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Abstract: The stem is an important organ in supporting plant body, transporting nutrients and
communicating signals for plant growing. However, studies on the regulation of stem development
in tomato are rather limited. In our study, we demonstrated that SlHB8 negatively regulated tomato
stem development. SlHB8 belongs to homeo domain-leucine zipper Class III gene family transcrip-
tion factors and expressed in all the organs examined including root, stem, leaves, flower, and fruit.
Among these tissues, SlHB8 showed stable high expression level during tomato stem development.
Overexpression of SlHB8 gene decreased stem diameter with inhibited xylem width and xylem
cell layers, while loss of function of SlHB8 gene increased the stem diameter and xylem width. The
contents of lignin were decreased both in leaves and stems of SlHB8 overexpression plants. RNA-seq
analysis on the stems of wild type and SlHB8 transgenic plants showed that the 116 DEGs (differ-
ential expressed genes) with reversible expression profiles in SlHB8-ox and SlHB8-cr plants were
significantly enriched in the phenylpropanoid biosynthesis pathway and plant-pathogen pathway
which were related to lignin biosynthesis and disease resistance. Meanwhile, the key genes involved
in the lignin biosynthesis pathway such as SlCCR (cinnamoyl-CoA reductase), SlCYP73A14/C4H
(cinnamate 4-hydroxylase), SlC3H (coumarate 3-hydroxylase) and SlCAD (cinnamoyl alcohol dehy-
drogenase) were down-regulated in both stem and leaves of SlHB8 overexpression plants, indicating
a negative regulatory role of SlHB8 in the lignin biosynthesis and stem development.

Keywords: SlHB8; tomato; stem development; xylem; lignin

1. Introduction

Stems are the central part of the plant, connected with the leaves up and the roots
down, and transport important substances for long-distance cell-to-cell communication.
Besides, the stem is involved in carbon storage and remobilization of plants, influencing
the control of plant’s carbon metabolism [1–3]. Therefore, understanding the regulation
mechanism of stem differentiation is instrumental. The stem development is moderated by
an elaborated regulation network which has been well elucidated in Arabidopsis and woody
species [4,5]. The homeo domain-leucine zipper Class III gene family transcription factors
(HD-Zip III) were regarded as one of the key factors during the stem development from
stem primary establishment to lateral growth [5].

In Arabidopsis, five Class III HD-Zip transcription factors (REVOLUTA/IFL1 (REV),
(PHABULOSA/AtHB14) PHB, PHAVOLUTA/AtHB9 (PHV), CORONA (CAN/ATHB-15), and
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ATHB-8) were isolated with four recognizable domains including a DNA binding home-
odomain followed immediately by a leucine zipper motif (HD-Zip); a sterol/lipid binding
(START) domain for binding small hydrophobic molecules such as steroid, phospholipids,
or carotenoids; and a PAS (Per-ARNT-Sim) domain for protein-protein interaction [6,7].
These five HD-Zip III transcription factors were reported to play roles in the regulation of
primary and secondary vascular cell differentiation [8–11], meristem maintenance [7], leaf
patterning [12] and so on. Tortuous stems and leaves, dwarfism, and shortened internodes
were found in these genes’ mutants [8–11,13]. All these five members affect vascular devel-
opment in Arabidopsis by altering their expression levels in a dependent or redundantly
way [6]. Overexpression of ATHB-8 promotes vascular cell differentiation and xylem tissue
production in the inflorescence stems of Arabidopsis [14], while REV together with PHB
and PHV regulated the meristem development in lateral organs [6]. REV, PHB and PHV
were revealed to be an activator, while CAN and ATHB-8 were repressors for the formation
of interfascicular cambium of the inflorescence stem [6,14]. The expression of HD-Zip III
genes was mediated by multiple molecular mechanisms. Such as the small Zip protein
(ZPRs) and MiR165/166 [15–18]. It was reported that ZPR3 inhibited the HD-Zip III protein
activity by interacting with HD-Zip III protein to form nonfunctional heterodimers [16,18].
There were MiR165/166 target sites in the coding sequences of HD-Zip III genes and their
expression levels were negatively regulated by MiR165/166 [15,17].

The lignin content is always related to the stem development and genes affecting stem
development also impact lignin biosynthesis [6,19–22]. Previous studies have identified
that members of homeodomain-leucine zipper gene family play important roles in stem
tissue development as well as lignin regulation of plants [6,19,20]. For example, knocking
down of the POPCORONA gene, one member of Class III HD-Zip transcription factor
family in populous, results in abnormal lignification in pith cells [9]. PtoHB7 and PtoHB8,
the polar HD-Zip III genes, were downstream targets of poplar IAA9-ARF5 module which
regulated the secondary growth of poplar woody stems [19]. In Arabidopsis, members of
the HD-Zip III gene family function differently, the interfascicular fiber of rev-6 mutant
disappeared and lignin decreased, while loss of function of CNA gene impacted vascular
bundle development and increased lignin content [6]. Ectopic expression of Zinnia HB12
in Arabidopsis regulated xylem parenchyma cells differentiation and up-regulated the
expression of genes related to lignin monomer synthesis [20].

Lignin is one of the complex phenylpropanoid polymer, which is one of the main
substances in secondary cell walls of plant vascular systems [23]. lignin which widely
existed in stem vascular system provided the strength that allows the stem to grow up-
right [23,24]. Previous research has revealed that lignin is connected to plants’ response to
stress [25]. Lignin biosynthesis is affected by the abiotic stress such as drought stress [26],
cold stress [27], salt stress [28], nutrient stress such as nitrogen deficiency [29–31], calcium
deficiency [32], gases stress (CO2 and ozone) [33,34], and heavy metals stress [35,36]. Induc-
ing the lignin content or altering the lignin composition enhanced their resistant ability to
these abiotic stresses. Such as: In grapevine, overexpression of VlbZIP30 enhances drought
tolerance by activating the expression of lignin biosynthetic genes and increasing lignin
deposition [37]. Overexpression of PaSOD and/or RaAPX in Arabidopsis improved plant’s
tolerance to salt and cold stress by up-regulation of lignin induced by peroxide [38]. And
research on sweet potatoes has found that IbLEA14 overexpression plants exhibited in-
creased drought and salt resistance due to the increase of lignin content caused by increased
expression level of lignin biosynthesis gene [28]. Over expression of two CBFs changed
the frost sensitivity of Eucalyptus by inducing lignin content and syringyl/guaiacyl (S/G)
ratio as well as genes involved in the phenylpropanoid and lignin branch pathway [39].
For the nitrogen fertilization affection on lignin is different with type and tissues examined.
In pine (P. palustris) seedlings, high-N fertilization reduced the lignin content in roots
but had no effect on the lignin in aerial parts of the plant [40]. In populous plants lignin
content was increased by high-N due to elevated PAL activity [30]. Apart from abiotic
stress, lignin is involved in plant response to biotic stress. Lignin possesses antimicrobial
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properties that protect plants against pathogenic bacteria [41]. Lignification is induced in
response to attack by pathogen including bacteria, fungi and virus [25]. In cotton, sup-
pression of GhUMC1 reduced lignin biosynthesis genes due to decreased lignin content
and further decreased the resistance of plants to Verticillium. William has reported that
AtMYB15 transcription factor acted in defense-induced lignification, having the capability
of driving lignification, plants of myb15 mutant showed greater resistance to the bacterial
pathogen Pseudomonas syringae [42–44]. Moreover, lignin can be degraded to chemicals and
fuels for industrial applications by many different species of microorganisms including
fungi and bacteria, so lignin also protects the structural polysaccharides in plants, from
microbial enzyme-mediated hydrolysis [45–47]. Besides, lignin is important for the soil
carbon cycling. Altering the lignin content in soil affects the bacterial community diversity
index [47,48].

Up to now, a total of six HD-Zip III gene family members have been identified in the
tomato genome, and SlHB8 (Solyc08g066500) is one of this family members. To investi-
gate the function of SlHB8 gene in regulating stem development, SlHB8 overexpression
and SlHB8 gene knockout lines were generated in this study, of which SlHB8 was highly
expressed and loss of function in stems compared with wildtype, respectively. The trans-
genic plants carrying SlHB8-ox showed weaker stem and inhibited lignin content, while
SlHB8 gene knocking out lines promoted xylem development but did not impact the lignin
content. Moreover, our results revealed that lignin deposition and key genes involved
in the lignin biosynthesis pathway were down-regulated both in the leaves and stems of
SlHB8-ox lines. These results indicated that the SlHB8 gene is an essential regulator in stem
development and acts as a negative regulator in lignin biosynthesis in tomato.

2. Results
2.1. SlHB8 Displayed Stable and High Expression Level during Tomato Stem Development

Previous study showed that SlHB8 gene belongs to the HD-Zip III transcription factor
family, as it contains the four conserved domains of HD, bZip, START and MEKHLA in
the HD-Zip III transcription factor [49]. Meanwhile, it expresses in all the tissues such
as: root, stem, leaves, flower, mature green fruits, breaker fruits and red fruits and shows
the highest expression level in stem tissue [49]. To understand the possible function
of the SlHB8 gene in tomato stem development, we checked its expression pattern in
stems at different developmental stages by quantitative reverse transcription-polymerase
chain reaction (qRT-PCR). The results showed that SlHB8 gene expressed in all the stages
examined, including 20 D, 30 D, 45 D and 60 D stages stem tissues. Among these stages,
the relative transcript level of SlHB8 gene maintained stable high in tomato stems at 20 D,
30 D, and 45 D stages but decreased a little in tomato stem at 60 D stage (Figure 1A).

2.2. SlHB8 Affects Tomato Stem Development through Mediating the Xylem Range

To identify its role in regulating stem development, we generated SlHB8 gene knock-
out mutant by using CRISPR/Cas9 technology (Figure S1A) and SlHB8 overexpressed
transgenic tomato lines (Figure S1B). Three kinds of SlHB8 loss of function mutants were
verified by sequencing the sgRNA target site (Figure S1A). Expression analysis by qRT-PCR
showed that the relative transcript level of SlHB8 was strikingly upregulated in overexpres-
sion of SlHB8 lines (35sL1; 35sL2) (Figure S1B–D) but was specifically reduced in SlHB8-cr
lines compared with wild type, respectively (Figure S1C,D). Comparing to wild type plant,
overexpression of the SlHB8 gene did not change plant height and internode length of stem,
while loss of function of SlHB8 gene led to a 14 % reduction in plant height and the reduced
plant height resulted from a 15 % reduction in internode length (Figures 2A and S1E,F).
Increasing the relative transcription level of the SlHB8 gene or knock out of SlHB8 gene
did not change the number of nodes in the plant (Figure S1G). Phenotypic observation on
stem diameters revealed that compared to wild type plant, overexpressing SlHB8 reduced
stem diameter while loss of function of SlHB8 gene increased stem diameter (Figure 2C).
To further understand the changed stem diameters in SlHB8 transgenic plant, we examined
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phenotypes of stem-associated cell types by carrying out the paraffin section analysis in
WT and SlHB8 transgenic plants. There were apparent differences in the range of xylem in
stems among different lines. These xylem cells were stained by toluidine blue. Quantitative
measurement showed that compared with the wild type, overexpression of the SlHB8 gene
reduced the xylem width of the tomato stem, while the xylem width enlarged in SlHB8-cr
lines (Figures 2B,D and S2A). Overexpressing SlHB8 repressed the xylem development,
with a 34 % decrease in the number of xylem cell layers, but SlHB8 gene knocking out
increased the number of xylem cell layers by 12 %, compared with WT (Figure 2D,F).
Furthermore, we measured the single cell size of xylem fibers, which had no obvious
difference in all genotype plants (Figure 2E). The characteristics of pitch cells examination
showed that overexpression of SlHB8 reduced the area of individual pitch cells in the stem
and knocking out of SlHB8 gene did not result in significant differences in the size and
number of pitch cells compared with WT (Figure S2B). Interestingly, compared to the wild
type, the size of xylem vessel cells did not change in the SlHB8-ox lines but decreased in
SlHB8-cr mutants (Figure S2C). To clarify whether the changed xylem width is related
to the expression level of SlHB8, we determined the expression position of SlHB8 in the
SlHB8-ox lines by using the RNA in situ hybridization on stems at the sixth internode
of 2-month-old tomato (Figure 1B). The results revealed that strong expression signals of
SlHB8 positive probes were observed in the area of pith, xylem, phloem and cambium
regions compared with those of negative probes (Figure 1B), suggesting that SlHB8 gene
was overexpressed in these tissues. Collectively, these data indicated that SlHB8 affects
stem diameter by mediating the xylem range.
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phloem; Xy, xylem. Bars: 101 um (left), 50 um (right). 

2.2. SlHB8 Affects Tomato Stem Development through Mediating the Xylem Range 
To identify its role in regulating stem development, we generated SlHB8 gene 

knockout mutant by using CRISPR/Cas9 technology (Figure S1A) and SlHB8 overex-
pressed transgenic tomato lines (Figure S1B). Three kinds of SlHB8 loss of function mu-
tants were verified by sequencing the sgRNA target site (Figure S1A). Expression analy-
sis by qRT-PCR showed that the relative transcript level of SlHB8 was strikingly upreg-
ulated in overexpression of SlHB8 lines (35sL1; 35sL2) (Figure S1B–D) but was specifi-
cally reduced in SlHB8-cr lines compared with wild type, respectively (Figure S1C,D). 
Comparing to wild type plant, overexpression of the SlHB8 gene did not change plant 
height and internode length of stem, while loss of function of SlHB8 gene led to a 14 % 
reduction in plant height and the reduced plant height resulted from a 15 % reduction in 
internode length (Figures 2A and S1E,F). Increasing the relative transcription level of the 
SlHB8 gene or knock out of SlHB8 gene did not change the number of nodes in the plant 
(Figure S1G). Phenotypic observation on stem diameters revealed that compared to wild 
type plant, overexpressing SlHB8 reduced stem diameter while loss of function of SlHB8 
gene increased stem diameter (Figure 2C). To further understand the changed stem di-
ameters in SlHB8 transgenic plant, we examined phenotypes of stem-associated cell types 
by carrying out the paraffin section analysis in WT and SlHB8 transgenic plants. There 
were apparent differences in the range of xylem in stems among different lines. These 
xylem cells were stained by toluidine blue. Quantitative measurement showed that 
compared with the wild type, overexpression of the SlHB8 gene reduced the xylem width 
of the tomato stem, while the xylem width enlarged in SlHB8-cr lines (Figures 2B,D and 
S2A). Overexpressing SlHB8 repressed the xylem development, with a 34 % decrease in 
the number of xylem cell layers, but SlHB8 gene knocking out increased the number of 
xylem cell layers by 12 %, compared with WT (Figure 2D,F). Furthermore, we measured 
the single cell size of xylem fibers, which had no obvious difference in all genotype plants 
(Figure 2E). The characteristics of pitch cells examination showed that overexpression of 
SlHB8 reduced the area of individual pitch cells in the stem and knocking out of SlHB8 
gene did not result in significant differences in the size and number of pitch cells com-
pared with WT (Figure S2B). Interestingly, compared to the wild type, the size of xylem 

Figure 1. Expression patterns of the SlHB8 gene in tomato stems. (A) Quantitative reverse transcription PCR analysis of the
SlHB8 gene in different development stages of tomato stem. 20 D: 20 days after germination; Error bars mean ± standard
error (SE) of three biological replicates. (B) RNA in situ hybridization of SlHB8 in stem tissues of SlHB8 overexpression
tomato plant. Stems at 6th internodes of 2-month-old tomato plants cultivated in soil were cross-sectioned for hybridization
with sense (upper) and antisense (lower) probes of SlHB8. The photos were taken under 10× (left) and 20× (right)
microscopy. Black arrows indicate in situ hybridization signals for SlHB8 transcripts. Pi, pith; Ca, cambium; Ph, phloem; Xy,
xylem. Bars: 101 um (left), 50 um (right).
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Figure 2. Phenotype analysis of SlHB8 overexpression and SlHB8 knock out lines. (A) Photos of adult plants of representative
two-month-old SlHB8 overexpression and SlHB8 knock out lines. Bar: 5 cm; (C) Cross-sectioning and staining with toluidine
blue of the 6th internode of 2-month-old wild-type, SlHB8 overexpression and SlHB8 knock out lines. Pi, pith; Ca, cambium;
Ph, phloem; Xy, xylem. Bars: 200 um; (B) Measurement of stem diameter, (D) xylem width, (E) a single fiber cell size and
(F) xylem cell layers in SlHB8 overexpression and SlHB8 knock out lines as well as WT plants. The calculation was performed
on IMAGE J softer ware based on the images of toluidine blue-stained anatomical sections as described in the Materials and
Methods section. In the bar chart, the gray barplots represent the wildtype line, the orange barplots represent the 35s-driven
SlHB8 overexpression line, and the blue barplots represent the SlHB8 knockout line. Error bars mean ± standard error (SE)
value. Stars indicate the statistical significance using Student’s t-test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.
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2.3. SlHB8 Affects Lignification in Tomato Stems and Leaves

As stem diameter is always positively related to the lignin biosynthesis, we examined
the lignin content in stem tissues of SlHB8 transgenic plants by histochemical staining with
hydrochloric acid-phloroglucinol which is used for lignin staining analysis. Staining results
showed that compared with WT, the xylem of SlHB8-ox had a small lignin deposition
area and significantly reduced staining brightness, indicating a decrease in lignin content,
however, there was no significant difference in lignin deposition between SlHB8-cr and
WT (Figure 3A). To confirm the level of lignification, the total lignin content in WT and
SlHB8 transgenic plants was measured by the acetyl bromide (AcBr) method. Consistent
with staining analysis result, the lignin content significantly decreased in stems and leaves
of SlHB8-ox lines while not changed in stems and leaves of SlHB8-cr plants (Figure 3B,C).
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Figure 3. SlHB8 affects lignification in tomato leaves and stems. (A) Free-hand sections of the 2-month-old stem were
subjected to phloroglucinol-HCl staining. The red area represents lignin. Bars: 1.5 cm. (B) Acetyl bromide-soluble lignin
assays were carried out on leaves (2-month-old tomato) of SlHB8 overexpression, SlHB8 knock out lines and WT plants.
(C) The content of lignin in the stems (2-month-old tomato) of SlHB8 overexpression, SlHB8 knock out lines and WT plants
was measured by acetyl bromide lignin assay. In the chart of B and C, the gray columns represent the wildtype line, the
orange columns represent the 35s-driven SlHB8 overexpression (35sL2) line, and the blue columns represent the SlHB8
knockout (SlHB8-cr2) line Error bars mean ± standard error (SE) value for each line. Stars indicate the statistical significance
using Student’s t-test: * p-value < 0.05.

2.4. Transcriptomic Analysis of WT, SlHB8-ox and SlHB8-cr Plants

To better understand the molecular mechanism of SlHB8 regulation of stem devel-
opment, RNA-seq was carried out on stems of 2-month-old plant of WT, SlHB8-ox, and
SlHB-cr mutant. Three biological replicates were included in each sample and finally gen-
erated 9 libraries. The high-quality clean reads of the library reached over 99 % (Table S1).
After filtering the rRNA, the library was uniquely mapped to the tomato genome (Solanum
lycopersicum ITAG4.0). The mapped reads ranged between 97.04 % and 97.46 % and
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unique mapped reads ranged from 94.61 % to 95.32 % (Table S1). The annotated gene
numbers in the 9 libraries ranged from 22,265 to 22,885. A total of 627 novel transcripts
were identified from the 9 libraries, each containing more than 570 novel genes (Table S1).
Principal component analysis (PCA) of the RNA-seq samples revealed highly repeatability
between three replicates of each sample of the wild type, SlHB8-ox, and SlHB8-cr, and
great differences among the stems of 2-month-old tomato in different lines (Figure 4A).
The RNA-seq analysis showed a 3.8-fold difference in SlHB8 expression between wild-type
and SlHB8-ox stems (p < 0.001, Student’s t-test), and the expression of the SlHB8 gene in
the SlHB8-cr stems was 0.29 times than that in the, wild type stems (p < 0.001, Student’s
t-test) closely corresponding to the results obtained by real-time quantitative PCR analysis
(Figure S1C,D).

To identify candidate genes that are vital for stem development, we performed a com-
prehensive analysis of gene expression in stems at the 6th node of the 2-month-old tomato
of WT, SlHB8-ox, and SlHB-cr mutant. Genes that satisfied the fold-change difference |log2
(fold-change)| > 1 and FDR < 0.05 were regarded as differentially expressed genes (DEGs).
1553 (656 up-regulated + 897 down-regulated) DEGs were detected in the comparison
between WT and SlHB8-ox plants, and 1548 (586 up-regulated + 962 down-regulated)
DEGs were found in the comparison between WT and SlHB8-cr plants (Figure 4B; Table S2).
A total of 2592 DEGs were found between WT and SlHB8 transgenic plants (Table S2). To
gain further insight into the putative functions of these DEGs between the wild type and
SlHB8 transgenic lines, GO assignment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database were used for the further analysis. Using q value ≤ 0.05 as the significant
cut-off, the data revealed that these 2592 DEGs were significantly enriched in the GO terms
related to disease resistance such as “response to endogenous stimulus,” “response to
stimulus,” “response to fungus,” “response to external biotic stimulus” and “response to
biotic stimulus”(Figure 4C; Table S3) and 14 KEGG pathways were significantly enriched
(Figure 4D; Table S3) including pathways related to disease resistance and lignin biosyn-
thesis such as “plant-pathogen interaction,” “MAPK (mitogen-activated protein kinase)
signaling pathway-plant” and “phenylpropanoid biosynthesis”. As the lignin content was
reduced in the SlHB8 overexpressing plant, we further analyzed the expression profile of
DEGs related to lignin biosynthesis. The heatmaps revealed there were 19 DEGs differently
expressed in the SlHB8 transgenic plant with 16 down-regulated in the SlHB8-ox lines
which may account for the decreased lignin content (Figure 4F; Table S2). 23 MYBs were
found differently expressed in the SlHB8 transgenic plant including 13 down-regulated
and 4 up-regulated in the SlHB8-ox lines (Figure 4E; Table S2). All of these suggested that
SlHB8 gene might regulate the synthesis of lignin.

Aims to narrow the range of SlHB8 regulated genes, genes with reversible expression
profiles in SlHB8 overexpression and SlHB8 knock out lines were selected by overlapping
the differentially expressed DEGs gene sets. The Venn diagram revealed that there were
116 DEGs with reversible expression pattern including 29 DEGs up-regulated in SlHB8-cr
and down-regulated in SlHB8-ox and 87 DEGs down-regulated in SlHB8-ox and up-
regulated in SlHB8-cr (Figure 5A,C; Table S2). GO and KEGG functional analysis displayed
these 116 DEGs were enriched in the GO terms of response to fungus, response to biotic
stimulus, immune system process, and salicylic acid mediated signaling pathway which
acts in the disease response pathway (Figure 5B; Table S3); in the KEGG pathways of MAPK
signaling pathway and plant-pathogen interaction (Figure 5D; Table S3), indicating SlHB8’s
role in the disease resistance. 47 out of 116 genes were related to disease resistance, among
which 31 were down-regulated in SlHB8-ox and up-regulated in SlHB8-cr (Figure 5E;
Table S2).
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2.5. SlHB8 Alters the Expression Level of Several Genes Related to Lignin Biosynthesis in Leaves

As lignin content was also reduced in leaves of SlHB8-ox lines, we checked the ex-
pression level of genes involved in the lignin biosynthesis pathway by using RT-qPCR.
The result showed that SlCCR1 (cinnamoyl-CoA reductase), SlCYP73A14/C4H (cinna-
mate 4-hydroxylase), SlCAD (cinnamoyl alcohol dehydrogenase), SlC3H (coumarate 3-
hydroxylase), SlCOMT (caffeic acid-3-O-methyltransferase) and SlPER3 (peroxidase 3 pre-
cursor) were down-regulated in SlHB8-ox lines and up-regulated in SlHB8-cr lines. Sl-
HCT/C3H and SlCCOAOMT5 (caffeoyl-CoA 3-O-methyltransferase) were only reduced in
the SlHB8-ox lines. The expression level of SlCCR2 was not changed. All of these genes’
expression profiles were consistent with that in stem (Figure 6). Among the 116 genes,
there were two genes’ promoters containing SlHB8 binding site, of which peroxidase 3 pre-
cursor (PER3) and cytochrome P450 CYP73A14(C4H) were involved in lignin biosynthesis
(Table S6), indicating a direct regulation between SlHB8 and these two gene.
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Figure 6. SlHB8 regulates the expression of the phenylpropanoid biosynthesis pathway. The expression pattern of key
genes of lignin synthesis pathway in the leaves of WT, SlHB8-ox and SlHB8-cr plants were analyzed by RT-qPCR. In the
chart, the gray columns represent the wildtype line, the orange columns represent the 35S-driven SlHB8 overexpression
(35sL2) line, and the blue columns represent the SlHB8 knockout (SlHB8-cr2) line. Error bars mean ± standard deviant [SE]
and stars indicate the statistical significance. Student’s t-test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

2.6. Validation of RNA-Seq Data by Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR)

To investigate the accuracy and reproducibility of the RNA-seq data, 15 DEGs were
selected from RNA-seq results for qRT-PCR (Table S4). We amplified 15 genes by qRT-PCR
using specific primers to confirm the accuracy and reproducibility of RNA-seq expression
profiles. The results revealed that all 15 genes displayed the same trend (Figure S3),
implying that the RNA-seq was reliable.

3. Discussion
3.1. SlHB8, as a Negative Regulator, Affects Tomato Stem Development by Mediating Xylem Range

Despite significant progress towards understanding the roles of HD-Zip III family
genes in vascular development in many species [2], our knowledge about its role in the
tomato stem development is still in infancy. Indeed, except for a recent report showing that
SD1, a kinase-interacting family protein positively regulates stem diameter by controlling
the size and number of secondary phloem cells [1], no data are presently available about
the potential roles of HD-Zip III genes in stem development in tomato. In our study, we
isolated one of the HD-Zip III family gene SlHB8 from tomato and proved its negative role
in the xylem development.

First, the expression pattern result revealed that SlHB8 expression level was related to
stem development with steady higher transcripts accumulation during stem development.



Int. J. Mol. Sci. 2021, 22, 13343 11 of 17

The in-suit hybridization result showed SlHB8 expressed in the xylem tissues of the stem.
Second, overexpression of SlHB8 under 35s promoters reduced stem diameter and xylem
range. Loss of function of SlHB8 by using CRISPR/Cas 9 assay promoted stem and xylem
development. Overall, we hypothesized that SlHB8 as a negative regulator regulates xylem
development during stem formation.

In Arabidopsis, AtHB8 displayed specific expression in procambial cells and its role in
xylem development [14]. Overexpression of AtHB8 enlarged the xylem tissues [14], which
is different from the SlHB8 in tomato. The AtHB8 homolog gene PtHB7 in populous was
also expressed in the xylem tissues and overexpression of PtHB7 decreased the xylem
distance in the populous stem, which is consistent with the role of SlHB8 in tomato [10].
Both in Arabidopsis and Populous, there is auxin binding site in the promoters of AtHB8
and PtHB7, and ARF5 binds this site. The conserved pathway of ARF5-HB7/8 for vascular
patterning of leaves and stems was found in the herbaceous and woody species [19,50]. We
also found auxin binding sites in the promoter of SlHB8, whether the conserved pathway
is also appeared in tomato remains to be clarified.

3.2. SlHB8 Negatively Regulates Lignin Biosynthesis in Tomato Leaves and Stems

The HB8 gene was reported to function in the xylem development and leaf pattern-
ing [14,51–54], whereas its role in the lignin biosynthesis was not yet clarified. In our
study, lignin content was reduced in both leaves and stems of SlHB8 overexpression lines
(Figure 3), moreover, the down-regulated DEGs in SlHB8 overexpression lines were sig-
nificantly enriched in the phenylpropanoid biosynthesis pathway which generates lignin
polymers, indicating its role in the lignin formation. 19 DEGs in the phenylpropanoid
biosynthesis pathway were found differentially expressed in the SlHB8 overexpressed lines,
16 out of these 19 DEGs were down-regulated which may account for decreased lignin
levels (Figure 4D). Meanwhile, the SlHB8 binding sites were found in the promoter of
SlPER3 which is involved in the Casparian strips’ formation [55].

During recent years, an increasing amount of evidence has indicated that phenyl-
propanoid biosynthetic genes may involve the combinatorial actions of different transcrip-
tional activators and repressors, and R2R3-MYB transcription factors play important roles
in the phenylpropanoid biosynthesis pathway [56]. In our study, 23 MYBs were differen-
tially expressed in the SlHB8 overexpression or knocking out plants. Almost 17 out of 23
MYBs were down-regulated in the SlHB8 overexpression lines, which may contribute to
the reduced lignin level. The expression level of some MYB homolog genes of Arabidopsis
related to the lignin biosynthesis were altered in the SlHB8 transgenic plants. The homolog
of AtMYB15 (solyc03g005570) which was reported to be required for the activation of
lignin biosynthesis genes such as PAL (phenylalanine ammonialyase), C4H (cinnamate
4-hydroxylase), 4CL (coumarate CoA ligase), HCT/C3H (coumarate 3-hydroxylase), COMT
(caffeic acid-3-O-methyltransferase), and CAD (cinnamoyl alcohol dehydrogenase) [42–44]
was down-regulated in the SlHB8 overexpression and knocking out lines. The homolog
genes of AtMYB58 (Solyc03g093890) and AtMYB61 (Solyc10g044680) which were posi-
tively regulated the lignin content by activating PAL, 4CL, CCR (cinnamoyl-CoA reduc-
tase) and CAD [57,58] were up-regulated in the SlHB8 transgenic plants. The homologs
genes of negative regulators of phenylpropanoid biosynthesis pathway such as MYB3 [59]
(Solyc06g065100) and MYB4 [60] (Solyc10g055410) were also induced in the SlHB8 over-
expressing lines. The SlHB8 binding sites were also found both in these promoters of
activators and repressors, indicating a direct regulation between SlHB8 and SlMYBs in
the lignin biosynthesis pathway. Overall, all these data imply SlHB8 participates in an
elaborate regulation network in the phenylpropanoid biosynthesis pathway.

3.3. SlHB8 May Involve in the Disease Resistance

Lignification plays an important role in disease resistance. The lignin biosynthetic
genes and disease resistance are positively correlated [61,62]. GO and KEGG functional
analysis of the DEGs between wild type and SlHB8 transgenic plant revealed these DEGs
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were enriched in the plant-pathogen interaction pathway and phenylpropanoid biosyn-
thesis pathway. Moreover, the lignin content together with phenylpropanoid biosynthesis
pathway genes were both reduced in the SlHB8 overexpression lines indicating the reduced
disease resistance in the SlHB8 overexpression plants. Besides, genes regulating the lignin
biosynthesis and pathogen resistance were also found differentially expressed in the SlHB8
transgenic plants. AtMYB15 (solyc03g005570) is a regulator of defense-induced lignifi-
cation and basal immunity and loss of function of AtMYB15 reduced lignin deposition
and resistance to a virulent bacterial pathogen Pst DC3000 [42–44]. The homolog gene of
AtMYB15 (solyc03g005570) was reduced in the SlHB8 transgenic plants. CASPLs determine
lignin accumulation in the Casparian strip which is mechanical barrier to prevent the
spread of pathogens [63]. The homolog gene of CASPLs (Solyc01g067300) showed an oppo-
site expression level in SlHB8 overexpressing and knockout lines. In addition, 116 DEGs
predicted to be directly regulated by SlHB8 were enriched: in the GO terms of response to
fungus, response to biotic stimulus, immune system process, and salicylic acid mediated
signaling pathway which acts in the disease response pathway; in the KEGG pathways
of MAPK signaling pathway and Plant-pathogen interaction, further indicating SlHB8′s
direct regulating role in the disease resistance. Among these 116 genes there were plenty of
genes related to the disease resistance such as: the homolog genes of FLS2 (solyc02g072400,
solyc06g048735) which is the recognition receptor of flag22 who triggered plant immune
response on pathogen attack [64,65]; the homolog genes of pathogenesis-related genes
(PRs) (MSTRG.16323, solyc01g106620, solyc09g007010) which were reported to be induced
and determined the disease resistance in plants [66–68]; the homolog genes of RBOH
(Solyc01g099620) which is positively related to the pathogen resistance to nematodes in
leaf-infecting of Arabidopsis [69]. In addition, the homolog genes of CRK2 (Solyc01g007960,
Solyc01g007980) who formed a complex with RBOHD for the elicitor-induced ROS burst
and loss of function of CRKs impaired the plant defense against the bacterial pathogen
Pseudomonas syringae pv tomato DC3000 [70]; the homolog gene of MLO2 (Solyc03g095650)
which is called mildew resistant Locus O (MLO) proteins modulating the plant suscepti-
bility to powdery mildew fungi. Loss of function mutant of mlo2, mlo6, mol12 and mlo3
improved the resistance ability [71].

Besides, some transcription factors involved in regulating plant resistance to disease
were also found differentially expressed in the SlHB8 transgenic plants. The basic leucine
zipper transcription factors TGA1 and TGA4 regulate SA biosynthesis by modulating the
expression of SARD1 and CBP60g to prevent the pathogen infection [72]. WRKY transcrip-
tion factors have also been shown to regulate cross-talk between JA and SA-regulated
disease response pathways. Mutations of the Arabidopsis WRKY33 caused enhanced sus-
ceptibility to the necrotrophic fungal pathogens Botrytiscinerea and Alternaria brassicicola
concomitant with reduced expression of the JA-regulated plant defensin PDF1.2 gene. The
susceptibility of WRKY33-overexpressing plants to P. syringaeis associated with reduced
expression of the salicylate-regulated PR-1 gene [73]. Overall, SlHB8 is predicted to be a
regulator in the lignin biosynthesis and disease resistance.

In conclusion, the determinant of the natural variation influencing stem diameter
in natural populations of tomato is Indel 11 in the promoter of the SD1 gene [1]. SD1
is the first domesticated gene related to stem diameter by regulating cell expansion and
cell number in parenchyma tissue of stem [1]. Except SD1, few molecular regulation of
stem development have been reported in tomato. Besides Indel 11, another nine loci that
influence stem development were rigorously verified and the further regulation mechanism
need to be clarified [1]. In our study, we indicate that SlHB8 negatively regulates stem
thickening by mediating the xylem width which is also relevant to the lignin content. The
role of SlHB8 will contribute to the molecular mechanism of stem development in tomato.
Whether SlHB8 can be used for the import loci of the stem development, further research
needs to be done.
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4. Materials and Methods
4.1. Plant Materials, Growth Conditions, and Plant Transformation

The overexpression lines of p35s::SlHB8 were generated by cloning the full length CDS
of SlHB8 (Solyc08g0066500) into plant overexpression vector pMDC32 which was trans-
formed into Agrobacterium tumefasciens for tomato genetic transformation. The SlHB8 knock-
out mutants generated by using CRISPR/Cas 9 were provided by the lab of Chongqing
university. One sgRNA (GCAGAAGCAAGTTTCACAGT) in the coding sequence of SlHB8
was cloned into the vector pAGM4723 and then used for tomato genetic transformation.
Three kinds of SlHB8 knockout mutant were obtained including two types of 8 bps deletion
in the CDS and 1 bp addition in the CDS. Wildtype (Solanum lycopersicum L. “Micro-Tom”)
and SlHB8 transgenic plants were grown in a greenhouse at the College of Horticulture of
the South China Agriculture University. The environmental conditions of the greenhouse
are 25 ± 1 ◦C with a photoperiod of 16 h/8 h (light/dark).

Stems at 20 D (20 days after germination), 30 D (30 days after germination), 45 D
(45 days after germination), and 60 D (60 days after germination) stages were sampled
for analysis. The 6th node of the 2-month-old tomato stem samples of each line were
immediately frozen in liquid nitrogen and stored at −80 ◦C until use.

4.2. Determination of Characteristics Related to Stem Development

The stem diameter of the 6th internode of the 2-month-old tomato plants was mea-
sured by a vernier caliper. The microscopic characteristics related to stem development
such as xylem width, area of single cell, cell layers of xylem and area of a signal vessel
cell were measured by the Image J software (Image-Pro Plus 6.0) based on the images of
toluidine blue-stained paraffin sections.

4.3. Paraffin Transverse Section of Stem Tissues

Stem samples were fixed in FAA solution (70 % ethanol: formaldehyde: glacial acetic
acid, 18:1:1). After a series of processes such as 50–100 % alcohol gradient dehydration,
tissue transparency and paraffin infiltration, the stem tissue are embedded in paraffin.
The specimens were cut into thin sections of 8 um, and after dewaxing and rehydration
treatment, all sections were stained with 0.5 % toluidine blue. The cross-sections were
observed and captured under Zeiss Axio Scope (Zeiss, Oberkochen, Germany).

4.4. Phloroglucinol-HCl Staining Analysis

Hand-cut cross sections of 2-month-old WT and two kinds of SlHB8 transgenic plants
stems were stained with 1.0 % (Weight/Volume, w/v) phloroglucinol, then dissociated by
30 % (Volume/Volume, v/v) HCl (hydrochloric acid), and finally observed and captured
by Bioscope.

4.5. Measurement of Lignin Content

Leaves and stems tissue of 2-month-old WT and two kinds of SlHB8 transgenic plants
were used to determine lignin contents. The method of lignin content was previously
described by Su et al. [19]. The tissues used for lignin determination were collected from
the same part of different plants.

4.6. RNA-Seq Analysis

Stem tissues were collected from 2-month-old plants of WT, SlHB8-ox and SlHB8-
cr. Each sample contained three biological repeats, and each sample included at least
3 stems. All samples were sent to Guangzhou Gene Denovo Biological Technology Co., Ltd.
(Guangzhou, China) for RNA extraction and RNA-Seq library preparation and sequencing.
The cDNA libraries were sequenced using the Illumina HiSeqTM 2500. False discovery
rate (FDR) < 0.05 control method and an absolute value of |log2 (fold change)| > 1 as the
threshold were used to determine the differentially expressed genes (DEGs). Gene ontology
(GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were
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used to further analyzed DEGs enrichment. Transcriptome data analysis and mapping were
carried out using OmicShare Tools (www.omicshare.com/tools, accessed on 18 November
2021), a free online platform developed by Guangzhou GENE DENOVO Biotech.

4.7. RNA Extraction and Real-Time Quantitative PCR Analysis

The total RNA of tomato leaves was extracted by using a E.Z.N.A. Plant RNA ex-
traction Kit (Omega Bio-tek, Inc., GA, USA), which includes a genomic DNA elimination
step. Total RNA from stem samples was provided by Gene Denovo Biological Technol-
ogy Co., Ltd. (Guangzhou, China). The cDNA was synthesized using the PrimeScript
RT Reagent Kit with gDNA Eraser (Takara, Guangzhou, China), according to the manu-
facturer’s instructions. We selected 15 DEGs from RNA-seq data for RT-qPCR analysis
to verify the results of RNA-seq. RT-qPCR was performed in a 10 µL reaction volume
containing 5 µL of 2 × TB Green Master Mix Reagent (Takara, Guangzhou, China), 1 µL of
cDNAs and 4 µL of gene-specific primers (Table S5), which were designed using Primer-
BLAST in National Center for Biotechnology Information (NCBI). The expression levels of
housekeeping gene SlUBI was used as reference for calculating the relative expression of
target gene using the 2−∆∆Ct method [21]. RT-qPCR analysis was based on three biological
replications and three technical replications.

5. Conclusions

SlHB8 belongs to the HD-Zip III transcription factor family and shows stable high
expression level during tomato stems development. Loss of function of SlHB8 induced
stem diameter and xylem width, while overexpression of SlHB8 displayed opposite trend.
Besides, inducing the expression level of SlHB8 resulted in lower lignin content as well as
the expression level of lignin biosynthesis pathway genes both in tomato stem and leaves.
In addition, lots of disease resistance genes were found differentially expressed in the
SlHB8 transgenic plants indicating a possible role of SlHB8 in the biotic resistance pathway.
Overall, SlHB8 acts as a negative regulator in stem development and lignin biosynthesis
and has a potential role in the abiotic and biotic resistance pathway.
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