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Abstract: A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand
factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease
(VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary
structure that sequesters the normal splice donor site. We propose an alternative mechanism: the
mutation introduces a cryptic splice donor site that interferes with the function of the annotated
site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in
secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected
K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce
substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest
effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site,
supporting competition among the sites. Further studies demonstrated that introduction of cryptic
splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the
annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere
with proper splicing by inducing IR.

Keywords: von Willebrand disease; intron retention; cryptic splice site; pre-mRNA splicing; aber-
rant splicing

1. Introduction

Aberrant splicing is a common cause of human genetic disease with various studies
estimating that 15–60% of disease-causing mutations disrupt pre-mRNA splicing ([1,2];
reviewed in [3]). Moreover, 5–20% of cancer-predisposing mutations adversely affect splic-
ing [4]. Mechanistically, mutations can create or destroy splice site motifs, alter enhancer or
silencer elements that promote or inhibit recognition of splice sites, or alter the function of
splicing regulatory proteins ([5–8] and references therein). Mutations can also alter RNA
secondary structure to modulate accessibility of these motifs or the interactions of these
motifs with relevant RNA-binding proteins [9–14]. Aberrant effects on the transcriptome
can manifest as whole or partial exon skipping, exonification of intron sequences, or whole
or partial intron retention. In some cases, even synonymous single nucleotide exonic
mutations that do not impact known regulatory motifs can adversely affect pre-mRNA
splicing patterns. Distinguishing the mechanisms by which such mutations disrupt splicing
requires detailed studies that will ultimately improve therapeutic strategies.

Intron retention (IR) is a major form of alternative splicing that regulates expression
of many genes during normal differentiation [15–17], cellular aging [18], and cellular
response to physiological signals [19–21]. Aberrant IR, on the other hand, contributes to
dysfunctional gene expression in many cancers [22,23] and in other diseases [24–30]. At the
level of individual transcripts, mutations that promote aberrant intron retention associated
with human disease have received relatively little attention. Recently, intron retention was
reported in a patient with a bleeding disorder known as type I von Willebrand disease
(VWD), caused by deficiency of von Willebrand factor (VWF) protein. A translationally
silent C→T mutation in exon 44 (E44) of the VWF gene in that patient, which substituted
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one glycine codon for another, is associated with altered splicing [31]. Although the
mutation maps deep in the exon, 86 nt upstream of the splice donor site, it nevertheless
acts from a distance to cause retention of downstream intron 44 [31]. Computer modeling
suggested that the mutant E44 RNA adopts an aberrant secondary structure, sequestering
the annotated 5′ splice site in a double-stranded configuration that renders intron 44
splicing inefficient [31]. Retained intron 44 sequences contain premature termination
codons that would prevent synthesis of full-length protein from the mutant allele, consistent
with the observed VWF deficiency phenotype. However, no experimental testing of the
secondary structure model has been reported.

The current study examined an alternative model for intron retention in this VWF
patient, based on the observation that the mutation generates a strong 5′ splice site motif
deep within E44. The presence of cryptic splice site motifs near annotated exon/intron
boundaries has been shown in several contexts to inhibit use of neighboring annotated
sites, leading to intron retention [32–34]. Here, using a minigene splicing reporter that
reproduces VWF intron 44 retention, we engineered numerous mutations designed to
distinguish whether altered secondary structure or introduction of a new splice site motif
is the primary determinant of intron retention. Collectively the data suggest not only that
secondary structure can impact intron retention but also that the internal E44 splice site is a
strong inducer of IR independent of secondary structure considerations.

2. Results

VWF E44 normally possesses a fairly weak 5′ splice site, AGT/gtaggt, which has a
score of 3.31 according to a commonly used algorithm for estimating splice site strength [35].
Inspection of the E44 sequence revealed the presence of a very weak potential 5′ splice
site motif (AAG/gcgagt; score = 2.72) deep in the exon. This motif would likely be
nonfunctional in normal individuals and, indeed, there is no evidence for splicing at
that site. However, the patient’s C→T mutation created a GT dinucleotide that greatly
strengthens this motif to a near-consensus splice site (AAG/gtgagt; score = 10.67). Weak
5′ splice sites at exon/intron borders are often susceptible to regulation, and there is
precedence for the ability of cryptic exon splice site motifs to promote downstream intron
retention [34]. We therefore hypothesized that the patient’s mutation induces intron
retention not only by altering RNA secondary structure but also via creation of a strong
internal 5′ splice site.

To investigate the mechanism(s) responsible for IR in the VWF gene, we generated
minigene splicing reporters with which splicing phenotype could be assessed following
transfection into K562 erythroleukemia cells. SF3B1-mut35 is a splicing reporter used to
study intron 4 retention in the SF3B1 gene [32]. This construct was modified to remove all
of its natural IR-promoting elements (decoy exons), so that retention is observed only if
heterologous IR-promoting elements are cloned into the intron.

Two series of VWF splicing reporters were engineered into the mut35 base construct.
VWFwt-short was generated by inserting into mut35, at the site previously occupied by
decoy exon 3e [32], a 314 nt region of normal VWF genomic sequence spanning exon 44
and short flanking intron sequences (Figure 1A). A variant reporter containing the patient’s
mutation, VWFm1-short, was altered at the indicated site. These reporters were designed
to test whether intron retention might occur via the decoy exon mechanism, which would
require only sequences proximal to E44. A second set of longer reporters was constructed
to test whether IR might require the context of full-length intron 44 (Figure 1B). The long
reporters contained 2.65 kb of VWF genomic sequence extending from the distal portion of
intron 43 to a proximal region of intron 45.
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Figure 1. Engineering patient-specific retention of VWF intron 44 in minigene splicing reporters. (A) 
Structure of a short reporter. Boxed region represents VWF genomic sequence. The position of the 
patient’s mutation (m1) is indicated. (B) Structure of a long reporter. Boxed region represents VWF 
genomic sequence. The positions of various engineered mutations are indicated. (C) Gel analysis of 
spliced products in K562 cells generated from a parent construct lacking VWF sequences (mut35); 
short reporters containing normal (wt) or patient (m1) sequences for VWF E44 plus short flanking 
intronic sequences as shown in (A); long constructs containing normal (wt) or patient sequences 
(m1) as diagrammed in (B). MW standards (in kb) are shown. (D) Expected spliced products from 
short (left) and long (right) reporters. Numbered boxes indicate the exons spliced together in each 
transcript. IR was detected in transcripts derived from long reporters with the m1 mutation; poten-
tial IR products generated from the short reporter were not observed. 

Gel analysis of spliced products amplified from transfected K562 cells is shown in 
Figure 1C, and the structures of these products deduced after sequencing are depicted in 
Figure 1D. As expected, the base construct mut35 did not exhibit IR. Similarly, neither of 
the VWF short reporters, containing E44wt or E44m1 sequences, yielded any evidence for 
IR. A positive control containing the OGT decoy exon, processed in parallel and analyzed 
on a separate gel, did show substantial IR (data not shown). The absence of IR transcripts 
derived from these short VWF constructs suggests that E44 does not function as a decoy 
exon to promote IR. In contrast, the longer reporters exhibited low retention of VWF in-
tron 44 in VWFwt, and substantially greater IR in the m1 variant (Figure 1C). Regarding 
the spliced products, VWFwt short produced a larger band than mut35 due to the inclu-
sion of VWF E44. Interestingly, the spliced m1 transcript was slightly smaller than its wild-
type counterpart due to the use of the m1 cryptic 5′ splice site in E44. These results not 
only confirmed the potential of m1 to be recognized as a functional splice site but also 
suggested that it can suppress splicing at the annotated site, perhaps due to reduced ac-
cessibility of the latter. Notably, splicing at the m1 splice site was not reported in the VWF 
patient, likely because the aberrant splice would have altered the translational reading 
frame to induce nonsense-mediated decay. 

Having reproduced the VWF patient’s IR phenotype, we then generated a series of 
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reporters were designed to alter either of the features proposed to induce IR: (a) secondary 
structure at the annotated E44-5′ss that might impact its ability to interact with the splicing 
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Figure 1. Engineering patient-specific retention of VWF intron 44 in minigene splicing reporters.
(A) Structure of a short reporter. Boxed region represents VWF genomic sequence. The position of the
patient’s mutation (m1) is indicated. (B) Structure of a long reporter. Boxed region represents VWF
genomic sequence. The positions of various engineered mutations are indicated. (C) Gel analysis of
spliced products in K562 cells generated from a parent construct lacking VWF sequences (mut35);
short reporters containing normal (wt) or patient (m1) sequences for VWF E44 plus short flanking
intronic sequences as shown in (A); long constructs containing normal (wt) or patient sequences
(m1) as diagrammed in (B). MW standards (in kb) are shown. (D) Expected spliced products from
short (left) and long (right) reporters. Numbered boxes indicate the exons spliced together in each
transcript. IR was detected in transcripts derived from long reporters with the m1 mutation; potential
IR products generated from the short reporter were not observed.

Gel analysis of spliced products amplified from transfected K562 cells is shown in
Figure 1C, and the structures of these products deduced after sequencing are depicted in
Figure 1D. As expected, the base construct mut35 did not exhibit IR. Similarly, neither of
the VWF short reporters, containing E44wt or E44m1 sequences, yielded any evidence for
IR. A positive control containing the OGT decoy exon, processed in parallel and analyzed
on a separate gel, did show substantial IR (data not shown). The absence of IR transcripts
derived from these short VWF constructs suggests that E44 does not function as a decoy
exon to promote IR. In contrast, the longer reporters exhibited low retention of VWF intron
44 in VWFwt, and substantially greater IR in the m1 variant (Figure 1C). Regarding the
spliced products, VWFwt short produced a larger band than mut35 due to the inclusion of
VWF E44. Interestingly, the spliced m1 transcript was slightly smaller than its wild-type
counterpart due to the use of the m1 cryptic 5′ splice site in E44. These results not only
confirmed the potential of m1 to be recognized as a functional splice site but also suggested
that it can suppress splicing at the annotated site, perhaps due to reduced accessibility of
the latter. Notably, splicing at the m1 splice site was not reported in the VWF patient, likely
because the aberrant splice would have altered the translational reading frame to induce
nonsense-mediated decay.

Having reproduced the VWF patient’s IR phenotype, we then generated a series of
splicing reporters to explore the mechanism(s) by which mutation m1 promotes IR. These
reporters were designed to alter either of the features proposed to induce IR: (a) secondary
structure at the annotated E44-5′ss that might impact its ability to interact with the splicing
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machinery [31] and/or (b) aberrant internal 5′ splice site motif(s) that might compete with
the annotated 5′ss for interaction with that machinery (e.g., [34]).

The predicted secondary structures for normal E44wt and patient E44m1 are shown
in Figure 2. These were re-drawn from [31] and newly annotated to facilitate discussion of
various secondary structure features. In normal E44, the weak internal 5′ss motif is located
in the left arm of stem 1, with the annotated E44-5′ss predicted to be downstream of stem 2
in a relatively open (single-stranded) conformation (upper left). In the patient, reordered
folding would incorporate the cryptic internal 5′ss, m1, into the right arm of new stem 3,
with the annotated 5′ss sequestered in new stem 5 (upper right). Because the stability of
these structures are not dramatically different [31], it seems plausible that the two might
exist in some equilibrium within normal cells and that E44 mutations could alter their
relative abundance to impact IR.
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Figure 2. (A) Predicted structure of wild-type E44 (“open 5′ss”) and patient E44 (“closed 5′ss”),
redrawn from [31]. 5′ splice site motifs are boxed, and annotation of stem structures has been added
for clarity. (B) Superimposition of m2 mutations (red text) on normal “open” and patient “closed”
conformations for E44 shown above. M2 mutations are predicted to disrupt stem 5, increasing
accessibility of the 5′ss.
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Reporter VWFm2 was designed to test the hypothesis that secondary structure at the
annotated site is a major driver of intron 44 retention. VWFm2 contains six nucleotide
substitutions expected to disrupt stem 5, thereby reducing the potential for secondary
structure at the annotated 5′ splice site (Figure 2B, right). According to this model, an open
conformation should greatly reduce IR, whether or not cryptic site m1 is present. Analysis
of splicing patterns in K562 cells transfected with VWFm2 and relevant control reporters
yielded two important findings (Figure 3). First, although IR in VWFwt was quite modest,
the proportion of retention product relative to spliced product generated from VWFm2 was
even less (compare lanes wt and m2). Second, retention was greatly increased in double
mutant VWFm1m2. This result indicates that the cryptic site can induce retention even
when the annotated site is predicted to be accessible. Notably, although accessibility of
the annotated site was not measured directly, that m2 favors a more open conformation
is suggested by the finding that residual splicing switched back from the cryptic site in
m1 (see Figure 1C) to the annotated site in m1m2. These results support the hypothesis
that secondary structure at the annotated 5′ss of E44 does impact intron retention, but the
presence of an internal cryptic 5′ss also strongly induces IR.
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Figure 3. Effects of m2 mutations on IR. Lane (-), untransfected cells. Other lanes represent RT-PCR
products from cells transfected with VWFwt, VWFm2, and VWFm1m2. Diagrams at right indicate
the structures of the spliced products.

Next, we generated a construct aimed at testing the hypothesis that inaccessibility of
the annotated site alone can promote IR. Mutation m5 was predicted to mimic m1-mediated
stabilization of stem 3, given the identical ∆G value of the two structures (Figure 4, left).
m5 was therefore expected to favor the closed conformation associated with sequestration
of E44-5′ss. However, in contrast to m1, m5 occurs in the context of a very weak 5′ splice
site motif (AAC/gcgagt; score = 1.78). Splicing analysis in K562 cells revealed that m5
yielded much less retention product relative to spliced product compared to m1, but slightly
more retention product than VWFwt (Figure 4, right). This result is consistent with the
interpretation that sequestration of E44-5′ss, in the absence of a competing 5′ splice site,
increases intron retention only to a minor extent.

For completeness, we also tested the double mutant m1m5, which has features similar
to m1, i.e., a strong 5′ splice site motif (slightly weaker than m1), and strong stabilization of
stem 3. When tested in K562 cells, m1m5 exhibited strong IR (Figure 4, right), but it also
switched back to the use of the annotated 5′ splice site for residual spliced products. This
result is difficult to interpret in detail, since competition among splice sites is complex and
may depend on poorly characterized accessory factors [36,37]. It is possible that the m1m5
cryptic site failed to compete with the annotated site due to the fact of its slightly weaker
splice site motif (Figure 4, left), to its potential for greater sequestration in a hyperstabilized
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stem 3, or both. Nevertheless, taken together, these results suggest that both RNA folding
and splice site competition contribute to intron 44 retention but that splice site competition
is likely the major determinant.
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lanes were transfected with VWFwt, VWFm5, VWFm1, and VWFm1m5 as indicated. * Indicates
PCR artifact.

Finally, we asked whether the ability of a strong internal 5′ss motif to promote IR
is position dependent. We generated splicing reporters containing strong 5′ splice site
motifs, identical to that of m1 (AAG/gtgagt), at two different locations within E44. One
was 48 nt upstream of the annotated E44-5′ss (m48) and the other was 70 nt upstream
(m70). The splicing phenotypes of these pre-mRNAs are shown in Figure 5. As before,
construct VWFm1 exhibited much higher IR than did VWFwt. However, neither VWFm48
nor VWF70 displayed IR above the wild-type background. That mutations m48 and m70
did generate functional 5′ splice sites was confirmed by sequence analysis showing that the
E44 spliced products in these mutants primarily utilized the internal cryptic sites. These
results suggest that an internal 5′ss motif must reside in an appropriate exonic context in
order to interfere with splicing at the annotated site to yield intron retention.
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Figure 5. Position-dependence of IR stimulation by cryptic 5′ splice sites in E44. Analysis of splicing
phenotype for E44 variants. Lanes (-) represent untransfected K562. Other lanes were transfected
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3. Discussion

Von Willebrand disease is one of the most common inherited bleeding disorders,
caused by any one of hundreds of mutations in the VWF gene [38,39]. The mutation
studied here, although present at low frequency among the populations surveyed (dbSNP:
rs900907976; minor allele frequency = 0.000026 (7/264690, TOPMED)), has an unusual im-
pact on pre-mRNA splicing by acting at a distance to promote retention of the downstream
intron [31]. Understanding how a “deep exon” mutation can promote IR may be important
for the design of therapies for patients with this and other mechanistically related diseases.

Two major hypotheses have been proposed to explain how the m1 mutation interferes
with function of the annotated 5′ splice site. First, the splice site sequestration model
predicts that mutation m1 would alter long range RNA folding across exon 44 so as to
increase base-pairing at the annotated 5′ splice site. According to this model, RNA–RNA
interactions promote IR by sequestering that splice site away from the splicing machin-
ery [31]. This model was originally based on computer modeling, but no experimental
testing was reported [31]. Second, the splice site competition model posits that function of
the annotated site is compromised by the presence of the cryptic 5′ splice site created by
m1. Productive splicing in this model would be silenced by protein–protein interactions
between complexes bound at the decoy site within the exon and at the annotated site at
the normal exon/intron boundary. As discussed below, these models were experimentally
tested by analysis of the behavior of splicing reporters altered at either of these features.

One instructive finding was the difference in splicing behavior between mutants m1
and m5. Both were predicted to stabilize stem 3 (Figure 4) to the same extent, favoring the
conformation that sequesters the annotated 5′ splice site; however, they differ greatly with
regard to strength of the internal splice site motif. Mutant m1 possesses a strong splice site
motif and exhibits high IR. In contrast, m5 has a very weak motif and exhibits much lower
IR. This experiment indicated that sequestration alone is insufficient to induce substantial
IR. A second critical comparison involved constructs m1 and m1m2. These have identical
strong deep exon splice site motifs, but different sequestration potentials at the annotated
site. Most importantly, both exhibited strong IR, supporting the interpretation that the
cryptic site is sufficient to induce IR in this context. Taken together, these results indicate
that secondary structure does impact splice site choice and IR; however, IR occurs even
with a more open configuration at the annotated site, as long as an upstream cryptic site is
present in an appropriate sequence context as in m1m2.

A potential limitation of these interpretations is that secondary structure has not
been probed directly. However, using splice site usage as a proxy for accessibility, we
observed that residual splicing switched from the cryptic site in m1 to the annotated site in
m1m2, consistent with a more accessible conformation of the annotated site in the double
mutant. Interestingly, the double mutant m1m5 shifts residual splicing in the opposite
direction back to the annotated 5′ splice site. Although folding models suggest that m1
and m1m5 have equivalent potential to sequester the annotated site, the strong cryptic
site in m1m5 may be disfavored for residual splicing, either because it is slightly weaker
than m1 or because m1m5 itself becomes partially sequestered in stem 3 (Figure 4). A
caveat to these interpretations is that secondary structure has a complex role in alternative
splicing [12], and the predicted stability of stem loop structures may not be as critical as
specific structures in determining RNA functionality [40].

Another limitation to this study is that we have not directly measured spliceosomal
binding to the cryptic site. For that reason, the possibility that a non-spliceosomal complex
may bind at the cryptic site region to induce IR cannot be formally excluded. However,
several observations support involvement of a spliceosomal component. First, cryptic site
m1 does operate as a functional splice site as shown by sequence analysis of residual spliced
products. Second, variant substrates bearing a strong cryptic splice site were associated
with strong IR (m1, m1m2, m1m5), while those having a weak cryptic site were correlated
with low IR (wt, m5). Finally, there is precedence for the idea that cryptic splice sites can
interfere with annotated splice sites to promote IR [34].
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In the Drosophila P element gene, binding of spliceosomal components to an exonic
decoy splice site modulates retention of the downstream intron in a tissue-specific man-
ner [34]. The splice site itself is necessary but not sufficient for regulation, with auxiliary
RNA binding proteins being required to promote IR [41–43]. Binding of auxiliary protein
factors can, in the presence of an exonic cryptic splice site, also inhibit productive splicing
at the downstream authentic 5′ splice site to alter the balance of splice site choice [36,44,45].
In decoy exon-mediated intron retention, it has been proposed that splice sites of non-
coding decoy exons interact nonproductively with intron-terminal splice sites to inhibit
intron excision [32]. A common feature of decoy-mediated IR is the presence of multiple
splice sites near the decoy exon/intron boundary [32,33], implying that competition among
splice sites plays a role. Even more distally, deep intron splice site motifs, defined via
their binding to U2AF65 in cross-linking experiments, appear capable of competing with
recognition of splice sites of neighboring downstream exons [46].

Given these precedents, we propose that the splice site introduced by the VWF pa-
tient’s mutation interacts in a nonproductive manner with the annotated 5′ splice site
located 86 nt downstream. If the downstream intron 44 is recognized by an intron defini-
tion mechanism [47], then blocking its 5′ splice site could yield IR. Not well understood yet
is what neighboring sequence features constitute a permissive environment for induction
of IR. Regardless, it is interesting to speculate that blocking the cryptic splice site with
antisense oligonucleotides might reactivate the annotated 5′ splice site to ameliorate the
VWF protein deficiency.

More globally, relatively little is known about the incidence of IR due to the deep
exon mutations and what might be their contribution to human disease. Methodological
and conceptual considerations may have limited the identification of such mutations in
previous exome and RNA-seq studies. Detecting association between deep exon SNVs
and intron retention events requires reads of sufficient length to overlap both features,
sequencing depth sufficient to identify allele-specific association of such features, and
analytical strategies focused on finding these associations. Earlier work has, in fact, revealed
that many exonic SNVs are associated with IR [23], but this analysis was focused on exon
sequences near (within 30 nt of) exon–intron junctions. IR-associated exonic SNVs in that
study mapped predominantly to the last nucleotide of the exon, and these likely act via
direct interference with 5′ splice site recognition. A few IR-associated mutations were
found outside of the splice site motif, but their mechanism of action was not explored
other than to determine that they were not enriched in known splicing silencer or enhancer
motifs [23]. Other studies have reported numerous deep exon mutations that create
new 5′ splice site motifs and are associated with aberrant splicing [48]. Again, these
were detected by finding short RNA-seq reads that contain mutations linked to abnormal
(cryptic) exon/exon junctions; however, whether these mutations might also promote IR
was not studied. Systematic analysis of deep exon mutations associated with IR might be
enabled by acquisition of more long RNA-seq reads that overlap deep exon sequences and
exon/intron boundaries. All of these analyses would likely benefit from application of
algorithms that optimize detection of retained introns from short RNA-seq data [49–51]
and long RNA-seq data [52]. Finally, mutations that create novel 5′ splice site motifs and
are associated with IR can also occur in downstream intron sequences [53].

4. Materials and Methods

Construction of splicing reporters: Reporters diagrammed in Figure 1 were con-
structed as follows by modification of an SF3B1-based minigene, mut35, in which intron 4
retention was suppressed due to the removal of all decoy exons [32]. The first-generation
reporter (short) was made by amplifying a 314 nt region of VWF gene spanning exon 44
and proximal intron sequences using the following primers:
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The lower case regions provided overlap sequences to facilitate fusion [54] of this
fragment into mut35 at the normal position of decoy exon 3e [32].

The second wild-type reporter (long) encompassed a 2.65 kb region of the VWF gene
spanning across a terminal portion of intron 43, exon 44, intron 44, exon 45, and a proximal
region of intron 45.
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Mutations in VWF E44 were introduced by amplifying the wild-type VWF reporter
with primers carrying the desired mutations. The various 5′ splice site motifs (boxed) and
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minigene-derived transcripts but not endogenous mRNA as confirmed using RNA from
untransfected or empty vector-transfected cells. When assaying IR products, PCR reaction
conditions were adjusted to allow for amplification of DNA bands ≥ 3 kb in length
(denaturation at 95 ◦C for 20 s, annealing at 56 ◦C for 10 s, extension at 70 ◦C for 2 min
30 s; 35 cycles) using KOD polymerase in the presence of betaine. PCR products were
analyzed on either 2% agarose gels or 4.5% acrylamide gels. Identity of the PCR products
was confirmed by DNA sequencing, and all splicing reporters were assayed at least three
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times. The splicing phenotype of test constructs relative to control constructs was highly
reproducible, despite inevitable variations in baseline intron retention.
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