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Abstract: MicroRNAs (miRNAs) are a class of ~22 nt non-coding RNA molecules in metazoans
capable of down-regulating target gene expression by binding to the complementary sites in the
mRNA transcripts. Many individual miRNAs are implicated in a broad range of biological path-
ways, but functional characterization of miRNA clusters in concert is limited. Here, we report
that miR-959–962 cluster (miR-959/960/961/962) can weaken Drosophila immune response to bac-
terial infection evidenced by the reduced expression of antimicrobial peptide Drosomycin (Drs)
and short survival within 24 h upon infection. Each of the four miRNA members is confirmed to
contribute to the reduced Drs expression and survival rate of Drosophila. Mechanically, RT-qPCR
and Dual-luciferase reporter assay verify that tube and dorsal (dl) mRNAs, key components of Toll
pathway, can simultaneously be targeted by miR-959 and miR-960, miR-961, and miR-962, respec-
tively. Furthermore, miR-962 can even directly target to the 3′ untranslated region (UTR) of Toll.
In addition, the dynamic expression pattern analysis in wild-type flies reveals that four miRNA
members play important functions in Drosophila immune homeostasis restoration at the late stage
of Micrococcus luteus (M. luteus) infection. Taken together, our results identify four miRNA mem-
bers from miR-959–962 cluster as novel suppressors of Toll signaling and enrich the repertoire of
immune-modulating miRNA in Drosophila.

Keywords: miR-959–962 cluster; Toll pathway; Toll; tube; dl; Drosophila melanogaster

1. Introduction

For the host, an appropriate immune response is essential to resist various pathogenic
microorganisms and maintain the immune homeostasis. However, uncontrolled immune
response would be detrimental to the host, eventually leading to the acute and chronic
inflammatory disorders [1]. Determined by the speed and the specificity of the reaction, the
innate and the adaptive immunities are vital for animal’s survival [2]. While invertebrates,
such as Drosophila melanogaster, rely exclusively on innate immunity, as the first-line defense
against microbial invaders [3,4]. The response of the flies to bacterial and fungal infections
involves two main evolutionary conserved signaling pathways, Toll and immune deficiency
(Imd) [5,6] which have been well-established. Upon systemic Gram-positive bacterial or
fungal infection via septic injury, the Toll pathway is triggered, which involves extracellular
proteolytic cascades activated by secreted recognition molecules (PGRP-SA, PGRP-SD,
GNBP1, and GNBP3) [7–11]. Next, the transmembrane receptor Toll is activated and
dimerized by the mature proteolytic product Spätzle [12–15], which subsequently causes
the recruitment of three intracellular Death domain–containing proteins, MyD88, Tube,
and Pelle [16–18]. Then the IκB homologue Cactus is phosphorylated and degraded by the
proteasome, leading to the release of members of the nuclear factor NF-κB family (Dif or
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Dorsal) to translocate to the nucleus [19–21], and activation of genes encoding potent anti-
fungal and anti-bacterial peptides, such as Drosomycin [7,22,23]. In addition, in response
to Gram-negative bacterial infection, the Imd pathway is activated, eventually resulting
that another Drosophila NF-κB family member Relish moves from the cytoplasm to the
nucleus, and the expression of antimicrobial peptide (AMP) genes, such as Diptericin [22,24].
Therefore, the Toll and Imd immune pathways work together and constitute a robust
defense system that protects Drosophila from invading pathogens [5].

The inactivation or overactivation of the immune response could lead to the damage
of the normal tissue. Therefore, the activation and termination of the Toll pathway require
the cooperation of various molecules at multiple stages to establish a complete immune
regulatory system. At present, kinds of modulators have been identified to be involved
in Toll pathway regulation. For example, five serine proteases (ModSP, Grass, Spirit,
Spheroide, and Sphinx1/2), are considered as essential for host resistance to fungal and
Gram-positive infection, which play a vital role in the extracellular proteolytic cascades
linking the signaling recognition proteins and Spz [25,26]. In addition, a highly conserved
protein Pellino, has shown to act as a positive regulator of Toll signaling by interacting
with activated Pelle kinase [27]. Furthermore, in a genome-wide RNAi screens in S2
cells, G Protein-coupled receptor kinase 2 (Gprk2) was identified as a regulator of the Toll
pathway [28], and the transcription factor DEAF-1 is confirmed to be required to induce Toll
pathway target genes at or downstream of Dif/Dorsal [29]. Lastly, a feedback inhibitor is
WntD, which reduces Toll activity by preventing translocation of Dorsal to the nucleus [30].

In addition to the above-mentioned protein regulatory factors, recently, growing
evidences have exhibited that miRNA controls are a critical regulator in the immune
response process via Toll pathway [31]. miRNAs could fine tune gene expression in
diverse cellular and biological processes, through perfect or imperfect base-pairing to the
3′ UTR of the target mRNAs, resulting in cleavage or degradation of the target mRNAs
or suppression of their translation [32,33]. For example, the transmembrane receptor Toll
protein is a crucial factor connecting extracellular and intracellular signals, and it has been
reported that miR-8 [34] and miR-958 [35] can target the 3′ UTR of its mRNA to negatively
modulate the Toll pathway. Moreover, the nuclear translocation of the transcription factor
Dif or Dorsal and its activation of AMP expression are an indispensable step of the Toll
pathway response. miR-958 [35] and miR-317 [36] have been identified the direct binding
with the 3′ UTR of Dif-Ra/b/d and Dif-Rc transcripts, respectively, while miR-8 targets to
the Dorsal mRNA [34]. Last but not least, miR-310–313 family and miR-964 could directly
target to the AMP gene Drosomycin to inhibit its expression [37,38]. Although several
regulators involved in Drosophila Toll-mediated immune response have been identified,
the restoration mechanism of Drosophila immune homeostasis is still largely unknown and
needs for further research.

Especially, in our previous work, we found that the high-expression of four members
of this miR-959–962 cluster could significantly down-regulate Drs expression via RNA-seq
analysis and multiple genetic screening works [37]. Whether Drosophila miR-959–962 cluster
members can synergistically repress Toll signaling to stop an overactive immune response,
which is still not clear. In this study, we further investigated the regulatory mechanism
of miR-959–962 cluster in the Drosophila immune response to bacterial infection. Each in-
dividual miRNA from the miR-959–962 cluster could reduce the survival rate of flies via
inhibiting the expression of AMP Drs. Bioinformatics prediction and in vitro/in vivo ex-
periments verified that four miRNA members (miR-959, miR-960, miR-961, and miR-962)
could negatively regulated the Toll pathway in combination via directly targeting the 3′

UTR of tube, dl, or Toll mRNA. In addition, the dynamic expression pattern analysis demon-
strated that four miRNA members were up-regulated at the late stage of M. luteus infection,
revealing their important functions in the immune homeostasis restoration of Drosophila.
Overall, our results have clarified that four miRNA members from miR-959–962 cluster are
novel negative regulators in Drosophila Toll-mediated immune homeostasis restoration and
their aberrant expression seriously influence Drosophila antibacterial defenses.
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2. Results
2.1. The miR-959–962 Cluster Could Negatively Regulate Drosophila Toll-Related Immune Response

In order to assess the role of miR-959–962 cluster in Drosophila immune response,
we first observed whether miR-959–962 cluster dysregulation would affect the resistance
of Drosophila in response to lethal Gram-positive bacterial infection, Enterococcus faecalis
(E. faecalis). As shown in Figure 1, the flies transiently overexpressed miR-959–962 cluster
(Gal80ts; Tub > miR-959–962) under a temperature sensitive control and had a lower sur-
vival rate than the control flies (Gal80ts; Tub-Gal4/+) (Figure 1A). While the survival rate of
the flies with miR-959–962 cluster knockout (miR-959–962 KO) was obviously increased,
compared with the wild-type flies (w1118) (Figure 1B). We also confirmed the exact overex-
pression (Figure S1) and knockout (Figure S2) of each miRNA in the corresponding flies.
These results suggest that the miR-959–962 cluster could weaken Drosophila antibacterial
defense, implying a role for miR-959–962 cluster members in the negative regulation of
Toll signaling.

Figure 1. Cont.
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Figure 1. The miR-959–962 cluster negatively regulates Drosophila Toll-related immune response.
(A) The changes of the survival rate were observed both in miR-959–962 cluster high-expressing flies
(Gal80ts; Tub > UAS-miR-959–962) and the control (Gal80ts; Tub-Gal4/+) flies with E. faecalis infection.
(B) The changes of the survival rate were observed both in miR-959–962 knock-out flies (miR-959–962
KO) and the control (w1118) flies upon E. faecalis infection. The expression levels of AMP Drs were
examined in miR-959–962 cluster high-expressing flies (C) and miR-959–962 knock-out flies (D) at 0,
6 and 12 h upon M. luteus infection. (E) The green-fluorescent in miR-959–962 cluster high-expressing
flies (Drs-GFP; Gal80ts; Tub > UAS-miR-959–962, right) and the controls (Drs-GFP; Gal80ts; Tub-Gal4/+,
left) carrying with Drs-GFP reporter gene were observed under fluorescent microscope following
infection with M. luteus. (F) The green-fluorescent in miR-959–962 cluster knock-out flies (Drs-GFP;
miR-959–962 KO; w, right) and the controls (Drs-GFP; w; w, left) carrying with Drs-GFP reporter gene
were observed under fluorescent microscope following infection with M. luteus. The levels of GFP
were quantified using Image J software with the default parameters and their relative level values
were marked in the bottom right corner of the image. (* p < 0.05; ** p < 0.01; *** p < 0.001).

To further confirm the effect of miR-959–962 cluster on the Toll pathway, we monitored
the mRNA expression level of the AMP Drs, as the readout of Toll pathway activation,
in the flies with miR-959–962 cluster overexpression and knockout before and after M. luteus
infection. A significant reduction of Drs level was observed in miR-959–962 cluster overex-
pressing flies at 6 h and 12 h under bacterial challenge, compared with the corresponding
control groups (Figure 1C). On the contrary, a higher expression level of Drs was detected
in miR-959–962 KO flies than in wild-type controls (Figure 1D). Likewise, taking advantage
of a Drosomycin–green fluorescent protein (GFP) reporter fly strain (Drs-GFP), we also
observed that overexpression of miR-959–962 cluster inhibited the expression of Drs in live
flies (94%) (Figure 1E), while the knock-out of miR-959–962 cluster increased the expres-
sion of Drs in live flies (39%) (Figure 1F). Our results suggest that four members of the
miR-959–962 cluster may synergistically downregulate Toll signaling response to prevent
overactivation of immune response and maintain Drosophila innate immune homeostasis.

2.2. Each Member from miR-959–962 Cluster Plays a Negative Regulatory Role in Drosophila Toll
Pathway

To further explore the role of each miRNA individual from miR-959–962 cluster in
Drosophila Toll pathway, transgenic lines high-expressing miR-959, miR-960, miR-961 or
miR-962 separately (confirmed using RT-qPCR in Figure S3) were infected with M. luteus.
The expression levels of Drs at 6 h and 12 h post-infection were also detected by RT-qPCR.
Our result revealed that the Drs mRNA levels in the flies with miR-959 high-expression
(Gal80ts; Tub > miR-959) (Figure 2A), miR-960 high-expression (Gal80ts; Tub > miR-960)
(Figure 2B), miR-961 high-expression (Gal80ts; Tub > miR-961) (Figure 2C), or miR-962
high-expression (Gal80ts; Tub > miR-962) (Figure 2D) were significantly lower than that in
the control flies (Gal80ts; Tub-Gal4/+) post-infection, respectively. Meanwhile, the corre-
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sponding flies carrying Drs-GFP reporter also suggested a decrease in the level of Drs in
live flies upon infection (95%, 93%, 83% and 45%) (Figure 2E–G). In addition, the survival
situation of individual miRNA high-expressing flies also were observed and recorded
upon E. faecalis infection. Compared with the control groups, their survival ability was
significantly reduced (Figure 3A–D). Taken together, these results indicate that each miRNA
member from miR-959–962 cluster could inhibit the expression of AMP Drs and weaken
the resistance to pathogen, to negatively fine tune Drosophila Toll signaling.

Figure 2. Each of miRNA member from miR-959–962 cluster inhibits the expression of Drs in Drosophila Toll immune
response. The expression levels of AMP Drs were examined in miR-959 high-expressing flies (Gal80ts; Tub > UAS-miR-959)
(A), miR-960 high-expressing flies (Gal80ts; Tub > UAS-miR-960) (B), miR-961 high-expressing flies (Gal80ts; Tub > UAS-
miR-961) (C), and miR-962 high-expressing flies (Gal80ts; Tub > UAS-miR-962) (D), at 0, 6, and 12 h upon M. luteus
infection. The green-fluorescent in miR-959 high-expressing flies (Drs-GFP; Gal80ts; Tub > UAS-miR-959, middle) (E), miR-
960 high-expressing flies (Drs-GFP;Gal80ts; Tub > UAS-miR-960, right) (F), miR-961 high-expressing flies (Drs-GFP;Gal80ts;
Tub > UAS-miR-961, right) (E) and miR-962 high-expressing flies (Drs-GFP;Gal80ts; Tub > UAS-miR-962, right) (G), and the
controls (Drs-GFP; Gal80ts; Tub-Gal4/+, left) (E–G) carrying with Drs-GFP reporter gene were observed under fluorescent
microscope at 12 h upon M. luteus infection. The levels of GFP were quantified using Image J software with the default
parameters and their relative level values were marked in the bottom right corner of the image. (* p < 0.05; ** p < 0.01;
*** p < 0.001).
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Figure 3. Each of miRNA member from miR-959–962 clusters influences the survival of Drosophila. The changes of the
survival rate were observed in miR-959 high-expressing flies (A), miR-960 high-expressing flies (B), miR-961 high-expressing
flies (C) and miR-962 high-expressing flies (D), as well as the control flies upon E. faecalis infection. (* p < 0.05; ** p < 0.01;
*** p < 0.001).

2.3. The Immune-Related Genes Are Potentially Targeted by miRNA Members from miR-959–962
Cluster In Vitro

In order to further determine how miR-959/960/961/962 regulates the Toll pathway,
two algorithms, TargetScan and miRanda, were used to predict the potential target genes
of miR-959, miR-960, miR-961, or miR-962. As described in the method, the intersection
of two algorithms was acquired as the potential targets. Our results showed that miR-
959 and miR-960 could bind with the 3′ UTR of tube mRNA, which is the crucial and
indispensable effector molecule in the Toll pathway. Moreover, miR-961 and miR-962 had
the base complementary pairs with the 3′ UTR of dl mRNA, a key transcription factor that
activate the transcription of AMP genes. In addition, miR-962 also had a binding with the
3′ UTR of Toll mRNA, a transmembrane factor which transduce signals from extracellular
to intracellular. The specific base complementary binding sites are shown in Figure 4A–C.
These results suggest that miRNA members from miR-959–962 cluster may play fine-tuning
functions at different levels of Toll signals transduction.
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Figure 4. The target genes of four miRNA members from miR-959–962 clusters were predicted. The potential binding sites
of miR-959, miR-960, miR-961, and miR-962 in the 3′ UTR of tube (A), dl (B) and Toll (C) were present, respectively. The point
mutations (red) at the 3′ UTR target sites base pairing to the seed sequence of corresponding miRNA (blue) were performed.

To evaluate the direct targeting relationship between miRNAs and targets, the 3′ UTR
sequence of targets (tube, dl, and Toll) was respectively recombined to the downstream of
the luciferase encoding sequence in the pAc 5.1 insect expression vector, as shown in the
Figure 5A,D,G, and the Dual Luciferase Reporter Assay was carried out in Drosophila S2
Cell. The results showed that, compared with the pAc5.1 empty vector, both miR-959 and
miR-960 could significantly reduce the activity of the luciferase reporter containing the 3′

UTR of tube (Figure 5B,C). The expression of luciferase reporter carrying with the 3′ UTR
of dl could be markedly inhibited both miR-961 and miR-962 (Figure 5E,F). In addition,
miR-962 could lower the luciferase activity of Toll 3′ UTR report plasmid (Figure 5H).



Int. J. Mol. Sci. 2021, 22, 886 8 of 17

Figure 5. The direct bind between four miRNA members from miR-959–962 cluster and its target
genes were confirmed by Dual luciferase reporter assay in vitro. (A,D,G) The schematic diagrams
of construction of targets 3′ UTR and 3′ UTR mutation luciferase reporter plasmids were presented.
After co-transfected with miRNA expression plasmid, the corresponding luciferase activity of the
report plasmids without or with mutation sites was determined in Drosophila S2 cell on a Dual
luciferase assay (B,C,E,F,H). (** p < 0.01; *** p < 0.001; and ns, no significance vs. the control).

Furthermore, the target site mutation was performed in the 3′ UTR of tube, dl, and Toll
as showed in the Figure 5A,D,G, in which the specific base mutation information is pre-
sented in Figure 4A–C. Dual Luciferase Reporter Assay found that the reporter activity of
tube, dl, or Toll could be restored to the normal level in these cells with co-transfected the
corresponding miRNA expression vector and 3′ UTR mutant reporters of tube (Figure 5B,C),
dl (Figure 5E,F), or Toll (Figure 5H), identifying the reliability of the predicted target sites.
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Taken together, our in-vitro results suggest that miR-962 could directly target the 3′

UTR of Toll, miR-959, and miR-960 target the 3′ UTR of tube, and miR-961 and miR-962
target the 3′ UTR of dl, indicating that different miRNA members from miR-959–962 cluster
function on immunity by targeting different or identical immune-related genes.

2.4. The miR-959–962 Member Simultaneously or Serperately Target Key Components of Toll
Pathway (Tube, dl, and Toll) In Vivo

To further confirm the reliability of predicted targets of miR-959, miR-960, miR-961
or miR-962 in Drosophila, we performed RT-qPCR analysis in vivo. Our results found that,
compared with the control flies, the expression levels of tube mRNA in both miR-959 and
miR-960 high-expressing flies were significantly down-regulated upon M. luteus infection
(Figure 6A,B); Meanwhile the expression of dl mRNA in both miR-961 and miR-962 high-
expressing flies also had a lower level than the controls (Figure 6C,D); In addition, the Toll
mRNA level in miR-962 high-expressing flies was a significant reduction (Figure 6E).
These suggest the negative correlations between these four miRNAs and corresponding
targets in Drosophila.

Figure 6. Cont.
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Figure 6. Four miRNA members from miR-959–962 cluster inhibit the expression of its target genes
in vivo. The expression levels of tube were respectively tested in miR-959 high-expressing (A) and
miR-960 high-expressing flies (B). (C,D) The expression levels of dl in miR-961 high-expressing and
miR-962 high-expressing flies were respectively tested. (E) The expression level of Toll in miR-962
high-expressing flies was detected. (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.5. Dynamic Expression Patterns of miR-959–962 Cluster Members in Wild-Type Flies after
M. luteus or PBS Infection

To further explore the important role of this miR-959–962 cluster during Toll pathway
response, we monitored the dynamic expression patterns of Drs, miR-959, miR-960, miR-
961, and miR-962 in wild-type flies with M. luteus infection or PBS (control). Our results
found that the levels of Drs in the M. luteus infected flies were significantly higher than the
PBS-treated groups at 3, 6, 12, 24, 48 h, and peaked at 24 h after infection (Figure 7A). Sub-
sequently, we detected the expression levels of miR-959–962 cluster members, respectively.
We found that miR-959, miR-960, miR-961, and miR-962 (Figure 7B–E) were respectively
significantly increased in the late stage of M. luteus infection. Taken together, we pro-
pose that the miR-959–962 cluster could play a crucial role in restoring Drosophila Toll
immune homeostasis.

Figure 7. Cont.
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Figure 7. The temporal expression patterns of four miRNAs in the wild-type flies prior to and
following M. luteus infection. The dynamic expression changes of Drs (A), miR-959 (B), miR-960
(C), miR-961 (D), miR-962 (E) at six time-points (0, 3, 6, 12, 24, and 48 h) prior to and following
M. luteus or PBS infection, respectively. (* p < 0.05; ** p < 0.01; *** p < 0.001; and ns, no significance vs.
the control).

3. Discussion

Both the deficiency and overactivation of immune response are detrimental to Drosophila.
Therefore, the persistence and intensity of the immune response needs to be strictly con-
trolled to maintain the immune homeostasis [39]. At present, increasing evidences have
demonstrated that some regulators, such as miRNAs, are involved in negatively regulating
the immune signaling to prevent the over-activation of the immune response [34,40,41].
Recently, our group has performed a genome-wide miRNA screening to identify miRNAs
regulating Drosophila Toll-mediated innate immune response, employing small-RNA seq
and transgenic UAS-miRNA library [37]. Several potential miRNAs have been screened
out, followed by in-depth exploration of their regulatory mechanism [35–37]. The current
study found that the high-expression of miR-959–962 cluster in flies suppressed antibacte-
rial defenses, evidenced by lower survival rate and a significant decrease of Drs expression
in the presence of Gram-positive bacterial challenge.

Despite some reports on the contribution of single miRNA to Drosophila innate im-
mune response have emerged, there are limited reports on how cluster of miRNAs work
together. In this study, we demonstrated that each miRNA member of miR-959–962 cluster
contributed to the suppression of antibacterial defense by targeting different components
of Toll signaling pathway in a combinatory or separate manner, such as miR-959/miR-960
targeting tube, miR-961 repressing dl, and miR-962 targeting both dl and Toll. miRNA,
perfectly complementary pairing with its target genes (Figure 4), leads to the cleavage and
degradation of target mRNA to further block the expression of its protein [42,43]. Our re-
sults find that, in the flies with miR-959, miR-960, miR-961, or miR-962 high-expression,
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the corresponding target tube, dl, or Toll in mRNA level have a very significant decrease.
Therefore, although no data are available, we believe that their protein levels is also sure to
be significantly reduced.

MicroRNA clusters widely exist in metazoan genomes, employing with the diversity of
their distribution [44]. Most of clustered miRNAs are located in polycistrons and co-expressed
with adjacent miRNAs, causing the consistent expression patterns and levels [45,46]. On chro-
mosome 2, the mature miR-959–962 cluster are transcribed from an intron of CG31646 gene
and the sequence of miR-963–964 cluster are within neighboring intron in CG31646 gene.
A previous study has showed that the six miRNA members from miR-959–964 cluster are
probably encoded on a single transcription unit and showed a similar phase and ampli-
tude [47]. Moreover, it has been indicated that the miR-959–964 cluster could inhibit Drosophila
immune function against an attenuated strain of Pseudomonas aeruginosa [47]. In our study,
of note that miR-960 may execute antibacterial defense only at late 12 h stage upon infection,
while miR-959 may constantly repress the Drs expression at both 6 h and 12 h (Figure 2A,B
and Figure 3A,B). Meanwhile, miR-961 may contribute more than miR-962 to repress
antibacterial defense (Figure 2C,D; Figure 3C,D and Figure 5E,F). Therefore, we specu-
late that these miRNA of same cluster generated from the same transcripts with similar
spatial-temporal expression pattern might have varied stability of half-lives, thus play
a synergistic regulatory function on the Toll innate immunity via fine-tuning the different
layers of Toll signal transduction (Figure 8).

Remarkably, in our work, the Drs expression and survival analysis shown in Figure 1
were performed under the background of miR-959–962 cluster high-expression or knockout
flies (i.e., non-normal physiological conditions), whereas these dynamic expression patterns
of four miRNA members of miR-959–962 cluster shown in this Figure 7 were performed
under M. luteus infection and PBS treatment in the wild-type flies (i.e., normal physiological
conditions). After the high expression of miR-959–962 cluster, Drs expression was down-
regulated and the survival rate was reduced, implying that the miR-959–962 cluster played
a negative regulator role in the Toll pathway (Figure 1). Thus we suggested that under the
background of the high-expression of miR-959–962 cluster, miR-959/960/961/962 could
inhibit the expression of immune-related target genes (e.g., Toll, tube, and dl) from the
beginning of M. luteus infection, and lead to constant suppression of immune response in
Drosophila. Therefore, compared with the control group, the flies with miR-959–962 cluster
high-expression have an inadequate immune response, and its survival rate has been signif-
icantly reduced. Moreover, we analyzed the dynamic expression patterns of four miRNA
members of the miR-959–962 cluster in wild-type flies to explore the endogenous role of
miR-959/960/961/962 under normal physiological conditions, and we found that com-
pared with PBS treatment groups, all four miRNA members were significantly increased
in the late stage of M. luteus infection (Figure 7). Taken together, our results suggested
that the miR-959–962 cluster plays a negative regulatory role in the later stage of immune
response (Figure 8), i.e., in the early stage of M. luteus infection, the expression levels of
Drs keep rising, and miR-959/960/961/962 is not up-regulated for avoiding the deficiency
of immune response, but in the late stages of infection, in order to avoid the normal tissue
damage caused by over-activation of immune response, miR-959/960/961/962 serve as
negative regulators to down-regulate Drs expression to help Drosophila to restore to a new
immune homeostasis.
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Figure 8. A proposed model. Our results suggested a model in which the miR-959–962 cluster
members (red) play a synergistic regulatory function on the Toll innate immunity via fine-tuning the
different layers of Toll signal transduction. MiR-959 and miR-960 target the 3′ UTR of tube; miR-961
and miR-962 target the 3′ UTR of dl; and miR-962 also target the 3′ UTR of Toll.

In summary, our present studies have revealed the function of miR-959–962 cluster
for inhibiting AMP expression and impairing antibacterial defenses. The functions and
mechanisms of the four miRNAs from this cluster have also been identified, respectively.
Therefore, our results not only identify a new function of miR-959–962 cluster, but also
enrich the repertoire of Toll-related immune-modulating miRNA cluster in Drosophila.

4. Materials and Methods
4.1. Drosophila Stocks and Husbandry

Most flies were obtained from the Bloomington Drosophila Stock Center, includ-
ing UAS-miR-959/960/961/962 (NO.60615), UAS-miR-959 (NO.60614), UAS-miR-961
(NO.41188), miR-959/960/961/962 KO (NO.58944), except UAS-miR-960 (F001954) and
UAS-miR-962 (F001956) from FlyORF. Drosophila was raised on cornmeal-dextrose-yeast
agar medium in a light-dark (12 h cycle) incubator at 25 ◦C and 60% humidity. To re-
strict miRNA overexpression to adulthood with tubulin-Gal80ts, the flies were reared and
assayed in either 18 ◦C or 29 ◦C incubator.
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4.2. Adult Immune Challenge

Control and miRNA mutant adult male flies, aged 2–4 days, were challenged by
Micrococcus luteus (M. luteus), a widely used bacterial strain that activates the Toll-mediated
immune response to induce the expression of the AMP Drs. Flies were firstly incubated at
29 ◦C for 24 h to activate the overexpression of miRNA. Septic injury was performed by
pricking the thorax of the flies with a pulled glass capillary carrying M. luteus suspension
mounted on a Nanoject apparatus (WPI, Sarasota, FL, UAS) [48], and then the flies were
harvested at specified time points after treatment for RNA extraction and RT-qPCR. For the
survival experiment, flies were infected with Gram-positive lethal bacteria, Enterococcus
faecalis (E. faecalis), and their survival situation was monitored and recorded for 24 h
post-infection [28].

4.3. Quantitative RT–PCR Analysis

Five adult flies per sample group were collected and isolated total RNA with TRIzol
Reagent (Invitrogen, Waltham, MA, USA) according to the manufacturer’s protocol. RNA
concentration and integrity was determined respectively by spectrophotometer and agarose
gel separation. cDNA was synthesized using the HiScript® II Q RT SuperMix for qPCR
(Vazyme, Nanjing, China). Then quantitative PCR analysis was performed with the
StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) using
AceQ®qPCR SYBR Green Master Mix (High ROX Premixed) (Vazyme, Nanjing, China).
Each experiment was performed in triplicate and the comparative cycle threshold was used
to present a fold change for each specific mRNA/miRNA after normalizing to rp49/U6
snRNA levels. All primers we used in qPCR analyses are listed in Table S1.

4.4. miRNA Targets Prediction

The mature sequences of miR-959/960/961/962 and 3′ UTR sequences of all genes
in Drosophila were respectively acquired from miRBase and FlyBase database. Prediction
analysis were carried out locally through employing TargetScan [49] and miRanda [50,51]
software packages, applying their default parameters. To increase confidence and reduce
false positive of the acquired miRNA-targets, the predicted results of TargetScan and
miRanda were overlapped.

4.5. Recombinant Plasmids Generation

pAc5.1/V5-HisA insect expression vector was used for the recombinant plasmids con-
struction. To introduce exogenous miR-959, miR-960, miR-961, and miR-962 in Drosophila
S2 cells, the pre-miR-959, pre-miR-960, pre-miR-961, and pre-miR-962 sequence were am-
plified and cloned into pAc5.1/V5-HisA vector to generate pAc-miR-959, pAc-miR-960,
pAc-miR-961, and pAc-miR-962 plasmids, respectively. The luciferase coding sequence
was subcloned into pAc5.1/V5-HisA to generate pAc-luc. The 3′ UTR sequence of the
tube, dl, and Toll transcript was respectively inserted to generate pAc-luc-tube 3′ UTR-wt,
pAc-luc-dl 3′ UTR-wt and pAc-luc-Toll 3′ UTR-wt report plasmids, which were used to
express the firefly luciferase. In addition, we also constructed 5 mutants of the above three
report plasmids, respectively named pAc-luc-miR-959-tube 3′ UTR-mut, pAc-luc-miR-960-
tube 3′ UTR-mut, pAc-luc-miR-961-dl 3′ UTR-mut, pAc-luc-miR-962-dl 3′ UTR-mut, and
pAc-luc-miR-962-Toll 3′ UTR-mut. In the mutant plasmids, the original binding sites of
corresponding miRNA was replaced with other bases without binding. All primers used
are listed in Table S2.

4.6. Cell Transfection and Luciferase Assays

Drosophila S2 cells were cultured in Drosophila standard medium (Gibco, Waltham,
MA, USA) with 10% fetal bovine serum (Gibco, Waltham, MA, USA) at 28 ◦C. Before
transfection experiment, cells were firstly seeded in 24-well plates (Corning, NY, USA) and
cultured for 12 h. In each well, 385 ng miRNA expression plasmid, 100 ng pAc-luc-target 3′

UTR-wt (or pAc-luc-miRNA-target 3′ UTR-mut), and 15 ng pRL were co-transfected into



Int. J. Mol. Sci. 2021, 22, 886 15 of 17

cells by using X-tremeGENE HP DNA Transfection Reagent (Roche, Basel, Switzerland)
according to manufacturer's instructions. The Renilla luciferase expressed by pRL was
used as an internal reference. Dual luciferase assays were performed 48 h post-transfection
with the Dual-Glo luciferase kit (Promega, Madison, WI, USA).

4.7. Data Processing and Statistical Analysis

Results from all experiments are presented as means ± SEM of the data. Statistical
analyses were performed using two-tailed Student’s t-test, while statistical significance of
survival experiment was calculated using the log-rank test (GraphPad Prism 7.04 software).
For all statistical analysis, p < 0.05 was considered significant. All data significantly different
from control values are marked with asterisks, * p < 0.05; ** p < 0.01; *** p < 0.001; and ns,
no significance vs. the control.
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before M. luteus infection. Figure S2. The expression levels of miR-959 (A), miR-960 (B), miR-961 (C),
and miR-962 (D) were measured in control flies (w1118) and miR-959–962 cluster knock-out fly strains
before M. luteus infection. Figure S3. The expression levels of miR-959 in miR-959 high-expressing
flies (A), miR-960 in miR-960 high-expressing flies (B), miR-961 in miR-961 high-expressing flies
(C), and miR-962 in miR-962 high-expressing flies (D) were respectively measured before M. luteus
infection. Table S1. Primers used for quantitative RT-PCR. Table S2. Primers used for transgene
vector construction.
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