathways. The HSP27 injection led to an
increased mRNA expression of Casp 3, 9, and 8. In addition, a higher number of cleaved
caspase 3+ cells, was demonstrated in the optic nerve. Other apoptosis-regulating factors
such as Bax, p38 (Mapk14), protein kinase D (Prkd1), and serine/threonine kinase 1 (Akt1)
were not altered at the time of investigation. The activation of caspases via a yet unknown
receptor, therefore, is the likely major trigger for retinal degeneration in this intravitreal
HSP27 injection model (Figure 8).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 13 of 20 
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Figure 8. Summary of the degenerative mechanisms. HSP27 might act as an extracellular signaling
molecule and binds to a receptor. As a result, intrinsic and extrinsic apoptotic mechanisms are acti-
vated. The NFκB pathway could also be activated. In addition, an increase in microglia/macrophages
as well as T-cells can be observed in the retina.

3.3. NFκB Activation and Induction of an Immune Response

In addition to the increased level of caspases, immunological components after HSP27
injection were also investigated. It could be demonstrated that, regarding mRNA and
protein level, more retinal NFκB, a specific transcription factor, which is important for
the regulation of immune response, was detected. Therefore, HSP27 injection could also
induce NFκB activation. As mentioned before, this could also be induced by an interaction
between HSP27 and TLR, since NFκB activation by TLR bonding was already detected in
other models [9,31]. In any case, the activation of NFκB leads to NFκB migration into the
cell nucleus, where it induces a variability of proinflammatory processes [36]. One result
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of this altered transcription may be the observed activation of microglia/macrophages.
NFκB is considered to be a key transcription factor of M1 macrophages and is required for
the induction of a large number of inflammatory genes, including those encoding TNF-α,
IL-1β, and IL-6 [37]. This could cause more microglia/macrophages to proliferate and
activate in the retina. The observed response of microglia/macrophages in the retina could
additionally contribute to neuronal damage. The negative characteristics of an uncontrolled
microglial response were already observed in many other glaucoma models, this included
the DBA/2J mouse model, where a microglial reaction was observed before the neuronal
damage occurred [38]. In addition, in a model of ocular hypertension, microglia reactions
in the retina, optic nerve, and optic tract have been noted [39].

Another interesting function of NFκB is the regulation of inflammatory response.
NFκB can mediate the induction of various proinflammatory genes, and also regulate the
activation, differentiation, and effector function of inflammatory T-cells [40,41]. In recent
years, it has been speculated whether elevated HSP27 levels induce an immune response in
glaucoma. Tezel et al., twenty years ago, postulated that long-lasting HSP expression could
promote an immune response [11]. Examination of CD3+ T-cells demonstrated very few
specific signal bindings in our study, but cell counts demonstrated more T-cells in HSP27
retinae. This could indicate that if the extracellular concentration of HSP27 is increased and
lasts longer, an immune response against HSP27 may occur. Speculations about this have
been published earlier, as glaucoma patients displayed elevated antibody titers against
HSP27 and other HSPs [42–44]. Nevertheless, further studies are needed to pursue and
possibly confirm this theory.

It should also be noted that the observed degenerative mechanisms appear to be in
the retina rather than in the optic nerve. Activation of the NFkB signaling pathway, as
well as microglia/macrophage response and T-cell recruitment, were not observed in the
optic nerve. It is possible that the injected HSP27 is degraded so quickly that it has no
effect on cells located further away in the optic nerve. The increased caspase 3 signal and
the degeneration of the neurofilament observed after 21 days could be a consequence of
the degenerative mechanisms in the retina [17]. It should be noted that only one HSP27
dosage (0.4 µg) was tested. Since we already used 0.4 µg HSP27 in a previous study,
this was necessary for reasons of comparability [17]. We were previously able to observe
neuronal degeneration 21 days after intravitreal HSP27 injection, in this study, we detected
an activation of the intrinsic and extrinsic apoptosis pathway. Still, the investigation of
higher HSP27 concentrations and a possible dose-dependent effect are aspects that still
need to be analyzed in further studies.

4. Materials and Methods
4.1. Animals

All experiments concerning animals were carried out in accordance with the ARVO State-
ment for Use of Animals in Research and approved by the animal care committee of North Rhine-
Westphalia (Germany, approval number 84-02.04.2013.A442, permission date 11 February 2014).
In our study, 26 male Wistar rats (376–400 g, Charles River, Sulzfeld, Germany) were used. All
animals were kept on a light-dark cycle (12 h/12 h) and an unlimited access to food and water
was guaranteed. Health checks were performed regularly.

4.2. Intravitreal HSP27 Injection

The intravitreal injections of HSP27 or PBS were performed, as previously described [26].
Briefly, rats were anesthetized (ketamine, 50 mg/mL, Ratiopharm (Ulm, Germany) and
xylazine, 2% (Bayer Health Care, Leverkusen, Germany). A mydriatic (Tropicamid 5 mg/mL,
Stulln, Germany) was used to dilate the pupils. To perform the intravitreal injection, eyes
were treated with a local anesthetic (Conjuncain 4 mg/mL, Bausch & Lomb, Berlin, Germany).
With a 32-gauge needle (Hamilton, Reno, NV, USA), 2 µL of 0.2 µg/µL HSP27 solution (dose
per eye 0.4 µg, AtGen, Yatap-dong, Korea) or 2 µL PBS (Biochrom GmbH, Berlin, Germany)
were injected under a stereomicroscope (Zeiss, Oberkochen, Germany) in one eye per animal.
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To avoid damage to the eye an antibiotic ointment (Floxal, Bausch & Lomb, Berlin, Germany)
was applied afterwards. The corresponding eye remained untreated.

4.3. Preparation of Retina and Optic Nerve

After 14 days, eyes (n = 13/group) and optic nerves (n = 8/group) were explanted.
Five retinae were frozen directly at −80 ◦C for later quantitative real-time PCR (RT-qPCR)
analysis. The other organs were prepared for retinal cross-sections (n = 8/group) or
longitudinal optic nerve (n = 8/group) sections, as previously described [17]. The organs
were fixed in 4% paraformaldehyde (eyes for 1 h and optic nerves for 2 h, Merck, Burlington,
MA, USA), cryo-conserved in 30% sucrose overnight, and frozen embedded in NEG-50
Tissue Tek medium (Thermo Fisher Scientific, Waltham, MA, USA). The retina cross-
sections (10 µm) and longitudinal optic nerve sections (4 µm) were attached on glass
slides (Superfrost Plus, Thermo Fisher Scientific), fixed in ice-cold acetone, and used for
immunohistological staining.

4.4. Specific Immunohistological Stainings of Retina and Optic Nerve

Immunofluorescence stainings were performed on retinal cross-sections (6 sections/
animal, n = 8/group) and longitudinal optic nerve sections (6 sections/animal,
n = 8/group) [45]. The advantage of immunohistological staining is that in addition
to a quantitative evaluation of the signals, the localization of the investigated proteins and
structures can also be determined. All sections were blocked with a mixture of a 10–20%
serum, 0.1–0.2% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) and PBS (ChemCruz,
Dallas, TX, USA). Sections were treated over night with primary antibodies (Table 1) di-
luted in the same block solution. The next day, Cy3/Alexa Fluor 555 or Alexa Fluor 488
labeled secondary antibodies (Table 1) were applied. Cell nuclei were visualized with 4′,6-
diamidin-2-phenylindole (DAPI, Serva Electrophoresis, Heidelberg, Germany). Finally, the
sections were covered with Shandon-mount (Thermo Fisher Scientific). Negative controls
were performed by applying only the secondary antibody.

A directly labeled antibody was used for CD3 staining of T-cells. Hence, after the CD3
antibody was applied to the sections, an overnight incubation took place. On the next day,
the nuclei were stained with DAPI.

Four images per retina (two peripheral and two central) and three per optic nerve
(proximal, middle, and distal) were taken using a fluorescence microscope (Axio Imager
M2, Carl Zeiss Microscopy) with a Zeiss objective lens (40× and 20×) [45,46] and an
Axiocam HRc CCD camera (Zeiss). The recording software used was ZEN 2012. All images,
except the CD3 staining, were taken at 400×magnification. For CD3 staining, the images
were taken at 200×magnification, since signals were counted in all retinal layers. RBPMS+,
NFκB+, CD3+, and cleaved caspase 3+ cells were counted in masked pictures if these signals
matched DAPI signals. In regard to ED1, the co-localization with Iba1 was evaluated in
the GCL and inner plexiform layer (IPL). Bax+ signals were also counted in co-localization
with RBPMS+ signals. NFκB+ signals were also counted in the GCL. All cells were counted
using ImageJ software (V 1.53, NIH).

To analyze the endogenous HSP27 in the retina and optic nerve, an HSP25 antibody
was used, as this is the rodent homologue to human HSP27. HSP25 signals in retina
and optic nerve were investigated via area analysis using an ImageJ macro [45]. For
this analysis, all retina images were converted into 32-bit gray scale. After background
subtraction (48.79), the lower threshold was set at 20.9 and upper threshold at 23.6. In the
optic nerve, the background of 49.7 was subtracted, while the lower threshold was set at
57.7 and the upper one at 6.5.

SMI-32 labeled optic nerve neurofilaments were scored using an established scoring
system ranging from 0 = intact up to 2 = destroyed, in 0.5 intervals [45]. The figures
presented were created with the help of the CorelDRAW software (V: 2018, 64-bit, Corel
Corporation, Ottawa, ON, Canada).
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Table 1. Primary and secondary antibodies used for immunohistochemistry.

Primary Antibodies Secondary Antibodies

Name and host Company Dilution Name Company Dilution
Retinal Cross-sections

Bax (rabbit) Abcam 1:100 Donkey anti-rabbit Alexa Fluor 555 Abcam 1:400
CD3-FITC (directly labeled antibody, mouse) BD Biosciences 1:1000 − − −

ED1 (mouse) Millipore 1:250 Goat anti-mouse Alexa Fluor 488 Invitrogen 1:400
GFAP (chicken) Millipore 1:400 Donkey anti-chicken Cy3 Millipore 1:500
HSP25 (rabbit) Enzo Life Sciences 1:100 Donkey anti-rabbit Alexa Fluor 488 Jackson ImmunoResearch 1:500

Iba1 (rabbit) Wako 1:500 Goat anti-rabbit Cy3 Linaris 1:300
NeuN (chicken) Millipore 1:500 Donkey anti-chicken Cy3 Millipore 1:500
NFκB (rabbit) Santa Cruz 1:500 Goat anti-rabbit Alexa Fluor 488 Invitrogen 1:500

RBPMS (guinea pig) Millipore 1:250 Donkey anti-guinea pig Alexa 488 Jackson ImmunoResearch 1:400
Longitudinal Optic NerveSections

CD3-FITC (directly labeled antibody, mouse) BD Biosciences 1:100 − − −
Cl. caspase3 (rabbit) Sigma-Aldrich 1:300 Donkey anti-rabbit Alexa Fluor 555 Invitrogen 1:400

ED1 (mouse) Millipore 1:200 Goat anti-mouse Alexa Fluor 555 Invitrogen 1:500
HSP25 (rabbit) Enzo Life Sciences 1:100 Donkey anti-rabbit Alexa Fluor 488 Jackson ImmunoResearch 1:500

Iba1 (rabbit) Wako 1:400 Goat anti-rabbit Alexa Fluor 488 Invitrogen 1:500
SMI-32 (mouse) Biolegend 1:2000 Goat anti-mouse Alexa Fluor 488 Invitrogen 1:400
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4.5. Quantitative Real-Time PCR Analysis of Retinal Tissue

For RNA isolation, the retinae (n = 5/group) were dissected from the eyes and directly
frozen at−80 ◦C. The Gene Elute Mammalian RNA Miniprep Kit (Sigma-Aldrich) was used
for RNA extraction and purification. Then, 1 µg RNA was used for reverse transcription
with a cDNA synthesis kit (Thermo Fisher Scientific). The RT-qPCR experiments were
performed in a PikoReal 96 real-time PCR system (Thermo Fisher Scientific) using SYBR
Green. The designed oligonucleotides for RT-qPCR are presented in Table 2. The genes
Actb (Actin, beta) and Ppid (Cyclophilin) served as reference genes.

Table 2. List of oligonucleotides used for mRNA expression analysis in retinae.

Gene Primer Sequence GenBank Accession Number

Actb-F cccgcgagtacaaccttct
NM_031144.3Actb-R cgtcatccatggcgaact

Akt1-F gacgtagccattgtgaaggag
NM_033230.2Akt1-R ccatcattcttgaggaggaagt

Casp3-F ccgacttcctgtatgcttactcta
NM_012922.2Casp3-R catgacccgtcccttgaa

Casp8-F agagcctgagggaaagatgtc
NM_022277.1Casp8-R tcacatcatagttcacgccagt

Casp9-F cgtggtggtcatcctctctc
NM_031632.1Casp9-R gagcatccatctgtgccata

Hspb1-F gaggagctcacagttaagaccaa
NM_031970.4Hspb1-R ttcatcctgcctttcttcgt

Hspb70-F catatccaatatctttgaggtgga
XM_017601842.1Hspb70-R tggggaagacttcacagtca

Hsp90aa1-F gggagctcatttccaactcc
NM_175761.2Hsp90aa1-R gggttcggtcttgcttgtt

Mapk14-F gaacttcgcaaatgtatttattggt
NM_031020.2Mapk14-R cgagtccaaaaccagcatc

Nfκb-F ctggcagctcttctcaaagc
NM_001276711.1Nfκb-R caggtcatagagaggctcaa

Pou4f1-F ctggccaacctcaagatcc
XM_008770931Pou4f1-R cgtgagcgactcgaacct

Ppid-F tgctggaccaaacacaaatg
M19553.1Ppid-R cttcccaaagaccacatgct

Prkd1-F tgctccttcaggactcctct
NM_001276715.1Prkd1-R gaagccacattcagggaact

4.6. Statistical Analysis

The immunohistological cell counts of the native group were set to 100% and compared
to the HSP27 and the PBS group. The immunohistological data were analyzed using
Statistica software (Version 13.3, Dell, Round Rock, TX, USA) using one-way ANOVA
followed by Tukey post-hoc test and presented as mean ± standard error mean (SEM)
with * p < 0.05, ** p < 0.01, and *** p < 0.001. In regard to RT-qPCR analyses, the relative
expression values are presented as median± quartile + minimum/ maximum. The analysis
of relative expression was performed by the Pair Wise Fixed Reallocation Randomization
Test © using REST © software (Qiagen, Hilden, Germany).

5. Conclusions

In summary, intravitreally injected HSP27 affected primarily the retina. There, it led
to an increased level of caspases 3, 8, and 9 after 14 days, which suggested the involvement
of the intrinsic and extrinsic apoptosis pathway. In addition, an activation of retinal NFκB



Int. J. Mol. Sci. 2021, 22, 513 17 of 19

was noted, which induced a probable reaction of microglia/macrophages. First indications
of an immune response were also observed via an increased number of retinal T-cells
(Figure 8). The damage in the optic nerve seemed to be mostly a consequence of retinal
damage, as hardly any degenerative mechanisms had been observed in the optic nerve at
the analyzed point in time.
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