Supplementary Materials

Article Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors ⁺

Jiri Kos ^{1,*}, Violetta Kozik ², Dominika Pindjakova ³, Timotej Jankech ^{3,4}, Adam Smolinski ⁵, Sarka Stepankova ^{6,†}, Jan Hosek ⁷, Michal Oravec ⁸, Josef Jampilek ^{1,3} and Andrzej Bak ^{2,*}

- ¹ Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic; josef.jampilek@gmail.com
- ² University of Silesia, Department of Chemistry, Szkolna 9, 40007 Katowice, Poland; violetta.kozik@us.edu.pl
- ³ Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; pindjakova.dominika@gmail.com (D.P.); timotej.jankech@gmail.com (T.J.)
- ⁴ NT-LAB o.z., Teplicka 35, 92101 Piestany, Slovakia
- ⁵ GiG Research Institute, Pl. Gwarkow 1, 40166 Katowice, Poland; smolin@gig.katowice.pl
- ⁶ Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic; sarka.stepankova@upce.cz
- ⁷ Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; hosek@vri.cz
- ⁸ Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic; oravec.m@czechglobe.cz
- * Correspondence: jiri.kos@upol.cz (J.K.); andrzej.bak@us.edu.pl (A.B.)
- + This article is sincerely dedicated to the memory of Dr. Milan Hutta, a Professor of Analytical Chemistry at the Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava (Slovakia), a long-time head of the department, a versatile scientist and especially a rare person of outstanding character who left us these days due to the consequences of disease COVID-19 caused by the coronavirus SARS-CoV-2.

No.	logPa	miLogP ^b	ClogPc	ClogPd	ClogPe	ClogPf	ClogPg	MlogP ^h	AlogPi	ClogP ^j	ClogP ^k	ClogP ¹	ClogP ^m
1	4.42	4.59	3.78	3.48	3.44	4.34	4.84	3.69	3.40	4.41	4.50	3.68	4.62
2	4.53	4.60	3.71	3.23	2.92	4.19	4.74	3.67	2.86	3.93	4.00	3.55	4.74
3	4.51	4.63	3.71	3.23	3.51	4.19	5.00	3.67	2.86	4.49	4.00	3.55	4.70
4	4.48	4.65	3.71	3.23	3.51	4.19	4.79	3.67	2.86	4.49	4.00	3.55	4.67
5	4.56	5.02	4.13	3.95	3.94	4.86	5.30	4.18	3.62	4.96	4.39	4.16	4.87
6	4.59	4.71	3.88	3.62	3.24	4.49	4.81	3.90	3.51	4.05	4.13	3.83	4.62
7	4.54	4.73	3.88	3.62	3.84	4.49	5.33	3.90	3.51	4.61	4.13	3.83	4.91
8	4.50	4.76	3.88	3.62	3.84	4.49	5.29	3.90	3.51	4.61	4.13	3.83	4.75
9	5.17	5.22	4.39	4.00	3.56	4.95	5.35	4.35	3.62	4.49	5.94	4.23	5.13
10	5.14	5.25	4.39	4.00	4.41	4.95	5.98	4.35	3.62	5.06	5.12	4.23	5.35
11	5.12	5.27	4.39	4.00	4.41	4.95	5.63	4.35	3.62	5.06	4.66	4.23	5.20
12	4.65	5.44	4.63	4.36	3.32	5.22	6.04	4.63	3.94	4.81	4.91	4.60	5.38
13	4.72	5.47	4.63	4.36	4.77	5.22	6.20	4.63	3.94	5.38	4.91	4.60	5.44
14	4.77	5.49	4.63	4.36	4.77	5.22	5.86	4.63	3.94	5.38	4.91	4.60	5.29
15	4.78	5.52	4.88	5.16	4.03	5.77	5.78	5.81	3.18	4.90	5.21	5.20	5.24
16	4.57	4.83	3.98	3.76	3.40	4.63	5.21	4.10	3.62	4.25	4.23	3.99	4.92
17	4.57	4.85	3.98	3.76	3.47	4.63	5.29	4.10	3.62	4.25	4.23	3.99	4.83
18	4.57	4.85	3.98	3.76	3.47	4.63	5.36	4.10	3.62	4.25	4.23	3.99	4.95
19	4.57	4.83	3.98	3.76	2.87	4.63	4.81	4.10	3.62	3.69	4.23	3.99	4.70
20	4.56	4.85	3.98	3.76	4.07	4.63	5.85	4.10	3.62	4.81	4.23	3.99	5.15
21	5.67	5.85	4.99	4.52	4.24	5.55	6.36	5.02	3.83	5.14	6.56	4.79	5.63
22	5.64	5.88	4.99	4.52	4.36	5.55	6.41	5.02	3.83	5.14	6.56	4.79	5.82
23	5.68	5.85	4.99	4.52	3.51	5.55	5.87	5.02	3.83	4.58	6.56	4.79	5.54
24	5.63	5.88	4.99	4.52	5.09	5.55	6.64	5.02	3.83	5.70	5.28	4.79	5.71
25	5.64	5.88	4.99	4.52	5.21	5.55	7.13	5.02	3.83	5.70	5.28	4.79	6.12
26	5.84	6.14	5.23	5.06	4.63	5.88	6.65	5.19	4.04	5.63	5.41	5.33	5.92
27	5.39	6.31	5.48	5.25	5.81	6.10	7.83	5.57	4.45	6.34	5.80	5.52	6.10
28	4.73	4.94	4.08	3.90	3.04	4.77	5.33	4.31	3.72	3.89	4.33	4.15	4.81
29	4.73	4.94	4.08	3.90	4.10	4.77	6.12	4.31	3.72	5.01	4.33	4.15	5.26
30	6.18	6.48	5.60	5.04	4.98	6.16	7.09	5.68	4.04	5.78	7.19	5.35	6.24
31	6.20	6.48	5.60	5.04	4.25	6.16	6.69	5.68	4.04	5.22	5.91	5.35	6.17
32	6.03	6.88	5.96	5.86	4.64	6.65	7.24	5.94	4.35	5.96	6.10	6.16	6.58

 Table S1. Theoretically estimated partition coefficients calculated by set of alternative methods for ring-substituted benzyl [4-(arylcarbamoyl)phenyl-3-hydroxy]carbamates 1–32.

 a clogPS, b Molinspirations, c OSIRIS property explorer, d HyperChem 7.0, e Sybyl-X, f Marvin Sketch (ChemAxon) 15, g ChemSketch 2015, h Dragon 6.0 , i Dragon 6.0, j Kowwin, k XlogP3, l ChemBio, m ACD/Percepta.

		OH			
	CU	H O		O II	
	CH ₃ CH ₃ O N _{CH3}		C C		
ČH3	CH ₃	 ✓ ✓ N CH₃ 		Н	0
5	Parameters	rivastigmine	galanthamine	comp. 2	
	MW	250.34	287.35	392.40	
	No. of H-bond donors	0	1	3	
	No. of H-bond acceptors	4	4	7	
	TPSA	32.78	41.93	96.89	
	No. of rotatable bonds	5	1	7	
	LogP	2.29	1.55	4.74	
	LogSw	-0.97	-1.83	-5.68	
	C Ratio	0.78	0.81	0.76	
	N Ratio	0.11	0.05	0.07	
	NO Ratio	0.22	0.19	0.24	
	Hetero Ratio	0.22	0.19	0.24	
	Halogen Ratio	0.00	0.00	0.00	
	No.of Rings	1	4	3	
	No.of Aromatic Rings	1	1	3	
	No.of Rings (size 3)	0	0	0	
	No.of Rings (size 4)	0	0	0	
	No.of Rings (size 5)	0	1	0	
	No.of Rings (size 6)	1	2	3	
	BCF	1.40	1.10	3.37	
	КОС	2.54	2.33	3.96	
	DC	0.00	0.00	0.00	
	Parachor [cm ³]	594.56	614.37	814.13	
	Index of refraction	1.52	1.64	1.68	
	Surface tension [dyne/cm]	36.95	56.64	61.36	
	Density [g/cm ³]	1.04	1.28	1.35	
	Polarizability [cm ³]	$28.99 \cdot 10^{-24}$	$31.84 \cdot 10^{-24}$	$43.57 \cdot 10^{-24}$	
	Strongest pK₄ (acid)	_	13.9 ± 0.2	7.9 ± 0.3	
	Strongest nK ₂ (base)	86 ± 05	79 ± 04	-1.3 ± 0.7	

 Table S2. Predicted values – physicochemical properties of rivastigmine, galanthamine and compound

 2. (Calculated using ACD/Percepta 2012 (Advanced Chemistry Development Inc., Toronto, ON, Canada)

Benzyl {3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}carbamate (2), one of the most effective compounds in the series and with the highest BChE selectivity of inhibition, has a lipophilicity expressed as logP approximately 1.5-fold higher than the clinically used drugs rivastigmine and galanthamine, which is a prerequisite for good absorption. On the other hand, compound 2 has a much lower logSw value and also the ability to protonate is completely different; while both drugs are basic in nature, carbamate 2 is rather acidic. Due to its structure, compound 2 has a much greater ability to form H-bonds. The polar surface area of carbamate 2 is almost 3-fold higher compared to rivastigmine and approximately twice as high as galanthamine. Compound 2 represents a flexible system closer to the properties of rivastigmine than the rigid structure of galanthamine. An almost 3-fold higher predicted bioaccumulation factor (BCF), defined as the ratio of compound concentration in tissue to concentration in the medium, means that compound 2 should have a higher tendency to be taken up by organs compared to two drugs discussed. Based on these software-predicted properties, it can be estimated that the prepared compound 2 meets the requirements for druglikeness and is able to be bound by molecular targets.