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Abstract: Atherosclerosis is a major cause of human cardiovascular disease, which is the leading
cause of mortality around the world. Various physiological and pathological processes are involved,
including chronic inflammation, dysregulation of lipid metabolism, development of an environment
characterized by oxidative stress and improper immune responses. Accordingly, the expansion
of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the
role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated
with each stage in the formation of foam cells and the development of atherosclerosis will be
considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps
in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and
cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently,
many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation
of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of
lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1)
esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate
inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed
important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus
on foam cell formation.
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1. Introduction

Atherosclerosis is a chronic, progressive immuno-inflammatory disease that affects
blood vessels and can result in the development of atherosclerotic plaques. These plaques
have the potential to rupture and lead to cardiovascular disease, especially myocardial
infarction (MI) or stroke, which represent two of the leading causes of death worldwide [1].
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Since foam cells are a central player in the underlying pathology of atherosclerosis, reduc-
ing the formation of foam cells, or inducing their removal, might represent an effective
therapeutic strategy. Recently, several groups reported that targeting foam cells could effec-
tively ameliorate atherosclerosis, which are described in this review. Current studies have
suggested that non-coding RNAs are involved in the pathophysiology and progression of
atherosclerosis and are good diagnostic and prognostic biomarkers, as well as therapeutic
targets [1]. In this review, we discuss non-coding RNAs as therapeutic targets in the context
of either enhancing or attenuating the formation of foam cells, which ultimately affects the
metabolism and overall homeostasis of cholesterol.

2. Pathophysiology of Atherosclerosis and the Key Role of Foam Cells

The pathophysiology of atherosclerosis includes a complex network of different cel-
lular processes and is associated with risk factors such as arterial hypertension, smoking,
hyperglycemia and hypercholesterolemia [1]. One of the triggers of this disease is endothe-
lial damage, which plays an important role in the formation of atherosclerotic plaques.
Endothelial damage results in arteries experiencing a decrease in nitric oxide (NO) bioavail-
ability and an increase in the production of reactive oxygen species (ROS) [2,3]. NO is an
anti-atherogenic and vasoprotective factor essential for vascular health and is obtained
by conversion of arginine to citrulline by endothelial nitric oxide synthase III (ENOS) [4].
Increased ROS also produce a state of oxidative stress that assists in the modification
of LDL to its oxidized form (oxLDL). Platelets can also be activated by oxLDL and in-
duce vascular inflammation [5,6]. Eventually, oxLDL, together with chronic low-grade
inflammation resulting from endothelial injury, trigger an innate immune response and
increase the recruitment of immune cells, especially monocytes and neutrophils, to the
subendothelial space to participate in plaque formation. Recruitment of monocytes to
the subendothelial space is mediated by the upregulation of cell adhesion molecules and
chemokines (such as monocyte chemoattractant protein-1 (MCP-1)) via oxLDL signaling
pathways [7,8]. The recruited monocytes then differentiate into macrophages mediated
by colony-stimulating cytokines such as M-CSF and GM-CSF, both of which are enhanced
through oxLDL-induced signaling pathways [9]. Macrophages also differentiate into in-
flammatory (M1) macrophages in the presence of the Th1 cytokine, or anti-inflammatory
(M2) macrophages in the presence of the Th2 cytokine, in the subendothelial environ-
ment [10,11]. No M1 and M2 macrophages have been identified as specific precursors
for foam cell formation, but several studies have shown that M2 macrophages are more
susceptible to foam cell formation [12].

Another aspect of the pathophysiology of atherosclerosis is the dysregulation of choles-
terol metabolism in the macrophage, which is the main cell responsible for atherosclerotic
plaque [13]. Oxidized-LDL signaling pathways are involved in the downregulation of
cholesterol efflux transporters. By increasing both the internalization of oxLDL and the
accumulation of lipid droplets in the macrophage, foam cell formation gradually occurs,
which initially leads to fatty streaks and ultimately, to primary atherosclerotic lesions. Foam
cells play a central role in the pathogenesis of atherosclerosis. Specifically, the formation
and accumulation of foam cells in the subendothelial space of a damaged artery is one of
the early key steps responsible for the development of atherosclerosis [14,15]. MCP-1 and
TNF-α represent two inflammatory mediators released during foam cell formation. MCP-1
increases vascular smooth muscle cell (VSMC) proliferation and leukocyte migration and
TNF-α upregulates cell adhesion molecules (CAMs), which subsequently increases the
recruitment of VSMCs and immune cells [16]. The proliferation of VSMCs inside the plaque
temporarily stabilizes the lesion through collagen synthesis and other extracellular matrix
(ECM) proteins, which function to maintain the integrity of the fibrous cap and inhibit cap
rupture. Nevertheless, an increasing number of foam cells, which have pro-atherogenic
properties, ultimately leads to plaque rupture and blood vessel occlusion due to the release
of matrix-degrading enzymes [17,18]. Most plaque growth, or lesion progression, is a result
of macrophage activity, although other immune cells (e.g., neutrophils), have also been
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shown to play an important role [19]. Eventually, the plaque ruptures and results in clinical
manifestations recognized as MI and stroke [20].

3. Foam Cells as Therapeutic Targets in Atherosclerosis

Foam cell formation is one of the critical processes in the development and patho-
genesis of atherosclerosis. As mentioned above, fatty streaks are the first detectable “yel-
low “lesion in the vessel wall that indicates foam cell formation and the development
of atherosclerosis. Foam cells are involved in the formation of primary atherosclerotic
plaques, their continued growth and ultimately, their rupture, which finally, leads to either
MI or stroke [5,12,14]. The specific therapeutic goals associated with each stage in the
formation of foam cells and the development of atherosclerosis will be considered below.
Processing and metabolism of cholesterol in the macrophage is one of the major steps
in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esteri-
fication and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the
macrophage. However, dysregulation and disruption of these processes results in foam cell
formation [21]. During the development of atherosclerosis, chemoattractants (especially
MCP-1) recruit monocytes to the subendothelial space of the damaged endothelium and
they undergo differentiation to macrophages [22]. The macrophages express scavenger
receptors SRA-1, SRA-2, CD36 and LOX1. Cellular uptake of oxLDL occurs by phagocytosis
and pinocytosis via scavenger receptors, which preferentially incorporate oxLDL relative
to its native (unmodified/unoxidized) form [23].

Numerous studies in mice have selectively targeted either chemoattractants or ad-
hesion molecules involved in the recruitment of monocytes, or cytokines involved in the
transmigration of monocytes. This has been accomplished by inactivating the genes encod-
ing various molecules, such as M-CSF, CCL2, CXCR1 and CCR5, which has been shown
to result in less and smaller atherosclerotic lesions in ApoE−/− mice [24–26]. Animal
studies using LDLR−/− mice have evaluated both the knockdown of VCAM-1 [27,28],
or drug inhibition with a natural antioxidant AGI-1067, which showed successful and
significant reductions in the development of atherosclerotic plaques in LDLR−/− mice [29].
SRA-1, 2, CD36 and LOX-1 are the primary scavenger receptors of macrophages that
play a key role in lipid uptake and are controlled by several regulators such as MEKK-2,
MAP kinases and STAT1 [23,30–32]. Numerous studies have targeted the role of these
three major scavenger receptors in foam cell formation. For example, overexpression of
LOX-1 in ApoE−/− mice accelerated the development of atherosclerosis, while LOX-1−/−,
LDLR−/− mice had smaller atherosclerotic lesions, which suggests a proatherogenic role
for LOX-1 [33]. These receptors are multifunctional in nature and their expression is not
limited to macrophages, because they are also expressed in aortic endothelial cells (ECs)
and VSMCs. For these reasons, as well as the fact that different lipid uptake pathways
exist, such as phagocytosis and pinocytosis, it is difficult to design studies that evaluate the
therapeutic targeting of these receptors [34]. Additionally, an analysis of different studies
indicates that there is still a debate between whether these receptors are pro-atherogenic, or
anti-atherogenic [35,36]. Thus, we would suggest that further studies are needed to better
understand the lipid uptake pathways and the true functional role of each of these recep-
tors. In cholesterol esterification, ACAT-1 and neutral cholesterol ester hydrolase (NCEH)
play a key role in catalyzing the esterification of cholesterol and removing cholesterol
from macrophages, respectively [37,38]. ACAT-1 is found ubiquitously in the endoplasmic
reticulum of cells and is sensitive to the degree of membrane cholesterol enrichment, which
is why it functions to maintain the cholesterol content of cell membranes at an optimal
level by catalyzing the esterification of excess free cholesterol [39]. Studies have shown
that ACAT-1 gene knockout in ApoE−/− and LDLR−/− mice resulted in no change in
the development of atherosclerotic lesions and failed to inhibit foam cell formation [40].
However, pharmacological inhibition of ACAT-1 in macrophages has been shown to in-
crease foam cell formation in mouse and rabbit models of atherosclerosis [41,42]. Moreover,
animal studies evaluating the suppression of NCEH1 and hormone-sensitive lipase (LIPE),
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two important enzymes involved in the hydrolysis of cholesterol esters (CEs) back to free
cholesterol (FC), have demonstrated a significant increase in intracellular CE accumulation
when compared to control animals [38,43]. This would suggest that future studies should
target all three enzymes (NCEH1, LIPE and ACAT-1) to intentionally modulate cholesterol
turnover in macrophages.

Cholesterol efflux is one of the primary events in cholesterol metabolism and foam cell
formation. The mechanism for cholesterol efflux is mainly attributable to ATP-binding cas-
sette transporters ABCA1, ABCG1, as well as SR-B1, which function to maintain cholesterol
and phospholipid homeostasis in the macrophage [44]. ABCA1 facilitates cholesterol and
phospholipid efflux and leads to the formation of ApoA1, while ABCG1 mediates choles-
terol efflux to form nascent high-density lipoprotein (HDL), which ultimately prevents the
formation of foam cells. The expression of these transporters is predominantly dependent
on the activation of PPAR and LXRα transcription factors [45]. Many studies have targeted
these specific transporters. For example, in LDLR−/− mice treated with PPARα and PPARγ
agonists, the progression of atherosclerosis decreased due to the increased expression of
ABCG1 and ABCA1 [46,47].

One of the limitations of targeting these transporters involved in cholesterol efflux
pathways is that other pathways, such as passive diffusion, exist to transport cholesterol
throughout the cell [48]. In studies that have been conducted, including genetic ablation
of both ABCA1 and SR-B1 simultaneously in ABCA1×SR-BI double knockout (dKO)
mice, macrophage RCT was markedly impaired and macrophage foam cell formation was
increased in both lung and Peyer’s patches of dKO mice. However, atherosclerotic lesions
did not develop in these dKO mice, which was potentially due to the low levels of non-HDL-
C [49]. It should be noted, however, that hepatic overexpression of ABCA1 in LDLr-KO
mice leads to enhanced aortic atherosclerotic lesions [49]. Therefore, knockdown studies
on these three transporters could best be described as having yielded mixed results [50].

Cholesterol efflux inhibits the accumulation of excess lipids in the foam cell. Over
time, the ability of the foam cell to manage the extra lipoproteins in the foam cell decreases,
which leads to endoplasmic reticulum stress and the production of ROS and, in turn,
triggers the apoptotic cascade. Additionally, uncontrolled lipoprotein uptake itself causes
foam cell apoptosis [51,52].

Eventually, apoptosis of foam cells leads to the release of pro-inflammatory cytokines
such as IL-1, IL-6, TNF-alpha and matrix metalloproteinases (MMPs); all, of which, may ag-
gravate atherosclerosis by promoting an inflammatory state and the infiltration of immune
cells [53].

The use of either pharmacological anti-inflammatory agents such as canakinumab,
adalimumab and the TNF inhibitor etanercept, or agents that attenuate oxidative stress,
may hold promise as a therapeutic intervention [54,55].

Furthermore, trying to slow the death of foam cells might represent a therapeutic goal
to prevent the development and worsening of atherosclerosis [56]. There are a number
of strategies that could be employed to decelerate foam cell apoptosis. These include (1)
targeting apoptotic pathways, such as the genetic inhibition of proapoptotic proteins such
as BAX or Bcl-2 [57,58], (2) knockdown of apoptosis inhibitor of macrophages (AIM) [59],
(3) targeting secondary necrosis pathways such as the clearance of apoptotic cells [60,61],
(4) promoting efferocytosis of apoptotic macrophages by using LXR ligands or glucocorti-
coids [62,63], or (5) by activating PPARγ pathways [64]. Another strategy to either control
foam cell formation or increase the clearance of foam cells is statin therapy. Statins have
been extensively investigated in patients with cardiovascular disease due to their numerous
pleiotropic effects such as reducing oxidative stress, enhancing plaque stability and exerting
anti-inflammatory effects [65–75]. Following foam cell formation, the foam cells take on a
profibrotic phenotype. By releasing substances such as MMPs, they increase monocyte re-
cruitment and degradation of extracellular matrix proteins such as collagen and fibronectin.
This process leads to plaque instability and ultimately, plaque rupture [53,76]. For this rea-
son, inhibition of MMPs may represent a treatment option in atherosclerosis. Many studies
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have targeted MMPs, in particular MMP8, because its increase in human carotid plaque has
been associated with an unstable plaque phenotype [77]. Using MMP8−/− ApoE−/− mice,
it has been demonstrated that monocyte/leukocyte recruitment and macrophage lesions
decrease. Moreover, either MMP-9 or MMP-12 deficiency in ApoE−/− mice has been
shown to increase plaque instability [78–80]. Historically, monocyte-derived macrophages
were considered the major source of plaque foam cells. However, other cells in the arterial
wall such as ECs and VSMCs, as well as stem/progenitor cells (SPCs), show a foam cell
phenotype in atherosclerotic plaques [81,82]. In fact, studies have shown that 50% of
the foam cell population originates from VSMCs in human atherosclerotic lesions [83].
Therefore, this may suggest yet another strategy in the treatment of atherosclerosis; namely,
targeting alternative cellular origins of foam cells [84–86]. Finally, one of the most important
strategies for targeting foam cell formation is the use of miRNAs, which will be discussed
in detail in this article.

The role and function of non-coding RNAs in foam cell formation and related processes
(cholesterol efflux, cholesterol influx and cholesterol esterification) is depicted in Figure 1.
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which are atherogenic and lead to lipid accumulation in macrophages. Cholesterol efflux is a pathway that transports 

Figure 1. The mechanisms and molecules involved in cholesterol metabolism and homeostasis and the regulatory effects of
Non-encoding RNAs are depicted in a foam cell. Cholesterol metabolism involves cholesterol influx, cholesterol esterification
and cholesterol efflux, which ultimately leads to cholesterol homeostasis in the macrophage. Scavenger receptors SRA-1,
CD36 and LOX1 are involved in oxLDL uptake. The gene expression of these receptors is downregulated in part A (see
above); that is, non-encoding RNAs that have anti-atherosclerotic properties and are upregulated by part B ncRNAs, which
are atherogenic and lead to lipid accumulation in macrophages. Cholesterol efflux is a pathway that transports excess free
cholesterol from the cell, mainly via ABCA1, ABCG1, as well as SR-B1 transporters, leading to the formation of HDL and
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apoa1. The ncRNAs that reduce the formation of foam cells by increasing cholesterol efflux are specified in part C, as well
as ncRNAs that lead to induction of the formation of foam cells by reducing cholesterol efflux, which are specified in part
D. In cholesterol esterification, ACAT-1 and neutral cholesterol ester hydrolase (NCEH) play a key role in catalyzing the
esterification of cholesterol and removing free cholesterol from foam cells, respectively. ACAT1 re-esterifies excess FC to
promote the biosynthesis of CE that is stored in lipid droplets. In part E, microRNAs have been listed that reduce cholesterol
esterification and increase the accumulation of free cholesterol, which ultimately promotes foam cell formation. Reducing
foam cell apoptosis can stabilize atherosclerotic plaque and prevent the progression and worsening of atherosclerosis.

ncRNAs that reduce foam cell apoptosis are shown in part F.
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gene expression, such as miRNAs, piRNAs and lncRNAs; those involved in the maturation
of RNAs (snRNAs, snoRNAs); and those involved in the synthesis of proteins (rRNAs,
tRNAs). The ncRNAs are typically classified by size. Thus, ncRNAs that are less than
200 nucleotides in length are categorized as small ncRNAs (sncRNAs), while those that are
over 200 nucleotides in length are considered long ncRNAs (lncRNAs) [91,92]. The length
of microRNAs is between 20–24 nucleotides, which bind to the 3’ untranslated region
(3′UTR) of the target mRNA and either prevent its translation, or cause it to degrade. Most
miRs reduce gene expression post-transcription, although in some instances, miRs can
increase gene expression by activating the translation of the target mRNA. MiRNAs are
often transcribed by RNA polymerase II (its early version was termed pri-miRNA) [93–95].
Biogenesis of miRNA occurs via the canonical pathway involving Drosha and Dicer, as
well as through different non-canonical pathways that are independent of Drosha and even
Dicer. Single mRNAs can be involved in different biological processes and can also be
targeted by different miRNAs. Therefore, miRNAs play a multifunctional role due to the
fact that they can participate in separate biological processes, which represents one of the
limitations of using miRNAs in basic research and clinical investigations [96,97]. LncRNAs
have a size between 200 bp to 100 kb, which are capable of binding to DNA, protein
and RNA at various levels, exerting cellular regulation such as chromatin remodeling,
mRNA splicing, or mRNA translation and multi-protein complex assembly. Additionally,
lncRNAs are transcribed by RNA polymerase II and most of them undergo alternative
splicing, 5′-capping and polyadenylation processes [98,99].

LncRNAs may function in both the cis and trans configuration to regulate the expres-
sion of target genes. They are also able to use a set of different molecular mechanisms
to accomplish this goal. For example, they may act as a scaffold for the recruitment of
chromatin modifiers or transcription factors, act as decoys for the breakdown of proteins
and function as miRNA sponges to activate or deactivate target genes [100,101]. Presently,
lncRNAs are classified by their genomic localization and modes of action or function,
including intronic lncRNAs and intergenic lncRNAs that originate from a different region
of the gene. Most mature transcribed lncRNAs are thought to have little potential for
protein-coding, because some of them contain small open reading frames and encode small
functional peptides. Interestingly, lncRNAs have more functional diversity due to the fact
that they have less conserved sequences and are under less selective pressure [98,102,103].

In pathological conditions, therapeutic strategies involving miRNAs primarily use
miRNA inhibition to reduce the expression of miRNAs whose expression has increased
and use miRNA replacement to increase the expression of suppressed miRNAs.
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miRNA inhibitors are chemically modified single-stranded antisense oligonucleotides
(ASOs) that are complementary to the mature miRNA. To date, angtagomiRs (target-single
miRNAs conjugated with cholesterol), anti-miRs (target-single miRNAs) and tiny anti-miRs
(target miRNA families) have been synthesized to mediate miRNA inhibition. These ASOs
can reduce pathogenic expressed miRNAs [91,92].

Nonviral delivery of miRNAs, for example, using liposomes, nanoparticles, or antibody-
based methods, as well as viral delivery such as adeno-associated virus (AAV) and aden-
ovirus have been used for the restoration of microRNA levels.

Since various studies have shown that ncRNAs have the potential to regulate different
cell pathways, one promising therapeutic goal could be to manipulate their function using
oligonucleotide inhibitors or miR mimics. Antisense oligonucleotides directed against
specific miR sequences are effectively taken up by diverse tissues. Furthermore, miR
mimics and inhibitors are relatively stable in plasma and miR mimics and inhibitors are
not highly toxic and can easily reach cellular gene targets. However, the challenge to
directly target a specific inflamed tissue and/or a specific cell line is still ongoing [87,88]. It
should be noted that some studies using anti-miR have shown that they can target plaque
macrophages and regulate gene expression in these cells [91,92].

Non-coding RNAs, which are involved in stimulating and reducing the formation of
foam cells, are summarized in Tables 1 and 2.
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Table 1. Non-coding RNAs that stimulate foam cell formation/function.

Non-Coding
RNAs

Expression
Type

Target
Gene

Genetic Information
(Human)

Experimental Model Effect on Foam
Cell Formation

Regulation in Lipid
Metabolism Reference

In Vivo In Vitro
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Table 1. Cont.

Non-Coding
RNAs

Expression
Type

Target
Gene

Genetic Information
(Human)

Experimental Model Effect on Foam
Cell Formation

Regulation in Lipid
Metabolism Reference

In Vivo In Vitro
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obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

HBP1 located within a region known as
the B-cell integration cluster (BIC) ApoE−/− mice

ox-LDL-treated
human THP-1
macrophages

(+)
Enhanced lipid

uptake and
enhanced ROS

production

Silencing of miR-155 in
ApoE−/− mice

by injecting antagomiR-155
decreased the lipid-laden

macrophages and the
formation of atherosclerotic

plaques

[113]
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  
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NPC1 
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encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

CSE located on chromosome 2p16.1 -

THP-1
macrophages-
derived foam

cells

(+)
Decreased ABCA1

expression and
cholesterol efflux

Downregulation of CSE/H2S
leads to an increase in

cholesterol accumulation in
foam cells

[114]

miR-382-5p
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LXR and FXR control 
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with both causing an 
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ApoE−/− mice

human  THP-1 
macrophage-
derived foam 
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(+) 
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to both apoAI and HDL 
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RCT in vivo 
144-3p mimics (agomir) 
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inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 
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miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

NFIA located on chromosome
14q32.31 -

THP-1
macrophage-
derived foam

cells

(+)
Reduces

cholesterol efflux
Increases lipid

uptake

RP5-833A20.1/miR-382-
5p/NFIA pathway regulates

cholesterol homeostasis
[107]

miR-486
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LXR and FXR control 
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with both causing an 
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ApoE−/− mice

human  THP-1 
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derived foam 
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(+) 
Decrease 

cholesterol efflux 
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RCT in vivo 
144-3p mimics (agomir) 
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in vivo and in vitro 
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encoded within intron 
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transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

HAT1 located on chromosome
8p11.21 -

THP-1
macrophage-
derived foam

cells

(+)
Reduces

cholesterol efflux

HAT1 is capable of
acetylating H4K5 and H4K12

and increasing ABCA1
expression

[115]

miR-212
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

SirT1 located on chromosome
17p13.3 ApoE−/− mice

THP-1 human
macrophages
treated with

oxLDL

(+)
Suppresses

ABCA1 dependent
cholesterol efflux

SIRT1 has capable of
inducing LXR activity to

increase ABCA1 expression in
human macrophages

[116]

miR-19a
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

HBP-1

miR-19a is an important member
of the miR-17–92 polycistronic

gene cluster
MiR-19a is abundant in the blood

and tissues of patients with
atherosclerotic coronary artery

disease

ApoE−/− mice
THP-1 derived
macrophages

RAW264.7 cells

(+)
Increases lipid

uptake of
macrophages

HBP-1 participates in
inhibiting the expression of
the macrophage migration

inhibitory factor (MIF)
and lipid uptake by

macrophages
size of the atherosclerotic
plaques in antagmiR-19a
treated mice was reduced

[117]

miR-497
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

Apelin Located on chromosome 17q13.1 -

Human THP-1
macrophages
treated with

oxLDL

(+)
Decrease

cholesterol efflux
to apoA-I.

Apelin is an adipokine that is
involved in the

pathophysiology of
cardiovascular diseases

[118]
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

ABCA1

Mir 20a Located on chromosome
13q31.3

Mir 20b Located on chromosome
Xq26.2

ApoE−/− Mice

THP-1 and RAW
264.7

Macrophage-
derived foam

cells.

(+)
Reducing

cholesterol
Efflux,

impairs RCT
in vivo

Both in in vitro studies and in
ApoE−/− mice treated with

miR-20a/b, the hepatic
expression of ABCA1, as well

as reverse cholesterol
transport, are decreased

[119]

miR-758
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

ABCA1

miR-758 was widely expressed in
mouse tissues and particularly

abundant in the brain, heart and
aorta

localized in an intergenic region
within chromosome 14

Ldlr−/− mouse
Mouse and human

macrophage

(+)
Cholesterol efflux

to apoA1

effect of miR-758 on
cholesterol efflux to ApoA1
was significantly attenuated

after ABCA1 silencing
decrease in peritoneal

macrophages obtained from
hypercholesterolemia

LDLR−/− mice

[120]

LncRNA
MALAT1
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

CD36,
b-catenin Located on chromosome 11q13.1 - THP-1-derived

macrophage

(+)
Enhances lipid

uptake

oxLDL induces MALAT1
transcription via the NF-kB

pathway
Knockdown of MALAT1
using siRNA transfection

reduces CD36 expression and
affects lipid uptake in

macrophages

[121]

LncRNA
ENST0000060

2558.1
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miR-144-3p  ABCA1 

LXR and FXR control 
miR-144 expression, 
with both causing an 
upregulation in this 

miRNA 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 
to both apoAI and HDL 

decreased HDL-C 
circulation and impaired 

RCT in vivo 
144-3p mimics (agomir) 

increases the expression of 
inflammatory factors such 
as IL-1b, IL-6 and TNF-α 

in vivo and in vitro 

[103] 

miR-33(a/b)  

ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

ABCG1 -
vascular smooth

muscle cells
(VSMCs)

(+)
Reduce

ABCG1-mediated
cholesterol efflux

to HDL

ENST00000602558.1 induces
p65, which is a specific
inhibitor of NF-kB and

mediates a decrease in the
expression of ABCG1

[122]

LncRNA
UCA1
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RCT in vivo 
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increases the expression of 
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in vivo and in vitro 
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ABCA1, 
NPC1 

ABCG1 

encoded within intron 
16 of SREBF2, a gene 

that encodes a key 
transcriptional 

regulator of cholesterol 
uptake and synthesis 

miR-33−/− 
ApoE−/− mice

THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

cholesterol efflux 

miR-33 coordinates 
cholesterol homeostasis [104,105] 

miR-19b  ABCA1 

located on chromosome 
13q31.3 

By an unknown 
mechanism, expression 

was increased 
compared with the 

control group in 
advanced human 

atherosclerotic plaques 
obtained from patients 
during endarterectomy 

ApoE−/− mice

human  THP-1 
macrophage-
derived foam 

cells 

(+) 
Decrease 

the efflux of cholesterol 
to apoAI  

Decrease the levels of HDL 
(inhibitory role in RCT) 

[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

Mi R-206

downregulation of UCA1 inhibits
oxidative stress and induces

apoptosis of THP-1 cells,
Located on chromosome

19p13.12

- THP-1 cells

(+)
Increase oxidative

stress process
In addition, CD36

levels

oxLDL greatly increases
UCA1 expression,

UCA1 ‘sponges’ miR-206 to
exacerbate atherosclerosis

[123]
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RNA
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located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

ApoC2
located on

chromosome
6p21.31

- THP-1 derived
macrophages

(−)
Inhibited the

cellular uptake of
Ox-LDL and lipid

accumulation

ApoC2 most important cofactor
for LPL lipolytic activity [124]
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derived 
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(−)
Attenuates lipid uptake
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(+) 
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free cholesterol for cellular [107] 

TLR4
located on

chromosome
3p21.2

- RAW264.7 and
MOVAS cells

(−)
Attenuates lipid uptake

and inhibit oxidative
stress and vascular

inflammation

Inhibits CD36
expression [127]

miR-9
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human THP-1-

derived 
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(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

ACAT1
located on

chromosome
1q22

-

Human THP-1
macrophage-
derived foam

cell

(−)
Decrease the cholesterol
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Reduces the levels of the ACAT1
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(Acyl-coenzyme A:cholesterol
acyltransferase )
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Attenuates lipid uptake 
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Reduces the expression 
of scavenger receptor 

SCARB2 
Increases the expression 
of NCEH1 and ABCG4  

[125] 

miR-181a  TLR4 
located on 

chromosome 
1q32.1 

- THP-1 
(−) 

Attenuates lipid uptake and 
apoptosis and inflammation 

Inhibits protein levels of 
CD36 (scavenger 
receptor class B) 

[126] 

miR-135a  TLR4 
located on 

chromosome 
3p21.2 

- 
RAW264.7 and 
MOVAS cells 

(−) 
Attenuates lipid uptake and 
inhibit oxidative stress and 

vascular inflammation  

Inhibits CD36 
expression [127] 

miR-9  ACAT1 
located on 

chromosome 
1q22 

- 
Human THP-1 
macrophage-

derived foam cell 

(−) 
Decrease the cholesterol ester 

formation 

Reduces the levels of the 
ACAT1 protein 
(Acyl-coenzyme 

A:cholesterol 
acyltransferase ) 

[128] 

miR-21 
 MKK3 

MERTK 

located on 
chromosome 

17q23.1 

Ldlr−/− or 
miR21−/− mice 

Peritoneal 
macrophages 

from adult 
miR21−/− mice 

(−) 
Attenuated cholesterol efflux 

and promoting the lipid 
accumulation, 

Reduce apoptotic cell 
uptake 

Knock down of miR-21 
increases the expression 
of MKK3, promoting the 
induction of p38-CHOP 

and jNK signaling, which 
results in degradation of 

ABCG1, 

[129] MKK3
MERTK

located on
chromosome

17q23.1

Ldlr−/− or
miR21−/− mice

Peritoneal
macrophages from
adult miR21−/−

mice

(−)
Attenuated cholesterol
efflux and promoting

the lipid accumulation,
Reduce apoptotic cell

uptake

Knock down of miR-21 increases
the expression of MKK3,

promoting the induction of
p38-CHOP and jNK signaling,

which results in degradation of
ABCG1,

Decreases expression of MERTK;
a key receptor that mediates the

clearance of apoptotic cells

[129]
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Formation
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[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

AdipoR2
located on

chromosome
19q13.33

- THP-1
macrophages

(−)
Attenuates lipid uptake

Increases cholesterol
efflux

Decreases CD36,
upregulates

ABCA1 and ABCG1 via the
PPARγ- and LXRα-dependent

pathways.

[130]
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located on chromosome 
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human THP-1-

derived 
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(+) 
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regulates the availability of 
free cholesterol for cellular [107] 

TR4
(testicular

orphan
nuclear

receptor 4)

located on
chromosome

18q11.2
- RAW 264.7

macrophage cells

(−)
Decreased oxLDL

uptake
In addition, lipid

accumulation

Decreases expression of CD36 [131]

miR-155
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human THP-1-

derived 
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(+) 
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regulates the availability of 
free cholesterol for cellular [107] 

Tim-3, CEH
(cholesterol

ester
hydrolase)

located on
chromosome

21q21.3
- THP-1

(−)
Increases cholesterol

efflux,
Decreased lipid uptake

inhibits Tim-3 expression and
increases the expression of CEH
resulting in increased expression

of ABCA1;
inhibits the expression of SR-A,
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(+) 
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By an unknown 
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(+) 
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Decrease the levels of HDL 
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[106] 

miR-101   ABCA1 
located on chromosome 

1p31.3 - 
human THP-1-

derived 
macrophages 

(+) 
Decrease 

regulates the availability of 
free cholesterol for cellular [107] 

CARHSP1
located on

chromosome
21q21.3

- THP-1
(−)

Decrease inflammation
and lipid uptake

suppresses TNF-α production by
directly targeting CARHSP1,
which is required for TNF-α

mRNA stabilization

[133]

miR-98
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derived 
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regulates the availability of 
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LOX-1
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ox-LDL
scavenger
receptor-1)
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chromosome
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collected from
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Decreases the lipid

uptake and lipid
accumulation
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miR-223
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deacetylase
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located on
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accumulation of
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and free cholesterol
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NF-κB
complex
MEKK1
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chromosome 3p21.2
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apoE−/− mice

Human
THP-1

macrophage

(−)
increase cholesterol

efflux,
Decrease intracellular

lipid accumulation
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suppression of miR-33a,

decreases p53-dependent
apoptosis
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LncRNA
CDKN2B-AS1
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chromosome 
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Decrease the cholesterol ester 
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ACAT1 protein 
(Acyl-coenzyme 

A:cholesterol 
acyltransferase ) 

[128] 

miR-21 
 MKK3 

MERTK 

located on 
chromosome 

17q23.1 

Ldlr−/− or 
miR21−/− mice 

Peritoneal 
macrophages 

from adult 
miR21−/− mice 

(−) 
Attenuated cholesterol efflux 

and promoting the lipid 
accumulation, 

Reduce apoptotic cell 
uptake 

Knock down of miR-21 
increases the expression 
of MKK3, promoting the 
induction of p38-CHOP 

and jNK signaling, which 
results in degradation of 

ABCG1, 

[129] ADAM10 located on
chromosome 9p21.3

ApoE−/− Mice,
C57BL/6J Mice

THP-1
macrophage-
derived foam

cells

(−)
Increases Cholesterol

Efflux,
Decrease lipid
accumulation

Inhibits inflammatory responses
by suppressing the transcription

of ADAM10
[142]

LncRNA
DYNLRB2-2
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5. Non-Coding RNAs That Stimulate Foam Cell Formation/Function

Most of the microRNAs described in this review, either directly or indirectly, tar-
get ABCA1.

As mentioned above, ABCA1 is a membrane protein at the cell surface that regulates
the transport of cholesterol and phospholipid and other metabolites [144]. In general,
deficiency or downregulation of ABCA1 expression leads to a significant decrease in
serum HDL levels and an increased risk of atherosclerosis. This is primarily due to the
suppression of cholesterol efflux and disruption of the reverse cholesterol transport (RCT)
cycle and subsequent foam cell formation. HDL has a cardioprotective role by preventing
the oxidation of lipoproteins and returning cholesterol from peripheral tissues back to the
liver via the RCT process [145].

Protein levels and ABCA1 activity are regulated at both the transcriptional and post-
transcriptional levels, such that any downregulation of ABCA1 expression adversely affects
the function of atheroprotective lipoprotein subclasses. Additionally, in APOE−/− mice, the
overexpression of ABCA1 can effectively reduce the size of atherosclerotic plaques [146,147].

Direct and indirect effects of different Non-coding RNAs on the expression of ABCA1
are shown in Figure 2.
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Some microRNA, such as miR-33 [104], miR-19b [106], miR-101 [106], miR-144-3p 
[106], miR-302a [104], miR-26 [106], miR-20a/b [106] and miR-758 [106] directly target the 
3’UTR of ABCA1 in macrophages, which suppresses ABCA1 expression and disrupts cho-
lesterol homeostasis. The disruption in cholesterol homeostasis occurs due to a decrease 

Figure 2. Direct and indirect effects of different Non-coding RNAs on the expression of ABCA1, which has a large 3′UTR
region and is one of the most important transporters in cholesterol efflux [144,145]. In direct mechanism: non-coding RNAs
able to bind to 3′UTR of ABCA1 mRNA transcript which ABCA1 expression regulate, in indirect mechanism: non-coding
RNAs were not able to bind to 3′UTR of ABCA1 mRNA transcript although these noncoding RNAs that bind to 3′UTR of
other mRNA transcript in turn regulate ABCA1 expression. It has also been shown that reducing inflammation increases the
expression of this transporter and has a negative role in the formation of foam cells by increasing cholesterol efflux [148,149].

Some microRNA, such as miR-33 [104], miR-19b [106], miR-101 [106], miR-144-
3p [106], miR-302a [104], miR-26 [106], miR-20a/b [106] and miR-758 [106] directly target
the 3′UTR of ABCA1 in macrophages, which suppresses ABCA1 expression and disrupts
cholesterol homeostasis. The disruption in cholesterol homeostasis occurs due to a decrease
in the efflux of cholesterol to ApoA1 or HDL, which ultimately causes the formation of
foam cells. A more detailed description is given in Table 1.
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5.1. miR-33

This microRNA directly targets ABCA1 and ABCG1 in murine and human macrophages
and downregulates these transporters, which leads to lower cellular cholesterol efflux and
increased cholesterol accumulation and foam cell formation. In human cells, miR-33 neither
downregulated the expression of ABCG1, nor interfered with cholesterol efflux to HDL in
human THP-1 macrophages, which is consistent with the lack of miR-33-binding sites in the
human ABCG1 3′UTR [150–152]. In a study using double-knockout miR-33−/−, ApoE−/−

mice, cholesterol efflux increased and plaque size decreased compared to control mice.
Moreover, it was demonstrated that the use of microRNA-33 antagonism increased ABCA1
expression in vitro and in vivo and increased cholesterol efflux to ApoA1 [105,152,153].
In another study, the silencing of miR-33 with antisense oligonucleotides (anti-miR-33)
in LDLR−/− mice for 14 weeks did not affect lesion formation and the progression of
atherosclerosis and failed to maintain elevated plasma HDL-cholesterol (HDL-C) [104].
This is probably because previous regression studies employed mice that received anti-
miRs for only 4 weeks, as well as the existence of homeostatic compensatory mechanisms
controlling plasma HDL. Additionally, the discrepancy between experimental designs,
including the dietary composition, the gender of the mice and the possible influence of the
intestinal microbiome may vary between the two models [154]. There is evidence suggest-
ing athero-protective effects of hematopoietic loss of miR-33 including decreased number
of apoptotic cells and decreased size of the necrotic cores in plaques from mice transplanted
with miR-33−/− bone marrow, indicative of enhanced plaque stability. Moreover, upregu-
lation of MERTK experssion, a kinase involved in the regulation of efferocytosis, increases
ABCA1 expression, MQs cholesterol efflux capacity and RCT and decreases the accumula-
tion of cholesterol esters (CEs) in MQs in vivo. Furthermore, loss of miR-33 remarkably
decreases the amount of MQ phosphatidylethanolamines (PEs) and phosphatidylserine
(PS). These changes may have important effects such as attenuating NFKB activation and
innate immune response [155].

Despite athero-protective effect of anti-miR-33 therapies, global deletion of miR-33
results in disturbed responsiveness to insulin in multiple metabolic organs including the
liver, white adipose tissue (WAT) and skeletal muscle through TAGs, DAGs and ceramides
accumulation, PKC activation and inhibition of ERK activity. Furthermore, alterations
in feeding behavior are mainly responsible for the obesity in miR-33−/− mice. Since the
hypothalamic POMC and AgRP neurons, which regulate food intake, are also GABAergic
neurons, they may be directly influenced by alterations in miR-33. This could elucidate
some of the differences between genetic and pharmacological inhibition of miR-33, as
antimiR-33 therapeutics would not be expected to pass the blood-brain barrier [156].

5.2. miR-27a/b

The miR-27 family has two isoforms; namely, miR-27a, which is an intergenic miRNA,
and miR-27b, which is an intronic miRNA. miR-27a/b has been reported to regulate several
genes involved in lipid metabolism, including PPARs and RXRs, which can activate the
transcription of many target genes in vivo, including SR-BI, ABCG1 and ABCA1 [157].
This miRNA, by repressing CD36 expression in THP-1 macrophages, regulates cholesterol
uptake. Additionally, miR-27a/b reduces the expression of ACAT1 (involved in the for-
mation of foam cells via re-esterification of excess FC as a means to increase CEs), which,
in turn, leads to a decrease in the formation of CEs in THP-1 macrophage-derived foam
cells [157]. To maintain the homeostasis of cholesterol in macrophages, intracellular CE
is hydrolyzed to FC as the initial step for the efflux of excess cholesterol, which occurs
via the ABC transporters ABCA1 and ABCG1, as well as other non-transporter pathways
such as SR-B1 [157]. Moreover, miR-27a/b inhibits LPL expression, which is involved in
lipid uptake in vitro and in vivo. Importantly, this miRNA also regulates HDL-mediated
cholesterol efflux in human foam cells without targeting SRBI and ABCG1, which probably
indirectly affects the PPAR/RXR pathway. Additionally, miR-27a/b inhibits cholesterol
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efflux from macrophages via reduction in the expression of ABCA1 and subsequently
causing a decrease in ApoA1 [110,158,159].

Some microRNAs, such as miR-216a [114,160], miR-486 [114,160], miR-212 [114,160],
miR-497 [114,160] and LncRNA ENST00000602558.1 [118], also indirectly decrease the
expression of the ABCA1 gene. The details are provided in Table 1.

5.3. miR-216a

The expression of this particular miRNA has been shown to be increased in myocardial
biopsies from patients with ischemic heart failure [161].

It is known that the cystathionine gamma-lyase/hydrogen sulfide (CSE/H2S) enzy-
matic reaction in the trans-sulfuration pathway (a pathway that generates endogenous
H2S) increases ABCA1 expression in foam cell [160,162–164].

Specifically, miR-216a directly targets the 3′UTR of CSE, which is one of the two key
enzymes in endogenous H2S production. The CSE/H2S system has an anti-atherosclerotic
role in the cardiovascular system. Downregulation of the CSE/H2S enzymatic reaction
pathway results in decreased ABCA1 expression due to a reduction in the phosphorylation
of PI3K and AKT, which subsequently leads to an increase in cholesterol accumulation in
foam cells [114,160].

5.4. miR-382-5p

The RP5-833A20.1/miR-382-5p/NFIA pathway is essential for the regulation of choles-
terol homeostasis and inflammatory responses. Interestingly, RP5-833A20.1 has been shown
to decrease nuclear factor IA (NFIA) expression through the hsa-miR-382-5p pathway.
NFIA is essential for adipocyte differentiation and lipid droplet formation. Specifically,
NFIA inhibits atherosclerotic plaque formation in ApoE−/− mice by increasing RCT and
decreasing circulating cytokine levels. Overexpression of miR-382-5p causes a reduction
in the expression of NFIA, as well as decreases the expression of ABCA1 and ABCG1
and increases the expression of SRA1, CD36 and NFKB [107,165]. In vivo studies with
miR-382-5p have not been performed to date.

6. Non-Coding RNAs That Attenuate Foam Cell Formation

It has been shown that some non-coding RNAs are involved in macrophage cholesterol
homeostasis by acting on inflammatory pathways. Studies have shown that miR-181a [126],
miR-135a [126] and miR-223 [126], target TLR4 and reduce its expression. Thisprocess
regulates cholesterol homeostasis in macrophages by reducing inflammation, reducing
lipid uptake and increasing cholesterol efflux. Within macrophages, MiR-23a [126], miR-
16 [126] and Let-7g [126] have an inhibitory effect on NF-kB pathways, which regulate lipid
metabolism by reducing inflammation. The details are summarized in Table 2.

6.1. miR-150

MiR-150 has been shown to be upregulated in a human monocyte cell line in response
to oxLDL treatment. Overexpression of this microRNA was proven to decrease the en-
dogenous expression of AdipoR2 in macrophages, which promotes cholesterol efflux by
the upregulation of ABCA1 and ABCG1. This process occurs via the PPARγ- and LXRα-
dependent signaling pathways and decreases CD36 and intracellular lipid accumulation.

Since miR-150 can be packaged into microvesicles (MVs) and secreted from monocytes,
MVs isolated from the plasma of patients with atherosclerosis have been determined to
possess greater amounts of miR-150 than those from healthy donors. This finding may
be explained by the fact that during the pathogenesis of atherosclerosis, stimulation of
monocytes to release MVs that contain miRNAs, such as miR-150, can prevent lipid
accumulation and foam cell formation [130].

6.2. miR-155

Dual effects of miR-155 on macrophages in the context of atherosclerosis.



Int. J. Mol. Sci. 2021, 22, 2529 19 of 27

miR-155 is a “multi-target” molecule specifically expressed in atherosclerotic plaques
and pro-inflammatory macrophages [166]. The effects of miR-155 on atherogenesis have
been controversial, because it exerts dual effects on both inflammatory and apoptotic
pathways in lesional macrophages. miR-155 can enhance or prevent lesion formation
relevant to the “stage” of atherosclerosis. Nazari-Jahantigh et al. reported that miR-155
was anti-atherogenic in the early stage of atherosclerosis, but became pro-atherogenic as
the lesions progressed to a more advanced stage [167]. OxLDL induces miR-155 expres-
sion in human macrophages, which is essential for lipid uptake and ROS production by
macrophages [168]. The use of antagomiR-155 has been shown to reduce lipid levels in
human macrophages and decrease the size of plaques in ApoE−/− mice. Elevated miR-
155 levels increase oxLDL-induced foam cell formation by targeting HBP1. In addition,
miR-155 expression is downregulated by the YY1/HDACs complex [113].

Another study showed that miR-155 mimics enhanced the expression of CEH at both
the transcriptional and translational level in a dose- and time-dependent manner in human
foam cells, although this effect may have occurred due to the inhibition in the expression of
Tim-3, since overexpression of Tim-3 can inhibit the expression of CEH. Additionally, using
a human monocyte cell line, it has been demonstrated that the overexpression of miR-155
can significantly inhibit the expression of SR-A, decrease lipid accumulation, increase the
expression of ABCA1 and thereby increase cholesterol efflux [132].

A study also found that NF-κB transcription factor, which is activated by TNF-α,
binds to the miR-155 promoter and stimulates transcription of miR-155. Accordingly, the
expression of calcium-regulated heat-stable protein 1 (CARHSP1) is decreased. This is
significant, because CARHSP1 enhances the stability of TNF-α mRNA, which is impor-
tant for the efficient production of TNF-α. Furthermore, it has been demonstrated in a
human monocyte cell line that miR-155 indirectly decreases TNF-α expression, decreases
macrophage inflammation and lipid uptake and decreases foam cell formation [133].

7. Conclusions

Atherosclerosis is a chronic disease with a network of complex pathological processes.
One of the primary mechanisms involved in this disease is the formation of foam cells,
which leads to the growth and rupture of atherosclerotic plaques and finally, to its clinical
manifestations (MI and stroke) [12,169]. Noncoding RNAs play an important role in
various aspects of atherogenesis including foam cell formation. For example, many studies
using noncoding RNAs have targeted different aspects of foam cell formation, such as
cholesterol uptake, storage and efflux, indicating the well-established and effective role
of non-coding RNAs, particularly miRNAs, in foam cell formation. Noncoding RNAs,
especially miRNAs such, as miR-33, miR-27ab and miR-144, can have a pro-atherosclerotic
role by stimulating foam cell formation, while others, such as miR-150, miR-1275 and
Let-7g, exert an atheroprotective role by suppressing foam cell formation. miR-155 has
shown conflicting results in different studies.

Clinical work performed using miRNAs has focused primarily on the inhibition of
miRNAs through antisense oligonucleotides that complement targeting mRNA. For exam-
ple, anti-miR oligonucleotides, modified antimiR oligonucleotides, anti-miR peptides, or
the use of genetic vectors to replace miRs, such as with miR mimics, have been used [87–90].
Today, many preclinical studies have investigated the therapeutic anti-atherosclerotic po-
tential of miRNAs by using miR mimics or their antagonists, which have shown promising
results. These findings indicate that miRNA targeted therapy may represent a novel ap-
proach for the treatment of atherosclerosis. However, chronic treatment or genetic ablation
of some of these miRNAs (miR-33), has been found to result in adverse effects including
obesity and insulin resistance [156].

There are also limitations to using miRNAs, including their multifunctionality and
their role in different biological processes. Moreover, there are few specific miRNAs in
a tissue or organ, so most of the miRNAs affect unselected or non-targeted tissues. One
of the major drawbacks to the therapeutic use of microRNAs in atherosclerosis is the
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fact that many molecules of this class have additional unwanted side effects and studies
on the interaction between different miRNAs are relatively scarce. Secondly, miRNAs
target prediction tools are not completely accurate and false positive and false negative
predictions are still an issue of concern. Lastly, the full scope of elucidating their functions
in vivo is limited and this fact impedes the investigation of the most interesting primate-
specific non-coding RNAs in widely used atherosclerotic mouse models. Furthermore, the
discrepancies in anatomy, lipid metabolism and gene expression complicate the translation
of experimental results obtained in mice to humans.
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