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Abstract: Cardiovascular diseases continue to be the leading cause of death worldwide, with is-
chemic heart disease as the most significant contributor. Pharmacological and surgical interventions
have improved clinical outcomes, but are unable to ameliorate advanced stages of end-heart failure.
Successful preclinical studies of new therapeutic modalities aimed at revascularization have shown
short lasting to no effects in the clinical practice. This lack of success may be attributed to current
challenges in patient selection, endpoint measurements, comorbidities, and delivery systems. Al-
though challenges remain, the field of therapeutic angiogenesis is evolving, as novel strategies and
bioengineering approaches emerge to optimize delivery and efficacy. Here, we describe the structure,
vascularization, and regulation of the vascular system with particular attention to the endothelium.
We proceed to discuss preclinical and clinical findings and present challenges and future prospects in
the field.
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1. Introduction

Despite substantial efforts aimed at evidence-based optimization of standards for pre-
vention and early management, ischemic heart disease (IHD) accounts for nearly 9 million
of the 18 million cardiovascular disease (CVD) deaths worldwide in 2015 [1]. The advent of
therapeutic interventions and diagnostic methods have undoubtedly improved outcomes
and lowered overall mortality associated with IHD. Current management of this disease
comprises revascularization by means of percutaneous coronary intervention or surgical
bypass grafting, in addition to pharmacological interventions aimed at mitigating risk fac-
tors, such as hypertension and dyslipidemia, in concert with correcting myocardial oxygen
supply/demand mismatch. However, a common challenge encountered by clinicians is the
management of advanced and diffuse multivessel disease state resistant to conventional
treatment modalities, therefore, requiring the study of novel therapeutic strategies.

The term angiogenesis was first used in 1935 by Arthur Hertig to describe the forma-
tion of new blood vessels in the placenta. It was not until 1971, however, when Folkman
showed that solid tumors were able to extensively vascularize their core by inducing
growth of new blood vessels from contiguous vasculature of normal tissue [2]. This obser-
vation initially prompted the idea that inhibition of tumor angiogenesis could be a potential
anti-neoplastic therapeutic strategy. Soon thereafter, it became evident that induction of
this mechanism of autonomous blood vessel growth in tissue subject to chronic ischemia,
such as the myocardium or extremities, may provide collateral blood supply and preserve
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viability. This notion prompted interest in the molecular mechanisms of blood vessel
growth to guide future therapeutic targeting.

By the early nineties, many key angiogenic factors were characterized including vari-
ous isoforms of vascular endothelial growth factor (VEGF) and fibroblast growth factor
(FGF). The data from studies evaluating intramyocardial administration of recombinant
growth factors in animal models of myocardial ischemia were promising, providing im-
petus for many clinical trials evaluating the safety and efficacy of administration of these
growth factors in patients with ischemic heart disease (IHD) [3,4]. However, with increased
sample sizes and extended follow-up times post-therapy, it became evident that the posi-
tive effects of new vessel growth and functional improvement were short-lived and did
not culminate in sustainable long-term benefit [5]. Additionally, the incidence of adverse
effects such as tissue edema with local administration of these growth factors raised con-
cern. Since the early trials, much effort has focused on identifying issues that hinder the
efficacy of novel angiogenic therapies in the clinical setting. This review will shed light on
recent advances in therapeutic angiogenesis in animal models and the challenges of clinical
applications of these strategies. We further review the biology of angiogenesis, summarize
preclinical and clinical findings, and describe a number of translational challenges and
novel angiogenic strategies.

2. Structure of the Vasculature

The adult vasculature spans a surface area of approximately 1000 m2 and encompasses
an arterial and a venous system connected by capillaries (Figure 1) [6]. Importantly, all
vessels share a similar basic structure composed of four distinct layers. The innermost layer
is known as the tunica intima, consisting of a single layer of endothelial cells that forms
the interface with blood. Ensheathing the intima is a smooth muscle layer known as the
tunica media, which is innervated by the autonomic nervous system and a major regulator
of blood vessel diameter. Large elastic arteries are characterized by a prominent tunica
media, whereas capillaries are solely composed of an endothelial monolayer to maximize
permeation of oxygen and nutrients into the interstitial space. An adventitial connective
tissue forms the tunica externa and communicates with visceral and muscular structures as
blood vessels course through various anatomical regions [6].
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where oxygen and nutrient exchange occurs. The inner lining of arteries, arterioles, and capillaries is known as the tunica
intima, which is composed exclusively of endothelial cells. Arterioles and arteries additionally have a series of elastic and
muscular layers.
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3. Mechanisms of Vascularization
3.1. Vasculogenesis

By the third week after fertilization, blood vessels begin to form in the yolk sac and
then in the growing embryo [7]. Vasculogenesis refers to the initial embryological develop-
ment of nascent vascular structures, known as blood islands from endothelial progenitor
cells (EPCs) (Figure 2A). Morphogenic cues, such as VEGF, trigger differentiation of these
precursors and promote formation of blood islands, which then merge into primitive capil-
lary plexuses [8]. Their subsequent growth and expansion to penetrate organs and form
an interconnected network is associated with angiogenesis, which we describe next. It is
important to first note that while vasculogenesis is most prominently associated with early
embryonic development, recent evidence suggests that it is involved in the recruitment
of circulating CD34/VEGFR2-positive and bone-marrow-derived angioblasts for in situ
growth of blood vessels in post-natal life as well [9]. However, the precise mechanisms by
which these angioblasts are stimulated in pathological states and the degree of contribution
of this process to the formation of sustainable vasculature remain obscure.
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Figure 2. Mechanisms of vascularization and extracellular matrix remodeling. (A) Vasculogenesis
describes the synthesis of de novo vessels and vasculature that occurs during embryonic development
and begins with the differentiation and organization of endothelial progenitor cells. Sprouting
angiogenesis is stimulated under hypoxic conditions and is characterized by phalanx, stalk, tip cell
migration, proliferation, and tube formation. Arteriogenesis is the process by which shear stress
signals for smooth muscle cell recruitment to support an existing vessel between arteries; this vessel
then muscularizes to become an established artery. (B) An essential process in angiogenesis is
extracellular matrix (ECM) remodeling to release growth factor stores from ECM components and
promote migration of endothelial cells. A number of cell types contribute to this process in the heart
by production of MMPs; their activation is tightly regulated by the plasminogen system and their
inhibitors known as tissue inhibitors of metalloproteinases (TIMPs). VEGF, vascular endothelial
growth factor; VEGFR2, VEGF receptor 2; FGF2, fibroblast growth factor 2; IGF, insulin growth factor;
HGF, hepatocyte growth factor; PDGF, platelet-derived growth factor; TGFβ, transforming growth
factor β; TNFα, tumor necrosis factor α; Ang1, angiopoietin 1; Ang2, angiopoietin 2; HIF1α, hypoxia
inducible factor 1α; NOS, nitric oxide synthase; MMPs, matrix metalloproteinases; VE-cadherin;
vascular endothelial cadherin; MCP1, monocyte chemoattractant protein 1.



Int. J. Mol. Sci. 2021, 22, 3722 4 of 16

3.2. Angiogenesis

Angiogenesis is generally considered the mainstay of neovascularization, where
new vessels form from existing vessels, and occurs in many physiological processes such
as wound healing, ovulation, and pregnancy. In these contexts, angiogenesis is tightly
regulated by an intricate balance between pro- and anti-angiogenic factors. Disturbance of
this balance results in uncontrolled blood vessel growth, which is a hallmark pathological
feature seen in malignancy, retinopathy, and other disease states.

Activation of the vascular endothelium to switch from a quiescent state to a prolifera-
tive state is initiated by an increased local production of nitric oxide (NO) levels, which
increases vascular permeability and upregulates expression of VEGF [10]. A series of
alterations to intercellular adhesion molecules and cell membrane structure facilitate the
extravasation of plasma proteins into the interstitial space. Next, proteases degrade the
basement membrane and extracellular matrix (ECM), thereby clearing the path for migrat-
ing endothelial cells and, importantly, liberating cryptic adhesion sites and sequestered
growth factors. Degradation of the ECM is a complex, highly regulated process. Over
twenty identifiable matrix metalloproteinases (MMPs) take part in this step, which are most
commonly activated by plasmin and inhibited by tissue inhibitors of metalloproteinases
(TIMPs) (Figure 2B) [11,12]. This balance between proteases and their inhibitors is critical,
as excessive proteolytic activity is a characteristic of pathological vessel formation in cancer
and inflammatory disease.

Following migration and proliferation, tube formation or lumenogenesis occurs. At
the cellular level, this process has been shown to occur via budding or cell hollowing.
Molecularly, lumen formation is initiated by integrins, while lumen diameter is regulated
by contractile status [13]. To this point, the endothelium acquires highly specialized
characteristics according to the local tissue needs. For instance, endothelial junctions in
capillaries forming the blood–brain barrier are narrow, allowing for controlled permeation
of fluid as opposed to those of the glomerular capillaries, which are redundant to allow
for filtration. The factors that determine such differentiation of the endothelium are
largely unknown; however, the host tissue environment and VEGF signaling likely play
a major role. The nascent vessels then undergo three-dimensional organization to form
mature vascular networks, which is primarily directed by VEGF, and otherwise known as
remodeling or branching [13]. This step occurs either by sprouting towards an angiogenic
stimulus, splitting into individual daughter vessels by the formation of trans-endothelial
bridges, or intussusceptive insertion of interstitial tissue columns into the lumen of pre-
existing vessels. Meanwhile, the structural configuration of the newly shaped vessels
composed of an endothelial mono- or double-layer is consolidated by the formation of
an ECM and recruitment of peri-endothelial cells. In addition to providing structural
support, vascular smooth muscle cells (VSMCs) also inhibit endothelial cell migration and
proliferation, thus preventing regression of the nascent vessels.

Interestingly, differentiation of evolving vessels, i.e., artery, vein, or capillary, seems to
be influenced by an interplay between external hemodynamic forces and intrinsic molecular
signals. Areas of reduced blood flow favor the persistence of capillaries and may even result
in complete regression of the primitive vessel if limitation of flow is significant. On the other
hand, increased perfusion, pressure, and shear stress induce local recruitment of VSMCs,
which lead to arterialization. Basic helix-loop-helix (bHLH) transcription factors appear
to play a key role in directing angioblasts to pre-arterial or pre-venous specifications [14].
Additionally, Notch signaling and members of the large ephrin family, along with other
tyrosine kinases appear to modulate differentiation of vesicular structures. Longevity of the
newly formed vessels is maintained by an ongoing interaction of VEGF with the VEGFR2,
P13 kinase, and β-catenin, which induces anti-apoptotic genes and promotes survival [13].
Surprisingly, hemodynamic shear forces favor inhibition of endothelial turnover and, thus,
prevent tumor necrosis factor α (TNFα)-mediated apoptosis and vessel regression.
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3.3. Arteriogenesis

Arteriogenesis is an adaptive phenomenon, which occurs with stenotic vascular
lesions and features primary remodeling of existing collateral arteries rather than growth
of new vascular structures. As opposed to angiogenesis, which is hypoxia-driven and
initiated by the endothelium, arteriogenesis is predominantly stimulated by shear forces.
Thus, turbulent blood flow is sensed by the endothelium, which induces the transcription
of several genes including FGF2, PDGF-B, and TGFβ [15]. As a result, chloride channels
open and adhesion molecules on the endothelium are upregulated, including monocyte
chemoattractant protein 1 (MCP1) [16]. Circulating monocytes adhere to and invade
arteriolar collaterals, initiating a myriad of inflammatory signals that recruit fibroblasts,
platelets, and basophils. The local inflammatory response induces apoptosis in neighboring
cells, which facilitates expansion of the collateral vessel diameter up to twenty times [17].
Importantly, the local production of growth factors such as FGF2 induces mitosis of the
endothelial and smooth muscle cell layers, again forming a preliminary vascular structure
that is remodeled into a final configuration [18]. To underscore that arteriogenesis occurs
independent of hypoxia, it has been shown that the distance between ischemic regions and
site of collateral vessel formation can be up to 70 cm. [6]. Unlike angiogenesis, arteriogenesis
invariably results in competent vasculature capable of sustaining tissue viability; therefore,
therapeutic targeting of arteriogenesis may prove to be a rewarding endeavor.

4. Preclinical Studies and Clinical Trials
4.1. Protein Therapy

Expanding insight into the molecular basis of neovascular formation underscored
the critical role of growth factors and provided impetus for early studies, which focused
on delivery of recombinant angiopeptides to target ischemic tissue. Table 1 summarizes
the outcomes of clinical trials with protein therapy, in addition to gene- and stem-cell-
based therapies.

Both VEGF and FGF have a central role in multiple steps of vessel development
and differentiation and, therefore, are the most widely studied proteins in the search
for novel angiogenic therapies. VEGF isoforms bind to and phosphorylate VEGFR1 and
VEGFR2, whereas FGF binds selectively to four major receptors (FGFR1b/c, FGFR2b/c,
FGFR3b/c, and FGFR4) on the vascular endothelium [19,20]. The binding of VEGF and FGF
to their cognate tyrosine kinase receptor induces diverse downstream signaling pathways
including MAPK, P13K, and PLC-γ. Data from preclinical studies showed increased blood
vessel growth and collateral-dependent perfusion in animal models of chronic myocardial
ischemia with VEGF and FGF therapy [5]. Among other growth factors that have been
investigated in animal models of chronic myocardial ischemia are platelet-derived growth
factor (PDGF), which positively regulates maturation of vasculature [21]. Additionally,
angiopoietin-1 interaction with the Tie-2 receptor has been shown to promote stability
of newly formed vessels in preclinical studies [22]. Hepatocyte growth factor (HGF) has
well-documented pro-angiogenic roles in post-ischemic and post-infarcted heart failure
models as well [23,24]. Although morphogens such as sonic hedgehog, Notch, and Wnt
are involved in an array of pathways, taking advantage of their role in blood vessel growth
has attracted attention.
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Table 1. Clinical outcomes with angiogenic therapies.

Agent Study Design (Disease; Delivery; Dose;
Number of Patients) Outcome Ref.

Protein Therapy

VEGF CAD; IC day 0 and IV day 3,6,9; 17 ng/kg/min
or 50 ng/kg/min; n = 178)

No improvement in exercise time 60 days
post treatment [25]

FGF

CAD; IC; single injection of 0, 0.3, 3, or 30 µg/kg;
n = 337

Exercise tolerance and angina symptoms improved
at 90 days; no difference at 180 days [26]

CAD; IC via heparin-alginate slow-release
device; 1 or 10 µg; n = 8

Exercise tolerance and myocardial perfusion showed
a trend toward improvement at 90 days, but not at

180 days
[4]

Gene Therapy

VEGF

CAD; IM 10×; 200 µg supplemented with 6 g
L-arginine per day for 3 months; n = 19

Improved anterior wall perfusion and anterior wall
contractility at 3 months [27]

CAD, IM; 125 or 250 µg; n = 15 Angina was significantly reduced and myocardial
perfusion was improved [28]

Angina, IM, 200 µL at 10 sites; n = 30
Myocardial perfusion reserve significantly increased

at 3 months and 12 months compared to baseline,
although no significance between 3 and 12 months.

[29]

IHD, IM, 4 × 1010 pfu, n = 67
Total exercise duration and time were improved at

12 and 26 weeks [30]

IHD, IC, 2 × 1010 pfu, n = 103
Myocardial perfusion was significantly improved at
6 months; no changes in minimal lumen diameter

nor % of diameter stenosis were also reported
[31]

FGF

Angina, IC, 5 different dose groups, n = 79 Increased exercise time at 4 weeks [32]

CLI; intramuscular; 4 mg at day 1, 15, 30, and 45;
n = 125

Complete healing of at least one ulcer in the treated
limb at week 25; treatment also significantly reduced

the risk of all amputations by two-fold
[33]

Stem-Cell Therapy

BM-MSC

MI; IC; day 6 post-MI on average; 7 × 105 cells;
n = 101

LVEF was increased at 6 months; no change in LV
EDV nor infarct size was observed. [34]

CAD; transendocardial injection; 1 × 108; n = 92
LV ESV nor maximal oxygen consumption were

improved at 6 months [35]

(MI; IC; 24.6 ± 9.4 × 108 nucleated cells,
9.5 ± 6.3 × 106 CD34+ cells, and 3.6 ± 3.4 × 106

hematopoietic cells ~4.8 days post-MI; n = 60)

LVEF was improved at 6 months, but was not
significant at 18 months [36]

CPC

IHD; IM; injections at 17 sites; n = 315
No significant improvements in primary endpoints
of MLHFQ score, 6 min walk distance; LV ESV and

LV EF at 39 weeks
[37]

IHD; IM; 600 × 106 to 1200 × 106 cells; n = 319 LVEF was improved with reduction in LV ESV, and
improved 6-min walk distance [38]

BMC or
CPC

MI, IC, mean of 22 × 106 CPC or 205 × 106 BMC,
n = 75

BMC treatment significantly increased LVEF
compared to CPC and control groups at 3 months. [39]

VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; BM-MSC, bone-marrow-derived mesenchymal stem cells; CPC,
cardiopoietic stem cells; CAD, coronary artery disease; CLI, chronic limb ischemia; IHD, ischemic heart disease; MI, myocardial infarction;
IC, intracoronary; IV, intravenous; IM, intramyocardial; LVEF, left ventricular ejection fraction; EDV, end diastolic volume; ESV, end systolic
volume; EF, ejection fraction.

A plethora of data from the early clinical trials has largely demonstrated the safety
and practicality of administering these growth factors to patients with refractory coronary
artery disease such as the phase II VIVA trial and FIRST trial using recombinant VEGF and
FGF2, respectively [25,26]. However, it was eventually recognized that the administration
of these angioproteins in a clinical setting has resulted in short-lived improvements in
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collateral dependent perfusion that do not contribute to sustainable clinical benefit. Thus,
significant limitations of these recombinant angioproteins were identified; the peptides
had a short half-life and required administration of relatively large doses in order to elicit
an effect, carrying the risk of significant adverse effects.

4.2. Gene Therapy

The delivery of a recombinant gene overtook protein therapy approaches, allowing
for persistent expression of the encoded target protein in tissue. Indeed, the myocardium
was found to be a suitable substrate for gene transfer, expressing target proteins encoded
by viral vectors and non-viral vectors such as naked plasmids and liposome vehicles.
Viral vectors tend to employ adenoviridae or retroviridae and are characterized by a high
transfection efficiency although potentially immunogenic. The REVASC study was a large
phase II randomized clinical trial that reported improved angina symptoms and exercise
tolerance following intramyocardial injection of adenoviral-encoded VEGF when compared
to optimal medical therapy [30]. However, the possibility of a placebo effect due to lack of
blinding and occurrence of complications associated with thoracotomy procedure in four
patients were limitations of this study.

Recombinant DNA delivered by means of non-viral vectors are generally more liable to
destruction by circulating nucleases, which may shorten the half-life of these genes in target
tissue. Nonetheless, many studies have reported meaningful therapeutic benefits with
non-viral gene transfer and the lack of an immune reaction permits repeated administration.
The Kuopio angiogenesis trial showed that intramyocardial injection of the recombinant
VEGF gene on an adenoviral vector during percutaneous coronary angioplasty significantly
increased myocardial perfusion when compared to delivery of the VEGF gene using a
naked plasmid vector [31]. Moreover, phase I studies evaluating intramyocardial injection
of plasmid-encoded VEGF DNA via thoracotomy in patients with end-stage coronary
artery disease were associated with improvement of symptoms and blood flow to ischemic
territories [27–29].

The transfer of human FGF4 bound to an adenovirus (Ad5-FGF4) vector by intracoro-
nary infusion resulted in increased FGF mRNA production at twelve weeks, enhanced
collateral dependent perfusion, and lessened the severity of symptomatic angina in patients
in the AGENT trial [32]. These promising findings led to initiation of the AGENT-2, -3,
and-4 trials, which were designed to assess the ultimate efficacy of Ad5-FGF4 in inducing
ischemic myocardial neovascular formation in patients with stable exertional angina con-
trolled with medical therapy (capable of exercising on a treadmill for at least three minutes)
and anatomy suitable for, but not in need of, immediate revascularization. Agent-3 and
Agent-4 trials, respectively, enrolled 450 and 532 patients and randomly assigned them to
receive either placebo or Ad5-FGF4 as an intracoronary injection, the primary endpoint
being change in exercise tolerance twelve weeks post-treatment [40]. However, it was
eventually found that the treatment offered no significant benefit over placebo, which led
to discontinuation of these studies.

Adenoviral transfer and recombinant DNA have, therefore, faced challenges in the
clinical setting likely due to breakdown in the circulation, but also includes limitations of
cell turnover and risk of immune responses. CRISPR/Cas9 may hold the key to effective
gene therapy approaches by offering increased precision and efficiency in comparison
to conventional gene targeting approaches. In fact, Huang and colleagues designed a
CRISPR/Cas9 system to deplete VEGFR2 in vascular endothelial cells, which was found to
block angiogenesis in a mouse model of retinopathy [41]. While these results are recent,
they provide the groundwork for future genome editing studies in the field to insert
proangiogenic genes or delete inhibitory genes.

4.3. Stem Cell Therapy

Certain populations of stem and progenitor cells have the capacity to proliferate
and differentiate into vascular components. Upon stimulation, angioblast-derived EPCs
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mobilize from the bone marrow and localize to sites of endothelial injury, differentiating
into mature endothelial cells. Mesenchymal stem cells (MSCs) are another major source
of adult stem cells that have been extensively studied for potential applications in cardiac
regeneration, due to their reduced risk of immunogenicity and tumorigenicity. Indeed, data
from animal studies showed that both bone-marrow-derived EPCs or those isolated from
peripheral blood promoted vessel growth in ischemic tissue [42,43]. Subsequently, many
clinical trials evaluated various methods of EPC or MSC administration to ischemic tissue.

Numerous early-phase trials of myocardial ischemia provided proof of concept that
EPCs or MSCs improved vascularity in ischemic myocardial territories and overall cardiac
function [34–36,38,39]. They also substantiated that intramyocardial transplantation of
autologous bone-marrow-derived cells was a safe, feasible intervention that enhanced
myocardial contractility and perfusion while reducing infarct size and cause-related mor-
tality in patients with ischemic heart disease (IHD). Cytotherapy quickly gained popularity
as a novel treatment for IHD and was adopted by many centers, thus generating much
positive data showing improvement in various functional and symptomatic parameters
following innovative methods of administration of MSCs such as NOGA guided delivery.
Again, longevity of these therapeutic effects and reproducibility in larger, diverse patient
populations was challenging [37–44]. Further investigation revealed that a considerable
portion of the injected cells do not survive beyond the first three days and that restoration
and replacement of the dying cells was lacking. Moreover, the remaining cells did not
appear to conform into functional tissue that integrated into the injured myocardium.
Contrarily, a trophic effect was often observable in the tissue at sites of cell transplantation.

Another caveat that impedes this cell-based therapy approach is the lack of uniform
measures for characterization of cells and determination of their secretory properties. The
general consensus is the use of flow cytometry to identify cells by specific markers. Such
classifications may only be useful for the theoretical study of the functional behavior of cells
with similar structural characteristics. In reality, however, stem and progenitor cells exhibit
tremendous plasticity and may rapidly alternate phenotypes in different environments [45].
Exposure of pre-transplanted stem cells to hypoxic conditions stimulates ischemic tissue
and induces the expression of many angiogenic factors and survival proteins that improve
therapeutic efficacy. Growth factors such as VEGF, placental growth factor, and stem cell
factor can mobilize endogenous bone-marrow-derived cells and direct their differentiation
into specialized cell types with the capacity to express angiogenic factors. Another exciting
approach involves engineering tissue using pluripotent stem cells and vascular progenitor
cells induced to differentiate into contractile and vascular elements, respectively. Among
other creative strategies that have been employed to promote survival of autologous stem
cells are localized ultrasound-targeted microbubble destruction of tissue at the transplan-
tation site to create a void that facilitates growth of the nascent cells and the use of grafts
composed of cells and an ECM [46].

4.4. Extracellular Vesicle Therapy

The field of stem-cell-derived extracellular vesicles (EVs) advanced following findings
that the therapeutic effects of cell-based therapies were mediated by paracrine actions [47,48].
The cardioprotective effects of EVs have since been well characterized in small and large
animal models [49,50]. While EVs carry a diverse cargo of proteins, RNAs, and lipids that
may mediate many pathways related to cardiac remodeling, their pro-angiogenic effects
have been corroborated in vivo and in vitro. Proteomic characterization further supports
the enrichment of pro-angiogenic pathways in EVs, which was shown to be regulated by
NFκB signaling in an elegant study by Anderson and collaborators [51,52].

Although the field of stem-cell-derived EVs has gained much popularity amongst
the research community, the translation of this therapeutic modality to the clinic has only
just begun in the setting of cardiovascular diseases. Phase II and phase I studies with
MSC-EV treatment for acute ischemic stroke and multiple organ dysfunction syndrome
(MODS), respectively, are currently in progress (NCT03384433, NCT04356300). Challenges
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in successful translation reside in the lack of standardized characterization methods and
targeted delivery to injured tissue. However, bioengineering strategies will be invaluable in
customizing EV content in addition to improving delivery and biodistribution to maximize
the potential of stem-cell-derived EV therapies.

5. Future of Therapeutic Angiogenesis
5.1. Patient Selection

Clinical trial eligibility criteria are essential in mitigating potential variables such
as age, gender, disease state, and so forth to ensure safety, mitigate confounding factors,
and isolate the effects of the treatment. Early clinical trials aiming at revascularization
often targeted patients with significant severity of disease, who had previously undergone
multiple failed interventions. This limited patient cohort suggests an inherent deficiency
in the mechanisms needed for blood vessel growth, conferring a lack of responsiveness
to growth factors and other therapies [53,54]. Additionally, many medications widely
used in practice have well-documented anti-angiogenic properties including atorvastatin,
spironolactone, captopril, and aspirin [55–60]. Experimental animal models may, therefore,
be necessary to evaluate pro-angiogenic treatments at various time points of the disease,
in addition to studying preventative measures prior to induction of the disease model.
Such studies will shed light on the effectiveness of the treatment in relation to the time it
was administered and the severity of the disease. Bioinformatics analysis to examine the
database of clinical trial data may also be useful in evaluating the relationships between
disease state, dose and delivery, and outcomes.

Additionally, lack of standardized endpoints to assess outcomes in patients enrolled
in therapeutic angiogenesis trials makes interpretation difficult. Indeed, the gold standard
remains the demonstration of new vessels or improved blood flow using imaging tech-
niques or perfusion studies, respectively. However, the longevity of this vasculature and
clinical significance with respect to improving quality of life and survival has been subject
to controversy. Sun et al. employed simulations and statistical analysis to evaluate multiple
endpoints in phase II acute heart failure clinical trials. They found that the average Z score,
which considers the average among all endpoints, is most powerful [61]. Of course, the
authors importantly note that sample size may require the application of different statistical
methods and criteria.

5.2. Comorbidities

Preclinical studies evaluating the efficacy of therapeutics in the setting of CVDs often
show promise but have little to no success when translated to the clinical setting. This
discrepancy may be in part attributed to underlying comorbidities in humans that are
unaccounted for in laboratory animal models. This issue is further highlighted by the high
prevalence of obesity and diabetes in the U.S. population, which is, respectively, 40 and
10% as reported by the Centers for Disease Control and Prevention [62,63].

Indeed, four weeks of a high-fat diet or glucose intolerance has been associated
with markedly increased expression of anti-angiogenic factors endostatin and angiostatin,
increased oxidative stress and additional signaling abnormalities, which likely have a
major effect in diminishing the angiogenic response to growth factors or cell therapy, or the
angiogenic process in general in both animal models and in patients [64–66]. A recent study
by our lab indeed found disparate gene expression and paradoxical angiogenic signaling
between a chronic ischemia swine model with and without metabolic stress, when treated
with EVs [67]. Therefore, future preclinical work must compare functional, cellular, and
molecular effects of therapeutic treatments targeting angiogenesis in disease states with
additional risk factors [68]. The widespread maladaptations that occur during cardiac
remodeling, combined with underlying risk factors, also highlight the growing need for
a more comprehensive or versatile treatment approach, such as combination therapies
(Figure 3). In fact, therapeutic interventions such as glucose control seem to improve the
potential of angiogenesis and collateral vessel growth in animal models [69].
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Figure 3. Future challenges and prospects in therapeutic angiogenesis. Cardiac remodeling is
characterized by widespread maladaptive changes that adversely affect the structure and function
of the heart; these events are further exacerbated by underlying comorbidities such as metabolic
syndrome. Combination therapies have the potential to mediate the widespread changes and
enhancing revascularization. Furthermore, bioengineering methods may play a valuable role in
controlling the release of signaling factors, improving myocardial targeting, and encapsulating
many factors.

5.3. Combination Therapies

The combination of proteins, genes, and/or cells is sound rationale to overcome the
shortcomings of monotherapies. Indeed, co-administration of VEGF and PDGF, FGF2 and
PDGF, or VEGF and FGF2 were found to improve revascularization compared to controls
in ischemic tissues in vivo [70]. Bai and collaborators investigated single, binary, and
ternary combination of growth factors with VEGF, FGF2, and bone morphogenic proteins
2 (BMP2). Together, these factors significantly improved endothelial cell angiogenesis
in vitro and chorioallantoic membrane angiogenesis in vivo, with reduced concentrations
of each factor [71]. Methods of modifying gene expression in BM-MSCS have had similar
success; BM-MSCs overexpressing HGF or ANG1 were shown to increase vascularity in
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the ischemic myocardial territory [72]. The transfer of endothelial nitric oxide synthase
(eNOS) to BM-MSCs using minicircle plasmid DNA also enhanced angiogenic capacity of
these cells [73].

Preconditioning or priming cells with a given stimuli has also emerged to manipulate
cellular cargo in place of single-gene transfections. This approach has the ability to tune
the cell’s contents at a much larger scale. The review by de Cássia Noronha et al. describes
potential stimuli such as hypoxia, cytokine exposure, and nutrient or drug administration
applied while culturing cells, and their therapeutic effects in animal models [45]. As the
field of stem-cell-based therapies has been impeded by clinical findings with short-lasting
improvements that are not sustained in the long-term, the field of stem-cell-derived EVs
has conversely risen. Certainly, preconditioning or transfecting cells and isolating their EVs
has potential in future clinical trials. A recent study by Sun and collaborators found that
exosomes derived from hypoxia inducible factor 1 α (HIF1α)-overexpressing MSCs resulted
in cardioprotection of a rat myocardial infarction model by inducing angiogenesis [74].
Omics studies will play a major role in characterizing EV cargo and ensure standardization
for potential large-scale application. Certainly, laboratory animal models may not perfectly
replicate the conditions inevitably associated with the clinical setting such as interfering
comorbidities, medications, and refractory disease; however, creative and comprehensive
preclinical study designs that considers comorbidities, combination therapies, and delivery
systems are increasingly imperative.

5.4. Delivery

Ongoing studies aim to provide an optimal mode of delivery that does not necessitate
repeated invasive procedures and ensure sustained tissue expression of the therapeutic
substance. Indeed, thoracotomies and other surgical methods of delivery carry significant
risks and prohibit effective control groups for clinical trials. These limitations prompted
interest in employing cutting edge imaging modalities in the development of less invasive
methods of administration of the gene-vectors to ischemic myocardial territories. Data
from clinical trials showed that NOGA guided delivery of plasma encoded VEGF in
patients with chronic symptomatic angina who are not candidates for conventional means
of revascularization effectively improved Canadian Cardiovascular Society (CCS) angina
class, while being well tolerated [75].

Novel delivery methods via nanofibers, nanoparticles, and targeting sequences may
also be critical in overcoming these challenges. Among the nanofiber materials available,
hydrogels are particularly intriguing due to their water content that is compatible with
bodily tissues and support slow diffusion of bioengineered contents. An alginate-based
gel containing VEGF found a stable release of the growth factor over one month in vitro
and improved angiogenesis in a hindlimb ischemic model in vivo [76,77]. Of course, many
polymer options can and should be explored in the development of a delivery system that
maximizes and extends the angiogenic signal, such as collagens, gelatins, fibrins, peptides,
and matrigels.

Nanoparticles may be sourced synthetically or from bioparticles, such as extracellular
vesicles themselves; natural bioparticles may be a safer mode that avoids the risk of
immunogenicity. Nonetheless, these particles—whether synthetic or natural in nature—are
capable of being carriers of genes, proteins, drugs, and other molecules. The advantage
to this method is protecting the molecule from potential degradation until fusion with
recipient cells; furthermore, size and membrane content can be adjusted to improve delivery
towards target tissue. In fact, in vivo biopanning approaches have identified cardiac-
specific targeting peptides. Separate studies identified such targeting peptides, which were
referred to as cardiac homing peptide (CHP) or ischemic myocardium-targeting peptide
(IMTP), and conjugated them to exosomal membrane proteins [78,79]. They then proceeded
to study the actions in vivo into animal models of MI and found improved delivery,
biodistribution, and cardioprotection in the myocardium compared to controls [80,81].
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A novel delivery platform was recently developed by Wang, designed to optimize
delivery of growth factors and known as coacervate [82,83]. The coacervate forms due to
electrostatic interactions that essentially polymerize into tiny oil droplets and mimic the
structure of heparin along with its capability to bind many factors at once. Therefore, the
coacervate has potential to deliver multiple growth factors, which may be of particular
value in stimulating angiogenesis. In vitro examination supported the loading ability and
controlled release of this platform; meanwhile, an in vivo study with FGF2 significantly
improved angiogenesis compared to free FGF2 [82,83]. A recent study by Xiao and collabo-
rators supported previous findings, where FGF2-loaded coacervate significantly enhanced
wound healing via cell proliferation, VEGF secretion, and increased CD31 and αSMA
density [84].

6. Conclusions

Ischemic heart disease is the most prevalent and deadly disease worldwide. While
current standards of care have undoubtedly improved outcomes, there is consensus that
novel therapies employing inherent mechanisms of revascularization are the next frontier in
the management of this disease. Elucidation of angiogenic processes and their underlying
mechanisms has provided key insights into activators and targets to stimulate angiogenesis.
Protein, gene, and cell-based therapies have been developed; however, their translation
from animal models to clinical trials have largely been disappointing. Challenges in patient
selection, endpoint measures, and the prevalence of comorbidities have confounded results
and interpretation. However, bioinformatic approaches and bioengineering strategies may
overcome such challenges by determining optimal statistical methods that account for
multiple endpoints, and improving delivery and biodistribution of factors to the damaged
tissue. Combination therapies, furthermore, hold promise in mediating multiple pathways
and maximizing therapeutic effects.
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