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Macrophages were discovered in the 19th century by Ukrainian biologist Élie Metch-
nikoff who worked in Ukraine, Russia, and France [1,2]. He discovered the process of
phagocytosis, i.e., the ability to devour (phagocyte) microorganisms and cell debris, and
understood that it plays a major role in the immune system. In 1908, he received the Noble
prize for his research on immunity [3]. Phagocytosis was the principal function attributed
to macrophages for many decades. This ability that evolved over 500 million years ago
in the unicellular amebae allowed macrophages to be the first responders of the immune
system against invading pathogens and the leading debris cleaners during wound healing.
Over the years, we have learned that phagocytosis is only a tiny fraction of the abilities
of macrophage and that macrophages are not only highly complex and multifunctional
but also incredibly malleable, and depending on the need and environment, they can
switch properties, phenotypes, and functions or curb their voracious instinct to become
tolerant (and even collaborative) to the beneficial symbiotic microorganisms inhabiting
the host [4,5]. Moreover, by presenting antigens and secreting various cytokines and
factors, macrophages communicate with other immune cells, sculpt the overall response
of the innate and adaptive immune system, and control long-term (chronic) rejection of
transplanted organs [6,7]. Additionally, by exchanging molecules and organelles such as
mitochondria with the immune cells and stem cells, macrophages shape the regenerative
responses [8,9].

One myth that has been prevailing for the last 50 years pertains to the origin of
macrophages. In 1968, van Furth and Cohn proposed that all macrophages derive from the
circulating blood monocytes, and only a decade ago was it definitively accepted that adult
organism’s macrophages have a dual origin: not only from the monocytes but also from
the embryonic yolk sack [10]. It is now well established that all tissues and organs have
highly specialized populations of resident macrophages, which derive from the embryonic
yolk sack, and perform tissue/organ-specific functions. In the last few decades, we also
learned that the tumor-associated macrophages (TAMs), can fuse with cancer cells and
bestow on them motility necessary for metastasis [11–13].

Considering these multifaceted functions of macrophages, it is not surprising that
they are affected by various drugs and compounds used in the clinic, and that they become
a favorite target for the development of novel therapies for many human diseases [14,15].

In this issue, we present an overview of the current research trends concerning
macrophages and their newly discovered properties and functions. We focused this Special
Issue on both human and animal macrophages because different animal models are very
helpful in the understanding of novel roles of these immune cells and in the development
of new clinically applicable therapies. In this issue, Tsuji et al. described the effect of
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antipyretic drug acetaminophen (APAP, which causes liver injury when overdosed) on
M1/M2 macrophages in the rat model [16]. They provide a new perspective on hepato-
pathogenesis and direct novel avenues for the development of therapeutic strategies.
Bhunyakarnjanarat and colleagues delineated the effects of a common analgesic, NSAIDs,
on macrophages and correlation with the gastrointestinal permeability defect (gut leakage)
and lupus [17]. Their research strengthens the possibility that lupus disease activation
may be related to the NSAID-enteropathy-induced gut leakage. In the same issue, Barczak
et al. described the effect of a new silicate cement mineral, trioxide aggregate (MTA Repair
HP), on the macrophage-related inflammation processes of the tooth and periodontal
tissues [18]. The material studied here is used in the regeneration of the pulp–dentin
complex, treatments of teeth perforations, and periapical tissue. This study shows that
MTA Repair HP does not induce macrophage activation or increase the MMP-2 and MMP-9
metalloproteinases. Thus, they concluded that this new compound does not increase the
inflammatory response in the analyzed population of monocytes/macrophages and does
not affect the dentin regeneration in which MMP-2 and MMP-9 are normally involved.
The participation of macrophages/foam cells in the development of atherosclerosis was
described by Yashima et al. [19]. Advanced glycation end products (AGEs) localize to
macrophage-derived foam cells within atherosclerotic lesions, which is associated with a
higher risk of atherosclerotic cardiovascular disease under diabetic conditions. This article
suggests that AGEs may stimulate ox-LDL uptake by macrophages through the Cdk5–CD36
pathway via RAGE-mediated oxidative stress. The role of macrophages in atherosclerosis
is an important issue in current medicine. It is also reviewed, with special focus on the
RhoA pathway, in the Kloc et al. article [20]. In this review article, we describe how the
engulfment of oxidized and acetylated low-density lipoproteins (oxLDLs and AcLDLs)
and minimally modified LDLs (mmLDLs) by macrophages, recruited into the vessel wall
or residing in the vessel wall intima, leads to the formation of lipid laden macrophages
(foam cells). We also pay special attention to the small GTPase RhoA and its downstream
effectors because they regulate the influx of macrophages and control the macrophage
phenotype, inflammatory or anti-inflammatory, involved in the development, progression,
and stabilization of the atherosclerotic plaque. RhoA-interfering drugs promise novel
therapeutic approaches against atherosclerosis. Finally, another article from Kloc et al.
laboratories describes how the inhibition of the macrophage influx into transplanted organs
by inhibition of the RhoA pathway effector ROCK kinase prevents the development of
the long-term (chronic) rejection of transplanted organs. We also summarize our present
knowledge on the macrophage response to microorganisms and transplanted organs and
suggest potential novel therapeutic approaches to fight microbial infections and rejection
of transplanted organs [21]. This series of articles gathered in our Special Issue presents an
overview of the recent trends in the research on the role of macrophages/monocytes in
tissue homeostasis and disease, including potential new avenues for the development of
clinical therapies.
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