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Abstract: Pharmaceutical drug development relies heavily on the use of Reversed-Phase Liquid Chro-
matography methods. These methods are used to characterize active pharmaceutical ingredients and
drug products by separating the main component from related substances such as process related im-
purities or main component degradation products. The results presented here indicate that retention
models based on Quantitative Structure Retention Relationships can be used for de-risking methods
used in pharmaceutical analysis and for the identification of optimal conditions for separation of
known sample constituents from postulated/hypothetical components. The prediction of retention
times for hypothetical components in established methods is highly valuable as these compounds
are not usually readily available for analysis. Here we discuss the development and optimization of
retention models, selection of the most relevant structural molecular descriptors, regression model
building and validation. We also present a practical example applied to chromatographic method
development and discuss the accuracy of these models on selection of optimal separation parameters.

Keywords: Quantitative Structure Retention Relationships; chromatographic method development;
pharmaceutical analysis

1. Introduction

Pharmaceutical analysis is an important area of chemical analysis used to support
diverse and excessively complex activities associated with drug development. The appli-
cation of Reversed-Phase Liquid Chromatography (RP-LC) is ubiquitous in the support
of process chemistry optimisation, formulation development as well as key quality con-
trol assessment for the release of materials designated for all stages of pre-clinical and
clinical trials.

In process chemistry development, RP-LC is commonly used to assess the assay/purity
of starting materials, isolated synthetic intermediates and Active Pharmaceutical Ingredi-
ents (APIs). This usually requires baseline separation of all known components of complex
mixtures, their identification and subsequent quantitation. This is performed in accor-
dance with the International Council for Harmonisation of Technical Requirements for
Pharma-ceuticals for Human Use guidelines as applied to product specification, impurities
management and method validation [1–3]. In addition, purging of process related impuri-
ties, synthetic by-products and key degradants requires their chromatographic monitoring
at all relevant interventions (e.g., isolation steps). Process chemistry understanding relies
heavily on the application of RP-LC. Chemists are required to understand the impact of syn-
thetic parameters on the quality of their processes which make important starting materials,
intermediates and final API. This is an essential requirement of commercial synthetic route
development. Lastly, the understanding of degradation also requires chromatographic
separation of key degradation products from the main component and their subsequent
identification and quantitation [4–6].
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In order to nominate commercial synthetic process, chemists often generate a relatively
large number of hypothetical chemical structures that could be generated as process
related impurities. These could be formed as by-products due to impurities present in
starting materials or due to side reactions. Another potential for the formation of these
undesirable components is degradation reactions which take place either during synthesis
or during storage. Realistically, many of these theoretical components will never be
observed. However, the analytical methodology (e.g., RP-LC) supporting synthetic process
development should be able to at least detect them, if indeed they were to form under
certain extreme synthetic or storage conditions.

The satisfactory performance of chromatographic methods can only be guaranteed
for a defined/known sample composition. This can be referred to as the key predictive
sample set (KPSS), for which the given method was developed and subsequently validated.
Evolving requirements during pharmaceutical development, such as changes in synthetic
or formulation processes, may lead to alteration of the KPSS, for example in order to
manage new process related impurities or degradation products. Examples may include
changes in sources of synthetic starting materials, alteration of process chemistry conditions
or formulation manufacturing parameters. An inherent, if perhaps somewhat obvious,
constraint of chromatography lies in the fact that unless these new KPSS components are
physically available, e.g., obtained either by synthesis or purification, it has been virtually
impossible to predict whether the current version of chromatographic method used to
support particular synthetic or formulation development activities will be able to detect
and quantify them. One way to overcome this is to either synthesise these components or
to obtain them by purification. The production of compounds whose sole purpose is to
de-risk existing analytical methodology, and which may never be formed under “normal”
conditions, may be costly and time consuming. Consequently, such activities are often
deferred to the latter stages of the drug development lifecycle. Should it transpire, at
this stage, that the existing chromatographic method is not capable of detecting these
components, should they form, method re-development activity may be triggered. At best,
this would necessitate the considerable effort of repeat method robustness and validation
work, followed by retest of samples previously analysed using the insufficiently selective
methodology. At worst, prior development decisions, for example around synthetic process
or formulation, made on the basis of what now proves to be incomplete information, may
then need to be revisited.

Chromatographic method development typically starts with the definition of require-
ments for the capabilities of the analytical technique being used. However, significant
consideration is also paid to final product specification. Method performance understand-
ing includes at least following parameters: minimal tolerable resolution of key components
and determination of the accuracy, precision and sensitivity or range requirements. Once
the necessary performance criteria are understood, and the separation mode capable of
achieving these is identified, the next step in the method development process is to select
suitable combination of the stationary phase [7], mobile phase (solvent) and pH. This criti-
cal step, which ultimately affects the robustness of the method, is in present-day analytical
laboratories carried out by combinations of experimental screening [8]. Employment of
in-silico prediction tools, capable of calculating key physicochemical properties (e.g., logP,
pKa, aqueous/solvent solubilities) of pharmaceutical substances are employed to assist
in method design decision making. One example of such software is ACD/Labs Percepta
(ACD/Labs, Toronto, ON, Canada). Selection of suitable stationary and mobile phases is
followed by more detailed optimisation, for example the column temperature, content of
the organic solvent in isocratic or gradient elution, pH of the mobile phase and concentra-
tion of the buffer and/or ion pairing reagent. Such optimisation can be carried using an
“One Factor at a Time” approach. However, modern approaches employ multi-factorial
interpolation software such as ACD/Labs LC Simulator (ACD/Labs, Toronto, ON, Canada)
or DryLab (Molnar-Institute, Berlin, Gemany). These enable extrapolation of a relatively
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small number of experiments that lead to accurate prediction of chromatographic retention
times within the intervals of tested conditions.

Alternative approach to de-risking chromatographic methods, and which does not
rely on the availability of all hypothetical components of KPSS, is to build sufficiently
accurate regression retention models. These are often referred to as Quantitative Structure
Retention Relationship (QSRR) models, which can be used to predict retention of these new
KPSS components. In QSRR models a mathematical relationship is built between molecular
descriptors (or features) and measured retention times, factors or indexes. If relevant
structural descriptors can be obtained for a given hypothetical structure, then its retention
time can be predicted using the QSRR model. This facilitates assessment of the separation
method (de-risking) for potential co-elutions with other sample components. Although
the concept of QSRR is not new [8–12], the last decade brought significant expansion of its
application especially in the pharmaceutical industry. The renewed interest in this field
is probably triggered by progress in availability of diverse structural descriptors [13–18],
structure geometry optimisation software as well as broad availability of feature selection
and regression algorithms [19]. Progress in high performance computing, as well as
more widespread and affordable access to it, has inevitably played a significant role
in this development. In liquid chromatography, which is by far most frequently used
technique in pharmaceutical development, QSRR models were developed for RP-LC,
Hydrophilic Interaction Liquid Chromatography and Ion Chromatography separation
modes, with applications ranging from method development to non-targeted screening
for metabolomics [9], environmental or food pollutants and toxins. These applications,
published between 2015 and 2020, were recently extensively reviewed [20]. Analytes for
which QSRR models were built range from small molecules, lipids [20] to peptides and
proteins [21–25].

In addition to the de-risking of analytical methods, further benefits of QSRR models
can be derived from their ability to provide complimentary information in support of
structural elucidation challenges. This is a common challenge to both the pharmaceutical
industry and in metabolite identification in metabonomic studies [9]. For example, in situa-
tions where multiple structural hypotheses remain consistent with available spectroscopic
(e.g., Nuclear Magnetic Resonance or Mass Spectrometry) data, additional information
based on retention time matching with QSRR prediction might usefully narrow the field.
Even if not viewed as definitive, such information might certainly help drive business
decision making, for example prioritising which proposed chemical entity should be syn-
thesized first in order to confirm the identity of unknown chromatographic peaks observed
in samples.

In this contribution, we describe how the development of accurate retention models
can be used to de-risk chromatographic methods in instances where a previously unseen
component is postulated. We will describe an optimized approach to model development
which includes selection of molecular descriptors using feature algorithms. Model valida-
tion, as well as practical application of these models to predict retention extrapolated from
a small number of experiments, will also be discussed.

2. Results and Discussion
2.1. Development of the Statistical Retention Models

As stated previously, the objective of the development of statistical retention models
is to create a mathematical relationship between measured retention time and chemical
structure. The process of building QSRR models typically starts with data collection. The
purpose of this is to create a database of chemical structures and corresponding retention
times. A recent review [20] lists number of data sources that have been used to build
QSRR models. The numbers of compounds in these databases vary from few tens of
compounds to several hundreds or even thousands. Although the perception that the
larger datasets typically generate more accurate predictions prevails among researchers,
this perception was successfully challenged in some recent publications, in which it was
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demonstrated that significantly smaller datasets of compounds bearing structural similarity
to the analytes of interest generated highly accurate models [26–28]. A certain degree of
variability of retention times can occur if measured at different time points or utilising
different batches of stationary phases. It is therefore preferential to generate the entire
dataset in as few chromatographic injections as possible. However, if additional data is
required for the purpose of creating QSRR models it is essential that it is collected in a
well-controlled environment.

Chemical structures need to be converted into their numerical representation by
expressing them through structural descriptors. Structural descriptors can range from
measured or calculated physicochemical properties such as octanol-water partition coeffi-
cients, to a series of theoretical descriptors which are products of complex cheminformatics
algorithms [29]. Contemporary software packages can generate large numbers of structural
descriptors (features). It is usually necessary to apply some form of data pre-processing to
eliminate constant or nearly constant features as well as those which are highly correlated.
Finally, when large numbers of descriptors are generated, an evolutionary searching or
genetic algorithm is required to identify or preserve those which positively impact model
performance [30]. Selection of suitable regression algorithms can also have a major impact
on the accuracy of predictions. There is a relatively large number of classification and
regression algorithms available in commercial or open source platforms e.g., WEKA [19,31].
Selection and optimisation of these algorithms can be carried out either manually or by
automated procedures [32]. The final step in QSRR model development is usually model
validation, which provides an estimate of how accurate the prediction of retention time
might be for a hypothetical chemical entity.

2.1.1. Data Collection, Molecular Descriptor Calculation and Data Preprocessing

API and 23 related components from a representative API development program,
were selected for initial screening in which multiple stationary and mobile phases were
tested for overall best chromatographic performance (see Materials and Methods for
details). The mixture of 24 components, being comprised of API, synthetic intermediates,
process related impurities, synthetic by-products and degradation products, from the
same development program exhibited high degree of structural similarity. Figure 1 shows
pairwise structural similarities expressed as Tanimoto index [33] which was calculated
using ACD/Labs Spectrus DB (ACD/Labs, Toronto, ON, Canada). Nearly 75% of pairs
have similarities higher than 0.8, only three compounds exhibit lower pairwise similarities
in the range 0.5–0.7. The high similarities within the dataset are in line with previously
published papers in which a relatively small numbers of structurally similar compounds
were used to build accurate QSRR models [26–28]. For each geometry-optimised 3-D
molecular structure, three types of (native) descriptors were calculated, Dragon (4886
descriptors), MOE (256 descriptors) and VolSurf+3D (128 descriptors) (see e.g. [29] for
details of what descriptors are and how are they calculated). All zero variance and highly
correlated (Correlation Coefficient (R) > |0.85|) descriptors were eliminated. Of multiple
highly correlated descriptors, the one with the best correlation with the retention time was
preserved [34,35].
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2.1.2. Generation of Training and Test Sets

From the entire dataset of 24 compounds, 3 random components were removed, and
these were used as the external test set. The remaining 21 compounds formed the training
set that was used to identify significant descriptors and to build and optimize regression
models. This process was repeated 8 times, every time removing different 3 components.
This way 8 training sets /test set combinations were created. The superscripts T1 to T8 in
Tables S1 and S2 indicate which training set/test set combination compounds belong to.

2.1.3. Selection of Molecular Descriptors

Evolutionary search (ES) algorithm combined with Multiple Linear Regression (MLR)
implemented in Weka [31] was used to select significant descriptors. One thousand genera-
tions were calculated with a population size of 100. The mutation probability was set to 2%
and the cross-over probability was set to 6%. Because of the random nature of evolutionary
searching, this selection was applied to every training set and repeated three times for all
native descriptors (Dragon, VolSurf+3D and MOE) as well as all combinations of descrip-
tors (Dragon & VolSurf+3D, Dragon & MOE, VolSurf+3D & MOE, Dragon & VolSurf+3D &
MOE). Root Mean Square Error (RMSE) calculated from 7-fold cross validation applied to
each training set was used to identify and select significant descriptors. Thirty descriptors
most frequently selected by ES are listed in Table 1.
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Table 1. List of the 30 Most Frequently Selected Descriptors by Evolutionary Search.

Descriptor Description Descriptor Description

CATS2D_03_DL CATS2D Donor-Lipophilic at lag 03 LOGP_N-oct Log Octanol/water
CATS2D_09_DA CATS2D Donor-Acceptor at lag 09 CATS2D_09_NL CATS2D Negative-Lipophilic at lag 09

F03[C-O] Frequency of C-O at topological
distance 3 GATS5s Geary autocorrelation of lag 5 weighted

by I-state

GATS6e
Geary autocorrelation of lag 6

weighted by Sanderson
electronegativity

GATS6m Geary autocorrelation of lag 6 weighted
by mass

GATS7m Geary autocorrelation of lag 7
weighted by mass HATS4e

leverage-weighted autocorrelation of
lag 4/weighted by Sanderson

electronegativity

HATS5s leverage-weighted autocorrelation
of lag 5/weighted byI-state Mor10p signal 10/weighted by polarizability

AMW average molecular weight BLTA96 Verhaar Algae base-line toxicity from
MLOGP (mmol/L)

Mor24p signal 24/weighted by
polarizability N-075 R–N–R/R–N–X

nArCOOR number of esters (aromatic) NNRS normalized number of ring systems

TDB07m
3D Topological distance-based
descriptors—lag 7 weighted by

mass
TDB08s 3D Topological distance-based

descriptors—lag 8 weighted byI-state

a_acc Number of hydrogen bond acceptor
atoms logS Log of the aqueous solubility

PEOE_VSA_NEG Total negative van der Waals
surface area PEOE_VSA+0 Sum of vi where qi is in the range of

0.00–0.05
SMR_VSA7 Sum of vi such that Ri > 0.56 ACACDO H-bond acceptor and donor

L0LgS Solubility profiling coefficient L2LgS Solubility profiling coefficient
pctFU4 Percent unionized species at pH 4 pctFU6 Percent unionized species at pH 6

2.1.4. Selection of Regression Algorithm

Five regression algorithms (Table 2) implemented in WEKA [31] were applied to all
training sets. Each training set consisted of either native descriptors, or their combinations,
and were selected by ES as described above. For each training set RMSE as well as R were
calculated using 7-fold cross validation. Results are summarized in the Table S3. Figure 2
shows the RMSE (a) and R (b) averaged for all 8 training sets. In addition, Figure 2a
also shows the average RMSE values for all applied regression algorithms. It can be
seen from Figure 2, that mixed descriptors provide marginally better performance than
native descriptors and that Support Vector Machine (SVM) and Gaussian Processes (GPR)
regression algorithms consistently outperform MLR, Random Forest (RF) and Partial Least
Squares (PLS). Overall best performance was obtained using a mixture of all descriptors
and the SVM algorithm. Further attempts to optimise the SVM hyperparameters, such as
the complexity factor for example, as well as the exponent in the Normalized Polynomial
Kernel did not lead to further improvement of RMSE or R values. Therefore, it was decided
to use the WEKA default values i.e., complexity factor was set to 1.0 and the exponent 2.0.
The best performing algorithm and the mixture of all 3 descriptors were used to validate
the model.
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Table 2. Regression Algorithms and their settings.

Algorithm Settings

Support Vector Machine [36,37] Normalized training data
Polynomial Kernel

Gaussian Processes Without hyperparameter tuning
Normalized Polynomial Kernel

Multiple Linear Regression M5 attribute selection method
Random Forest [38] WEKA default Setting

Partial Least Squares (PLS) Optimal Number of PLS factors determined
using Leave One Out cross validation
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2.1.5. Model Validation

In order to assess the ability of QSRR models to predict retention times of compounds
that were not used in their development or optimisation, retention times for eight test
sets, created as described in the Section 2.1.2, were predicted. This was repeated for all six
screening conditions as described in the Section 2.2. QSRR predicted retention times are
shown in the Table S1 and Figure 3 demonstrates the match between QSRR predicted and
experimentally determined retention times. Finally, the corresponding RMSE and R values
are provided in the Table 3.
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Table 3. RMSE and R values for test sets at six screening conditions. See Table 4 for the experiment details.

Experiment
#1

Experiment
#2

Experiment
#3

Experiment
#4

Experiment
#5

Experiment
#6

RMSE 0.4262 0.9981 0.3472 1.0133 0.4091 0.8401
R 0.9769 0.9763 0.9851 0.9792 0.9799 0.9874

2.2. Application to Method Development

As described in the introduction, optimisation is performed once a suitable stationary
and mobile phase, buffer, and pH [20] is selected. At this stage, it is typically column tem-
perature and the content of organic modifier in the mobile phase (Gradient time = tG [min])
that are optimised. The details of the initial six experiments are presented in Table 4. Ex-
perimental retention times for KPSS for these experiments are shown in Table S2. These
measured retention times were extrapolated using the ACD/Labs LC Simulator software.
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Linear extrapolation was used for the mathematical relationship between natural logarithm
of the retention factor of each component (lnk) in the KPPS and tG [min]. Quadratic
extrapolation was applied to the relationship between lnk and 1/T where T [Kelvin] is
the column temperature. Figure 4a shows the resolution of every component of the KPSS
for all combinations of tG and 1/T. For the purposes of clarity, the retention model built
from experimentally determined retention times is depicted as RtModelEXP. The optimal
temperature and gradient composition, the so-called centre point, were selected to consider
maximum method robustness i.e., where the overall resolution is maximum and least
affected by alteration of T or tG (Figure 4). Figure 5 shows the separation at the optimal
temperature and gradient.

Table 4. Screening sequence used to optimize the column temperature and gradient elution. See
Materials and Methods for other conditions.

Experiment Column Temperature (◦C) Gradient Profile a

1 20 Time = 0 min, %B = 5%;
Time = 15 min, %B = 95%

2 20 Time = 0 min, %B = 5%;
Time = 45 min, %B = 95%

3 40 Time = 0 min, %B = 5%;
Time = 15 min, %B = 95%

4 40 Time = 0 min, %B = 5%;
Time = 45 min, %B = 95%

5 60 Time = 0 min, %B = 5%;
Time = 15 min, %B = 95%

6 60 Time = 0 min, %B = 5%;
Time = 45 min, %B = 95%

a Followed by 4 min equilibration.
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In order to assess the suitability of the QSRR, we have essentially replicated the
process described except that in this case, instead of measured retention times, we used
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QSRR predicted retention times (Table S1) as described above (see Section 2.1). Again,
for the purpose of clarity this retention model is depicted as RtModelQSRR. Agreement
between predicted chromatographic separation of KPSS components from RtModelEXP
and RtModelQSRR, at the experimental conditions corresponding to the centre point is
demonstrated in Figure 5. For this subset of compounds, the retention times predicted
from RtModelEXP and RtModelQSRR are nearly identical. Also, the resolution heatmap
constructed from QSRR predicted retention times, although not entirely identical to the
one constructed from experimentally obtained retention times, indicates similar optimal
resolution of all compounds belonging to KPSS (Figure 4b). This may not be the case for all
compounds as the accuracy of prediction varies from compound to compound. This is also
demonstrated in the Figure 3.
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Figure 5. Predicted chromatogram for KPSS components from the retention model built from
experimentally determined retention times (RtModelEXP) (solid line) and the retention model built
from QSSR predicted retention times (RtModelQSRR) (dashed line). Column temperature 40◦C.
Gradient profile: Time = 0 min, %B = 15%; Time = 12 min, %B = 45%; Time = 17 min, %B = 95%. See
Materials and Methods for other details.

In order to compare retention times predicted from RtModelEXP and those predicted
from RtModelQSRR we used all 24 compounds. We then created all possible combinations
of two to ten components from this compound set. For each of these combinations we
calculated a resolution coefficient (RC) according to Equation (1):

RC = ∏
i,j

1

e
(

Rslimit
Rsi,j

−1)
(1)

where Rslimit = 1.25 is minimal satisfactory resolution between two components and Rsi,j is
the actual chromatographic resolution between two components in the mixture. If the Rsi,j
is equal to or exceeds Rslimit then it is set to Rslimit. The RC indicates that if the resolution
between two components is equal to or exceeds Rslimit then the RC has a value of one.
Whereas, if the resolution between two components is zero then the RC value will also be
zero (i.e., 1/e∞ ≈ 0). Therefore, all other values will fall between values of zero and one.
Note that for the calculation of the resolution between two components we used average
peak width of 0.1 min. The black line in Figure 6 shows the portion of all combinations for
which both models (RtModelEXP and RtModelQSRR), predicted baseline separation of all
components in the mixture (RC = 1).
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Figure 6. Portion (%) of all combinations of compounds containing two to ten components for which RtModelEXP and
RtModelQSRR predicted baseline separation (Resolution Coefficient (RC) = 1). The total number of combinations evaluated
is in parentheses. Black line corresponds to model built from predicted data and red line corresponds to model built from
mixture of predicted and experimental data. See text for details.

This data demonstrates that of all theoretical mixtures containing up to seven compo-
nents which were separated with a resolution of at least 1.25, more than 80% were identified
with both models. Even for the most complex mixtures containing ten components, nearly
65% of all combinations were identified with both models. It can be concluded that once
QSRR derived retention times are established they can be used to identify conditions in
which all components are fully separated. However, the observation described in Figure 6
(black line) represents an extreme case since we are comparing a model built from entirely
experimental data with one built from entirely QSRR predicted data. Practically, this
scenario will almost always be applied to a mixture of components, for some of which the
measured data will be available. We simulated this scenario by randomly replacing ap-
proximately 20% (5 out of 24) of retention times obtained from RtModelQSRR with retention
times obtained from RtModelEXP. As shown in Figure 6 (red line), there were noticeable
increases in the proportion of mixtures identified as baseline separated in both models. In
practical terms, we usually have many experimentally determined retention times available
and few QSRR determined data. We would typically be looking at 2–5 components with
which to estimate successful separation. These components are likely to be subtle molecular
modifications within the acceptable structural similarity properties of the model.

Lastly, pairwise resolutions were calculated for all 24 compounds determined using
both QSRR and experimentally determined retention times. The same assumptions re-
garding the peak widths as in previous calculations were made. All pairs that exhibited
resolution higher than 20 were excluded as these components would always be separated
even if the error of prediction was excessive. RC values for all remaining pairs were
calculated for retention times predicted from RtModelEXP and RtModelQSRR. RC values
for these models were compared. Figure 7 shows what proportion of pairwise RC values
calculated from RtModelQSRR which falls within specified intervals of RC values calculated
from RtModelEXP. This figure demonstrates that in excess of 60% of pairwise RC values
obtained from RtModelQSRR fall within ±0.1 of RC values obtained from RtModelEXP. This
again indicates that likelihood of making correct decision with regards to selection optimal
separation conditions based on QSRR derived models is high.
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3. Materials and Methods
3.1. Instrumentation

All experiments were performed using an Agilent 1290 – Infinity UHPLC (Agilent
Technologies, Waldbronn, Germany) liquid chromatography apparatus equipped with
a diode array detector, autosampler, and thermostat. Quadrupole time-of-flight mass
spectrometer Agilent 6550i (Agilent Technologies, Singapore) was employed to track
chromatographic peaks between different methods. Chromatographic data were collected
and processed using a MassHunter Workstation LC/MS data acquisition software (Agilent
Technologies, Santa Clara, CA, USA). The column employed in this study was a Waters
BEH Acquity C18 (2.1 mm id × 100 mm, 1.7 µm) (Waters, Milford, MA, USA). The gradient
eluent utilized consisted of acetonitrile (Mobile phase B) and 10 mM ammonium acetate
solution, pH adjusted to 4.9 with acetic acid (Mobile phase A). Dataset for building QSRR
models was obtained at column temperature 60 ◦C and following gradient profile: Time
= 0 min, %B = 5%; Time = 45 min, %B = 95% followed by 4 min equilibration. All other
gradient profiles are specified in Table 4. All data were collected at column temperatures
as specified in Table 4 and with an eluent flow rate of 0.4 mL/min. The injection volume
was 2 µL and the UV detection was carried out at 254 nm.

3.2. Chemicals and Reagents

All standards used throughout the study were synthesized and characterized at Pfizer
R&D UK Limited (Sandwich, UK). Standard solutions were initially prepared at 1 mg/mL
concentration in diluent solution consisting of 50:50 (v/v) mixture of acetonitrile and
water and stored in refrigerator. They were diluted 50-fold prior to injection with diluent.
Acetonitrile (HPLC grade), ammonium acetate (LCMS grade) and acetic acid (Analytical
grade) were purchased from Fisher Scientific (Loughborough, UK). Deionized water was
prepared in house by MilliQ LC-Pak (Merck, Amsterdam, The Netherlands).

3.3. Software

AlvaDesc (Alvascience Srl, Lecco, Italy) software was used to calculate Dragon [13]
descriptors (Formerly DragonX), Molecular Operating Environment (MOE, Chemical Com-
puting Group Inc, Montreal, QC, Canada) software was used to calculate MOE descriptors
and Molecular Discovery Software (Molecular Discovery, Borehamwood, UK) software
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was used to calculate VolSurf+3D descriptors [14]. Prior to descriptor calculation, 3D con-
formers were generated using Corina (Molecular Networks GmbH, Nürnberg, Germany
and Altamira LLC, Columbus, OH, USA) followed by energy minimization using MMFF94
force field, embedded in MOE software.

WEKA [39] (version 3.8, Waikato, New Zealand) platform was used for feature selec-
tion and for the development and optimization of regression algorithms.

ACD/Labs LC Simulator (ACD/Labs, Toronto, ON, Canada) version 2019 was used
to carry out two-dimensional resolution optimisation.

4. Conclusions

Chromatographic QSRR models were demonstrated to be useful for the prediction
of retention times for hypothetical components with favourable accuracy. Likewise, the
optimum resolution space was shown to be accurately represented when calculated using
this approach. This was achieved by using a combination of Dragon, MOE and VolSurf+3D
descriptors with a Support Vector Machine regression algorithm which outperformed all
other tested conditions. An Evolutionary Search algorithm was used to reduce number of
considered molecular descriptors from which the retention models were built. The retention
times predicted from these models were used to build two-dimensional (gradient time
versus temperature) resolution maps in order to identify optimal separation conditions.
We found excellent agreement between the resolution of sample components obtained
from a model built using experimental retention times with those from QSRR predicted
retention times. These results indicate the usefulness of QSRR for the identification of
optimal chromatographic conditions as well as for de-risking of existing methods for
new/hypothetical components. It thus raises the prospect of an alternative approach to
separation optimisation and de-risking that would not inherently rely on the availability of
physical samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22083848/s1, Table S1: QSRR predicted retention times from second screening, Table S2:
Experimental retention times from second screening, Table S3: Selection of regression algorithm.
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Abbreviations
RP-LC Reversed-Phase Liquid Chromatography
API Active Pharmaceutical Ingredient
KPSS Key Predictive Sample Set
QSRR Quantitative Structure Retention Relationship
R Correlation Coefficient
ES Evolutionary Search
MLR Multiple Linear Regression
RMSE Root Mean Square Error
SVM Support Vector Machine
GPR Gaussian Processes Regression
RF Random Forest
PLS Partial Least Squares
RtModelEXP Retention model built from experimental retention times
RtModelQSRR Retention model built from QSRR predicted retention times
RC Resolution Coefficient
Rslimit Minimal satisfactory resolution between two components
Rsi,j Actual chromatographic resolution between two components in the mixture
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