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Abstract: The initiation and quality of flowering directly affect the time to market and economic
benefit of cultivated strawberries, but the underlying mechanisms of these processes are largely
unknown. To investigate the gene activity during the key period of floral induction in strawberries,
time-course transcriptome analysis was performed on the shoot apex of the strawberry cultivar
‘Benihoppe.’ A total of 7177 differentially expressed genes (DEGs) were identified through pairwise
comparisons. These DEGs were grouped into four clusters with dynamic expression patterns. By
analyzing the key genes in the potential flowering pathways and the development of the leaf and
flower, at least 73 DEGs that may be involved in the regulatory network of floral induction in
strawberries were identified, some of which belong to the NAC, MYB, MADS, and SEB families.
A variety of eight hormone signaling pathway genes that might play important roles in floral
induction were analyzed. In particular, the gene encoding DELLA, a key inhibitor of the gibberellin
signaling pathway, was found to be significantly differentially expressed during the floral induction.
Furthermore, the differential expression of some important candidate genes, such as TFL1, SOC1, and
GAI-like, was further verified by qRT-PCR. Therefore, we used this time-course transcriptome data
for a preliminary exploration of the regulatory network of floral induction and to provide potential
candidate genes for future studies of flowering in strawberries.

Keywords: strawberry; floral induction; RNA-seq; transcription factor; hormone

1. Introduction

Strawberries (Fragaria sp.) belong to the large botanical family Rosaceae which contains
many species with high economic value worldwide [1,2]. Most strawberry genotypes are
short-day (SD) plants that are induced to flower in the autumn when exposed to decreasing
photoperiod and temperature [3–5]. With the onset of these “autumn signals”, the shoot
apical meristem (SAM) undergoes a transformation from leaf primordia to flower primordia,
and the number of branch crowns (axillary leaf rosette) from the leaf axils is increased with
floral induction, which may promote additional inflorescences and has a strong effect on
berry yield [1,2,6–10]. Thus, floral induction is one of the most important stages of plant
growth and development in agricultural production.

A major ecological trait of perennial plants is the timing of the transition to flowering,
which determines the transition from vegetative to reproductive growth. The genetic,
epigenetic, hormonal, and environmental factors for the transition from the vegetative to
reproductive stage are best understood in the annual long-day (LD) plant Arabidopsis
thaliana [11,12]. At least 180 genes have been shown to be involved in flowering-time
control in Arabidopsis, and these genes mainly function in regulatory networks of different
pathways that integrate environmental (photoperiod, vernalization, and temperature) and
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endogenous (autonomous, gibberellin, circadian clock, and age) signals [11,13]. CON-
STANS (CO) is a central activator that mediates the photoperiodic pathway. FLOWERING
LOCUS C (FLC) acts as a central suppressor to regulate the vernalization and autonomous
pathways. The concentrations of SQUAMOSA PROMOTER BINDING LIKE (SPL) tran-
scription factors increase with plant age. All of these genes regulate the downstream floral
pathway integrator transcription factors FLOWERING LOCUS T (FT), SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1 (SOC1), and AGAMOUS LIKE24 (AGL24), which
activate the expression of the meristem identity genes LEAFY (LFY), APETALA1 (AP1),
SEPALLATA3 (SEP3), and FRUITFULL (FUL) [11,14,15]. In addition, mutations that reduce
the expression of biosynthesis pathway genes or enhance the degradation of gibberellic
acid (GA) showed delayed flowering [16]. The functions of these homologous genes from
different species, especially model plants, are gradually becoming clear.

Flowering has always been the focus of strawberry crop research. The induction of
flowers generally takes three steps: the vegetative stage, in which vegetative SAM gives rise
to leaf primordia; then SAM shifts to the reproductive stage, where the initiation of flower
meristem occurs from SAM and the entire shoot apex looks fat; followed by the next stage,
the development of flower primordia [17,18]. Although TERMINAL FLOWER 1 (TFL1)
functions to maintain the vegetative meristem in both the woodland strawberry (Fragria
vesca) and Arabidopsis, it has been shown to be the major floral suppressor in the strawberry,
whereas it plays only a minor role in flowering time in Arabidopsis [19–22]. According
to previous studies, FvTFL1 integrates both photoperiodic and temperature signals to
control floral induction in strawberries. Weak expression of FvTFL1 in cool temperatures
below 13 ◦C or SDs at temperatures of 13–20 ◦C allows floral induction to occur [21,23,24].
Photoperiodic flowering has been better studied than temperature-induced flowering in F.
vesca. The activation of FvCO is affected by light, and CO plays a major role in activating
FvFT1 in leaves. FT acts as a florigen, moving to the shoot apex to form leaves, and SOC1
acts as the hub for multiple flowing times in Arabidopsis. However, the leaf-expressed
FvFT1 in strawberries represses flowering by activating FvTFL1 at SAM through FvSOC1
in LDs [13,20,21,25]. Whereas under SD, the silenced FvFT1-FvSOC1-FvTFL1 pathway
leads to the increased expression of the floral meristem identity marker genes FvAP1 and
FvFUL1, which were considered a floral marker gene and have been used many times in
the studies of strawberry flowering [21,25–28]. Xiong, et al. [29] reported that FvSPL10, the
ortholog of AtSPL9 in Arabidopsis, activates FvAP1 by directly binding to its promoter and
ectopic expression of FvSPL10 in Arabidopsis promotes early flowering and increases organ
size. However, whether FvSPL10 is involved in regulating the age pathway in strawberry
flowering is unknown at present.

Axillary buds (AXBs) fate is closely related to SAM fate in strawberries. AXBs mainly
differentiate into runners (a type of elongated branch) during vegetative growth. In
contrast, in reproductive growth, runner induction ceases, and the number of branch
crowns increases with floral induction [1,2,6–10]. As a result, a trade-off between flowering
and runner formation has been proposed, and it is also obvious in perpetual flowering
strawberry varieties, in which flowering is promoted by LD (long days), but very few
runners are produced [1,7–10]. GA is one of the key factors involved in floral induction
and AXB differentiation in strawberries [7]. GA3 treatment can effectively inhibit floral
induction and promote runner formation in strawberries [30–32]. Mutations in the rate-
limiting enzyme gene GA20ox4 in the GA biosynthetic pathway result in a runner-free
phenotype. Additionally, a mutation in a DELLA growth inhibitor gene that regulates the
GA signaling pathway caused a runner-less phenotype [27,33,34]. In addition, the floral
integrator SOC1 affects both floral induction and AXB fate by regulating the GA synthesis
pathway, which provides evidence for GA inhibition of strawberry floral initiation [25].
However, the effect of GA on floral induction varies with species. GA can promote flower
formation in Arabidopsis but inhibit flowering in apples and strawberries [7,35,36].

Although several genes that control flowering in strawberries have been identified
and functionally characterized, more details of the floral induction of this important berry
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crop have not been explored. In this study, we generated time-course RNA-seq data of
the three floral induction stages in the cultivated strawberry ‘Benihoppe.’ Many genes
potentially related to the floral induction process were investigated, such as the genes for
seven potential flower-time control pathways, leaf development, and flower development
during floral induction. In addition, the MADS family and SEB family genes, closely
related to flowering, and eight hormone signaling pathway genes were investigated. These
transcription factors and a variety of hormone signals form a regulatory network to regulate
floral induction. These results will provide new ideas for future functional studies and
shed light on the genetic control of floral induction in strawberries.

2. Results and Discussion
2.1. Morphological Observation and FaAP1 Expression during Floral Induction in
‘Benihoppe’ Strawberry

The daughter plants of ‘Benihoppe’ were rooted on 6 June 2018, which was recorded
as the 0 week (0 w) (Figure S1). In order to understand the morphological changes and
corresponding marker genes of the strawberries during the floral induction, samples were
collected weekly from 8 weeks (8 w), and the morphology of the SAMs was observed. We
found that SAMs showed no significant changes from 8 w to 13 w and remained in the
vegetative stage (Figure 1A,B). Then the SAM looked fatter from 14 w (Figure 1C), it was
speculated that the flower meristem was starting, and the SAM shifted to the reproductive
stage. Further, the flower primordia could be observed from 15 w with the changes in the
environment (Figure 1D,E). By analyzing the expression of the FaAP1 during 8 w–16 w,
the results showed that expression gradually increased from 13 w, suggesting that FaAP1
expression is up-regulated prior to the morphological change (Figure 1F).
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Figure 1. Overview of floral induction in strawberry ‘Benihoppe.’ (A–E) Morphological observation
of the shoot apices at different time points during the induction of flower in strawberry. The
observation results of 9 w, 13 w, 14 w, 15 w, and 16 w are shown (A–E). SAM, shoot apical meristem;
S, Stipule; YF, young leaf; FM, flower meristem. Scale bar = 1 mm. (F) QRT-PCR analysis of the
expression of the flowering marker gene FaAP1 from 8 w to 16 w. Data are displayed as averages
± SD of three biological repeats.
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2.2. Transcriptome Sequencing

Considering the results of the morphological observations and the expression profile
of FaAP1, samples at 9 w (vegetative stage), 13 w (shifts to the reproductive stage at gene
level), and 15 w (reproductive stage) were selected for transcriptome sequencing. A total
of 9 cDNA libraries were prepared from the RNA extracted from the shoot apex. After
Illumina sequencing, the data were filtered to remove low-quality reads and adapters. A
total of 441,229,076 clean reads were obtained, of which the clean base was 66.18 G, and
the average GC content was 47.61%. An average of 98.36% of the sequenced bases had
quality scores (Q-scores) of Q30 or higher (Table 1). Clean reads from the nine libraries
were compared with the Fragaria × ananassa ‘Camarosa’ Genome (Version 1.0).

Table 1. Overview of the RNA-seq read data from the nine strawberry flower bud libraries.

Sample Raw Read
Number a

Valid Read
Number

Total
Mapped

Reads (%)

GC Content
(%) b Q30 (%) c

9 w_1 54,341,278 52,680,790 89.03% 47.50 98.21
9 w_2 44,889,462 42,256,470 88.58% 47 98.18
9 w_3 51,051,002 45,602,432 90.21% 47.50 98.51
13 w_1 52,877,744 49,127,442 89.97% 48 98.46
13 w_2 54,852,944 51,190,822 90.21% 47 98.38
13 w_3 55,022,942 51,511,104 90.72% 48 98.37
15 w_1 53,068,162 49,831,302 90.95% 48 98.42
15 w_2 53,338,002 49,269,292 90.37% 47.50 98.38
15 w_3 53,002,122 49,759,422 90.52% 48 98.31

a: The number of reads in the original offline data; b: The proportion of G and C content in four bases in valid
reads; c: Proportion of bases with mass value ≥ 30 (sequencing error rate less than 0.001).

Spearman correlation coefficient analysis showed that the correlation coefficients of
the three replicates were greater than 0.925, indicating that the RNA-seq data could be used
for further analysis (Figure S2).

2.3. GO Category Enrichment Analysis of the Differentially Expressed Genes

|Log2 fold-change| (|Log2 FC|) ≥1, and p value < 0.05 were used as the critical
thresholds to define the differentially expressed genes (DEGs). When compared with
plants at 9 w, 3719 DEGs were significantly changed at 13 w, and of these, 2368 DEGs
were up-regulated, and 1351 DEGs were down-regulated. Compared with plants at 13 w,
4525 genes showed significant differential expression at 15 w; 2174 DEGs were up-regulated,
and 2351 DEGs were down-regulated (Figure 2A). Based on the expression trend of the
DEGs, 322 DEGs that were up-regulated at both 13 w and 15 w were classified as Cluster
1 (Figure 2B,C), and 18 DEGs that were down-regulated at both 13 w and 15 w were
classified as Cluster 2 (Figure 2B,D). The 463 DEGs that were up-regulated at 13 w and
down-regulated at 15 w were classified as Cluster 3 (Figure 2B,E), and 264 DEGs that
were down-regulated at 13 w and down-regulated at 15 w were classified as Cluster
4 (Figure 2B,F). To explore the functions of the genes in the four clusters of DEGs, we
performed GO category enrichment analysis, and the results showed that the DEGs in
cluster 1 were concentrated in the ‘biological process’ GO category in terms such as ‘cell
division,’ ‘nucleus,’ ‘DNA binding,’ and ‘protein binding function’ (Figure 2G). The DEGs
in cluster 2 were concentrated in the terms ‘response to auxin,’ ‘regulation of transcription,’
‘nucleus,’ and ‘DNA binding transcription factor activity functions’ (Figure 2H). The genes
in cluster 3 were mainly concentrated in the ‘regulation of transcription,’ ‘nucleus,’ and
‘molecular functions’ terms (Figure 2I), and the genes in cluster 4 were mainly concentrated
in the terms ‘chloroplast, ‘cytoplasm’, ‘protein binding’, and ‘oxidation-reduction process’
(Figure 2J). These results are a preliminary analysis of the clustering of differentially
expressed genes. In addition, to further explore the high-expression (FPKM>2) of DEGs
at the three time points during the floral induction in the strawberries, |Log2FC| ≥ 2,
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p < 0.001, and average of FPKM>2 was used as the critical thresholds to define the highly
differentially expressed genes (HDEGs). The functions of unknown genes or the unknown
functions of known genes can be identified by clustering genes with the same or similar
expression patterns. Hierarchical clustering of the HDEGs, which were clustered by the
log2 of the FPKM values, is shown in Figures S3–S5.
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Figure 2. Differential gene expression and GO enrichment analysis during flowering in strawberry.
(A) Number of up-regulated and down-regulated DEGs of 13 w and 15 w. (B) Venn diagram of DEGs
in the 13 w and 15 w RNA-seq libraries. (C–F) Expression of the DEGs at 9 w, 13 w, and 15 w in
clusters 1−4, based on the overlaps in the Venn diagram in panel B. (G–J) GO enrichment analysis of
DEGs in cluster 1 (G), cluster 2 (H), cluster 3 (I), and cluster 4 (J).

2.4. Comparison of Potential Flowering Pathway Genes in Strawberry and Arabidopsis

To fully identify candidate genes in the flowering time pathway in the strawberries,
we retrieved 68 homologs of important Arabidopsis flower induction genes from the
transcriptome data and analyzed their FPKM values. These genes are roughly classified
as participating in the photoperiod, vernalization, autonomous, gibberellin, age, and
carbohydrate pathways based on the known flowering pathways in Arabidopsis [1,11,13].

The FPKM values of some genes that are involved in the photoperiod pathway can
be detected in the shoot apex. Surprisingly, some DEGs in this pathway that appear to
have inconsistent functions were identified in short-day strawberries as compared with
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long-day Arabidopsis (Figure S6). For example, FLAVIN BINDING KELCH REPEAT F-
BOX 1 (FKF1) [37], GIGANTEA (GI) [38], PSEUDO-RESPONSE REGULATOR 5 (APRR5),
and APRR7 [39] play positive roles in flowering in Arabidopsis, while the expression
of their strawberry homologs was significantly decreased at 13 w compared with 9 w
(Figure S6), even though CO and FKF1 were both promoted in the leaves during the
blue light-induced floral induction of strawberry [40]. However, strawberry homologs of
LUX ARRHYTHMO (LUX) [41], NUCLEAR FACTOR Y, SUBUNIT B2 (NF-YB2) [42], and
CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) [43] showed similar expression
trends during the floral induction compared with Arabidopsis genes. For this result, we
speculated that these genes are mainly expressed and function in leaves. Thus, their
transcript level in the SAM is not very meaningful for functional analysis of these genes
during the floral induction.

In addition to the photoperiod pathway, the vernalization pathway is also an important
flowering pathway in Arabidopsis. In this transcriptome data, only FLOWERING LOCUS C
(FLC) [44] and ARABIDOPSIS TRITHORAX 1 (ATX1) [45] were identified as DEGs among
the homologous genes related to the vernalization pathway (Figure 3A). Although both
FLC and ATX1 act repressors during flowering in Arabidopsis, our results show that the
expression of FLC at 15 w was significantly increased compared to 9 w, and the expression
of ATX1 was increased at 13 w and decreased at 15 w. It is speculated that in addition
to the factors of the expression locations of some genes, changes in seedling status and
environment may also be significant factors.
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Figure 3. FPKM values of key genes belonging to the different flowering time pathways. (A) Heat
map showing the expression of genes involved in the vernalization pathway. (B) Heat maps showing
the expression of genes involved in the autonomous, GA, age-related, carbohydrate, and other
pathways. (+) indicates the positive regulators of flower bud differentiation in Arabidopsis, and (−)
indicates negative regulator. 9 w: vegetative stage, 13 w: shifts to reproductive stage at gene level,
15 w: reproductive stage. The column with the black boxes represents the student’s t test analysis
of DEGs at 9 w vs. 13 w; The column with the pink boxes represents the student’s t test analysis of
DEGs at 13 w vs. 15 w; The column with the blue boxes represents the student’s t test analysis of
DEGs at 9 w vs. 15 w. (* |Log2FC| ≥ 1, p < 0.05. ** |Log2FC| ≥ 2, p < 0.01).
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We did not find DEGs in the autonomous and age-related pathways in the strawberries
(Figure 3B). Although homologs of these genes have been reported to play important
roles in flowering in Arabidopsis or other species [1,13,46], no significant changes were
found during the floral induction in our RNA-seq data. As to the gibberellin pathway,
FLOWERING PROMOTING FACTOR 1 (FPF1) [47], DWARF AND DELAYED FLOWERING
1 (DDF1) [48], and DDF2 showed a declining trend in general, while they are promoters of
flowering in Arabidopsis. In addition, GAIP [49], an inhibitor of the gibberellin signaling
pathway, was upregulated at 13 w, although it acts as a suppressor in Arabidopsis flowering
(Figure 3B). These results suggest that they might play opposite roles to Arabidopsis in
the process of floral induction in strawberries. Carbohydrate is also thought to play an
important role in regulating flowering. We found no significant difference in the expression
of TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) [50], but TPS10 was upregulated at
13 w and was down-regulated at 15 w. In other pathways, we detected continuous down-
regulation of HYPERSENSITIVE TO RED AND BLUE 1 (HRB1) [51] (Figure 3B). Taking
all of these results into consideration, the functions of key flowering genes in Arabidopsis
might not be conserved in strawberries, especially GAIP encoding the DELLA protein,
which can be further discussed.

2.5. Analysis of DEGs with Roles in Leaf Development and Flowering

Compared with the sample containing only SAM and a young leaf at 9 w, the sample
at 13 w consists of SAM, a young leaf, and the flower meristem in the beginning, and the
sample at 15 w consists of SAM and flower primordia (Figure 1A–E). Thus, investigating
DEGs related to leaf development and flower development may help better understand
the regulatory network of floral induction [18,52]. Expression patterns of 28 homologs
of leaf development genes were investigated, including strawberry homologs of growth-
regulating factor GRF, cell proliferation gene GRF1-INTERACTING FACTOR (GIF1), adaxial-
adaxial gene PHAVOLUTA (PHV) and some active family members, such as REGULATOR
OF AXILLARY MERISTEMS 3 (RAX3), KNOTTED-LIKE FROM ARABIDOPSIS THALIANA
2 (KNAT2), and LATERAL ORGAN FUSION 1 (LOF) genes of MYB family, CUC1/2/3 of
NAC family, and YAB1/5 and YAB4-like genes of YABBY family (Figure 4A). Compared
with the DEGs of leaf development in diploid strawberries, several conserved genes were
detected, such as LATERAL SUPPRESSOR (LAS), CUC2/3, FASCIATED EAR (FEA), etc. [18],
which can serve as key genes for studying leaf development during the floral induction
of strawberry.

Floral induction is a prerequisite for flower development. It has been shown that
the floral integrator FvSOC1 acts as a repressor by promoting FvTFL1 during the floral
induction in short-day strawberries [25]. In this data, the significant reduction in the
expression of SOC1 and TFL1 in our transcriptome at 13 w further verified the repressor
role of SOC1 (Figure 4B). The homologs of FT in the strawberry FvFT1 were not detected in
the RNA-seq data because it is only expressed in old leaves [18,21]. However, as another
homolog of the FT, FT2 was detected in the shoot apices, and its expression was up-
regulated at 13 w, indicating that FT2 may function differently from FT1. By analyzing
the expression of flower identity genes, we found that the expression of LFY, AP1, and
FUL continuously increased as expected, indicating the reliability of the samples. These
genes were conserved during the floral induction of octoploid strawberry and diploid
strawberry [18,21,25]. Further, several homologs of flower development genes are shown
in Figure 4B. The number of the NAC family, MYB family, and bHLH family members
accounted for 12.5%, 8.3%, and 16.7% of the 24 DEGs, respectively. They were BRUNO-LIKE
1 (BRN1), NAC29, and NAC89 of NAC family; bHLH63, DYSFUNCTIONAL TAPETUM 1
(DYT1), SPATULA (SPT), and SPT-like of bHLH family; DIVARICATA 1 (DIV1) and MYB6
of MYB family. Besides, primordia-specific gene such as JAGGED (JAG) was also explored.
These genes can also be considered candidate genes for studying flower development
in strawberries.
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Figure 4. FPKM values of DEGs related to leaf and flower development. (A) Heat map showing
the DEGs that may be involved in leaf development. (B) Heat map showing the DEGs that may
be involved in flower development. The purple boxes indicate the genes in which expression was
significantly changed at 13 w. 9 w: vegetative stage, 13 w: shifts to reproductive stage at gene level,
15 w: reproductive stage. The column with the black boxes represents the student’s t test analysis
of DEGs at 9 w vs. 13 w; The column with the pink boxes represents the student’s t test analysis of
DEGs at 13 w vs. 15 w; The column with the blue boxes represents the student’s t test analysis of
DEGs at 9 w vs. 15 w. (* |Log2FC| ≥ 1, p < 0.05. ** |Log2FC| ≥ 2, p < 0.01).

2.6. Expression Patterns of DEGs from the MADS and SEB Families

In our analysis of the genes involved in flowering pathways, as well as floral integra-
tors and identity genes, we found at least four MADS family members—AP1, FLC, SOC1,
and SVP (Figure 4B). This indicated that MADS family genes might play an important role
in the process of flowering in strawberries. MADS family members in cotton, wintersweet
(Chimonanthus praecox), peach, pear, and Arabidopsis were also found to be involved in
several plant growth and development processes, such as flower morphogenesis, floral
induction, gibberellin synthesis, and delay of senescence [53–57]. To investigate the ex-
pression of other MADS family members in flowering in strawberries, the nine different
genes and their copies were identified by comparing the MADS family in strawberry with
the MADS family in Arabidopsis. They are AGAMOUS-LIKE 1 (AGL1), AGL14, MADS57,
AGL15, CMB1, PISTILLATA (PI), MADS6-like, MADS2, and MADS14. Except for AGL14 and
AGL15, which were significantly up-regulated at 13 w, the other genes, such as MADS57 and
CMB1, mainly showed significant changes in expression at 15 w (Figure 5A,B), indicating
that most MADS family members could have roles in the reproductive stage.

The SBP family has been reported to be a plant-specific family whose members play
important roles in early flowering [58], nutritional change and reproductive stages [59], and
the gibberellic acid response [60]. We found that the three SBP family members, SPL3, SPL1-
like, and SPL9, showed no significant expression changes during floral induction based
on our data, although these homologs were previously reported to be involved in the age
pathway of flowering in Arabidopsis [61]. To understand the expression patterns of other
members of the SBP family in strawberries, we performed phylogenetically and expression
analyses (Figure 5C,D). The results showed that SBP8 and SBP18 were significantly down-
regulated at 13 w. In comparison, SBP13 and SBP7 were significantly up-regulated at 15 w,
and SBP14 was significantly down-regulated at 15 w compared with expression at 9 w
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(Figure 5C,D). These results suggest that these SBP family genes might also respond to the
process of floral induction in strawberries.
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2.7. Expression Analysis of DEGs in Different Hormone Signaling Pathways

Plant hormones, including auxin, cytokinin (CK), abscisic acid (ABA), GA, ethylene,
brassinosteroids, jasmonic acid (JA), and salicylic acid (SA), play a synergistic role in
floral induction in response to external stimulation and the local environment [62]. KEGG
enrichment analysis of the DEGs showed that the most were enriched in the plant signal
transduction pathways (Figure 6). Therefore, by referring to the KO04075 pathway (https://
www.kegg.jp/kegg-bin/show_pathway?ath04075 accessed on 2 March 2022), the changes
in the expression of key genes in various hormone signal transduction pathways during
strawberry floral induction were explored. In the RNA-seq data, most of the key genes in
the auxin signal transduction pathway were up-regulated (Figure 7A,B). AUX1, TIR1-like,
IAA20-like, IAA6, GH3.6, AIP10A5, AIP15A-like, AIP6B, and SAUR38 were significantly up-
regulated at 13 w, while AUX2, IAA4-like, GH3.1, GH3.5, and GH3.17-like were up-regulated
at 15 w, suggesting that auxin signaling plays a role in promoting floral induction in general.
These genes can be used as candidate genes for further study of how flowering is related to
auxin. In addition, IAA2-like, GH3.9, and SAUR36 were significantly down-regulated at
13 w, indicating that these genes might act as suppressors in the auxin mediated-flowering
in strawberries.
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suggest that the cytokinin signal transduction pathway might mainly play a role in the 
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Figure 7. DEGs involved in auxin signaling pathways. (A) Auxin signal transduction pathways by
referring to the KO04075 pathway in KEGG enrichment analysis. (B) Heatmaps showing the relative
expression of DEGs involved in the auxin. The purple boxes indicate the genes in which expression
was significantly changed by 9 w vs. 13 w. 9 w: vegetative stage, 13 w: shifts to reproductive stage
at gene level, 15 w: reproductive stage. The column with the black boxes represents the student’s t
test analysis of DEGs by 9 w vs. 13 w. The column with the pink boxes represents the student’s t test
analysis of DEGs by 13 w vs. 15 w; The column with the blue boxes represents the student’s t test
analysis of DEGs by 9 w vs. 15 w. (* |Log2FC| ≥ 1, p < 0.05. ** |Log2FC| ≥ 2, p < 0.01).

Based on the importance of GA in floral induction, the DELLA protein in the GA
signaling pathway has become a popular focus of research. It is the intersection of various
hormonal pathways [7,27,33,34,62]. In our data, the repressor of the GA signaling pathway,
DELLA, was significantly up-regulated at 13 w. At the same time, GID1B-like, the gibberellin
receptor and the inhibitor of DELLA, was decreased at 13 w (Figure 8A,E), indicating that
GA signaling might inhibit floral induction in strawberries, contrary to its role in floral
induction in Arabidopsis.

CRE1 and AHP are both promoters in the cytokinin signaling pathway (Figure 8B).
Our transcriptome data showed that the expression of both genes did not change signif-
icantly at 13 w but began to be significantly up-regulated until 15 w (Figure 8E). In the
downstream part of the cytokinin pathway, A-ARR expression was increased at 15 w, which
was consistent with that of the upstream part. Additionally, expression of B-ARR, which is
negatively regulated by A-ARR, was opposite to that of A-ARR. These results suggest that
the cytokinin signal transduction pathway might mainly play a role in the reproductive
stage. In cytokinin-mediated floral induction in Arabidopsis, DELLA was reported to
bind B-ARR, which induces DELLA to re-target the promoter regulated by cytokinin for
activation [63,64]. Combined with the analysis of DELLA expression, our results showed
that GA and cytokinin might have antagonistic effects on strawberry floral induction.
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Figure 8. DEGs involved in gibberellin, cytokinin, ethylene, and jasmonic acid signaling pathways.
(A–D) Gibberellin, cytokinin, ethylene, and jasmonic acid signal transduction pathways by referring
to the KO04075 pathway in KEGG enrichment analysis. (E) Heatmaps showing the relative expression
of DEGs involved in the above-mentioned hormone signaling pathways. The purple boxes indicate
the genes in which expression was significantly changed by 9 w vs. 13 w. 9 w: vegetative stage,
13 w: shifts to reproductive stage at gene level, 15 w: reproductive stage. The column with the black
boxes represents the student’s t test analysis of DEGs by 9 w vs. 13 w; The column with the pink
boxes represents the student’s t test analysis of DEGs by 13 w vs. 15 w; The column with the blue
boxes represents the student’s t test analysis of DEGs by 9 w vs. 15 w. (* |Log2FC| ≥ 1, p < 0.05.
** |Log2FC| ≥ 2, p < 0.01).

In the ethylene signaling pathway, the repressor EBF1/2 further inhibits ERF1 by
directly inhibiting EIN3, ultimately affecting ethylene signal transduction (Figure 8C). In
Arabidopsis, EIN3 delays flowering by activating ERF1 in the APETALA2 (AP2)/ERF1
protein family and its evolutionary relatives, and there is a link between ethylene signaling
and DELLA, that the inhibition of EIN3-ERF1 is mainly attributed to the decreased GA level
and the accumulation of DELLA protein [65–67]. In our transcriptome data, we found that
EBF1-like was up-regulated at the early stage of floral induction. Correspondingly, EIN3-
like1 was down-regulated at 13 w, and the expression of ERF1B was significantly decreased
at 15 w (Figure 8C). This suggests that ethylene signals might also negatively regulate
floral induction in strawberries. However, DELLA expression was up-regulated during
this period, which appears to be inconsistent with the regulatory relationship between
DELLA and EIN3-ERF1 during Arabidopsis floral initiation. Interestingly, it is also reported
that DELLA inhibits ethylene signaling by binding EIN3 and ERFs to form a feedback
regulatory network in response to ethylene signals [14,68]. We speculate that the crosstalk
between DELLA and the ethylene signal may be more complicated due to the particularity
of DELLA in the floral initiation process of strawberries, which should be further explored.

Jasmonic acid (JA) plays an important role in a variety of plant diseases and is involved
in a variety of developmental processes, including flowering time in Arabidopsis [62].
DELLA protein can interact with JASMONATE-ZIM-DOMAIN PROTEINs (JAZs) to reduce
the inhibition of its key target MYC2 [69]. Here, significant down-regulation of MYC2
expression suggested that the JA signal might play a negative role in floral induction.
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The genetic link between DELLA and JA signaling could be a point for future studies on
strawberries (Figure 8D,E).

In the ABA signal transduction pathway, the ABA receptor gene PYRABACTIN RE-
SISTANCE 1-LIKE/PYRABACTIN RESISTANCE (PYL/PYR) and other key genes were
significantly up-regulated at 13 w. In contrast, the expression of the negative regulator
of the ABA pathway, PROTEIN PHOSPHATASE 2C (PP2C), was decreased at 13 w. Al-
though PP2C indirectly inhibits the expression of ABA-responsive genes by inhibiting
SNF1-RELATED PROTEIN KINASE 2 (SnRK2), the expression of SAPK2-like, belonging to
SnRK2 proteins, was consistent with that of PP2C. However, the expression level of SRK2I
was increased at the early stage of floral induction and decreased at 15 w (Figure 9A,D).
These results indicate that the relationship between floral induction and the ABA signaling
pathway is complex in strawberries.
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Figure 9. DEGs involved in abscisic acid, brassinosteroid, and salicylic acid signaling pathways.
(A–C) Abscisic acid, brassinosteroid, and salicylic acid signal transduction pathways by referring to
the KO04075 pathway in KEGG enrichment analysis. (D) Heatmaps showing the relative expression
of DEGs involved in the above-mentioned hormone signaling pathways. The purple boxes indicate
the genes in which expression was significantly changed by 9 w vs. 13 w. 9 w: vegetative stage, 13 w:
shifts to the reproductive stage at the gene level, 15 w: reproductive stage. The column with the black
boxes represents the student’s t test analysis of DEGs by 9 w vs. 13 w; The column with the pink
boxes represents the student’s t test analysis of DEGs by 13 w vs. 15 w; The column with the blue
boxes represents the student’s t test analysis of DEGs by 9 w vs. 15 w. (* |Log2FC| ≥ 1, p < 0.05.
** |Log2FC| ≥ 2, p < 0.01).

Brassinosteroids (BRs) are thought to promote flowering in Arabidopsis [70]. We
found that BRASSINAZOLE-RESISTANT 1 (BZR1)-like2 was significantly up-regulated at
13 w, and the expression of CYCLIN-D3-1 (CYCD3.1) and CYCD3.3 was increased at 15 w.
The surprise is that although XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE
(XTH23) is positively regulated by BZR1 (Figure 9B,D), it was down-regulated at 15 w.
These results at least suggested that BRs signals play positive roles in the initiation of flower
meristem. Although there are few reports describing the role of SA in plant floral induction,
we also found two DEGs in the SA signaling pathway. The upstream promoter of the SA
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signaling pathway, HBP1B-like, was significantly up-regulated at 13 w. At the same time,
the downstream promoter, PR1-like, was significantly up-regulated at 15 w (Figure 9C,D),
suggesting that the SA signals might also promote floral induction in strawberries by
participating in the complex plant hormone signaling pathways.

2.8. QRT-PCR Identification of DEGs

To further verify the expression profile of genes determined from the RNA-seq data,
24 transcripts were selected for qRT-PCR analysis (Figure 10A–T), such as FKF1 in the
photoperiodic pathway (Figure 10A), FLC and ATX1 in the vernalization pathway (Fig-
ure 10B,C), TPS10 in the carbohydrate pathway (Figure 10D), the floral integrator SOC1
(Figure 10E), the key repressor TFL1 in flowering in strawberry (Figure 10F), AGL14 in
the MADS family (Figure 10G), SBP8 in the SEB family (Figure 10H), key genes (GH3.6,
AIP10A5 and SAUR36) in the auxin signaling pathway (Figure 10I–K), two key genes (AHK4
the ARR1-like) in the cytokinin signaling pathway (Figure 10L,M), PYL4 and PP2C51 in the
ABA signaling pathway (Figure 10N,O), GAI-like in the GA signaling pathway (Figure 10P),
EBF1 in the ethylene signaling pathway (Figure 10Q), BZR1-Like2 in the brassinosteroid
signaling pathway (Figure 10R), MYC2-like in the JA signaling pathway (Figure 10S), and
PR1-like in the salicylic acid signaling pathways (Figure 10T). These qRT-PCR results were
consistent with the expression profiles obtained from the RNA-seq data, indicating the
reliability of RNA-seq.
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3. Conclusions

In the present study, 7177 DEGs that respond to floral induction signals in the shoot
apex were identified in the strawberry cultivar ‘Benihoppe.’ Some key genes with conserved
functions in floral initiation, leaf development, and flower development, such as SOC1,
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TFL1, AP1, and CUC2 were detected. Two important gene families involved in floral
initiation, the MADS family and SEB family, were also analyzed. We preliminarily explored
the expression of key genes in eight hormone signaling pathways and believed that the
DELLA gene could be an important candidate gene to explore the floral induction of
strawberries in the future.

Currently, CRISPR/Cas9-mediated gene editing technology has been applied to straw-
berries [30,71], and the full use of genomics and biotechnology will help reveal genetic and
epigenetic changes that can be used to improve strawberry varieties in the future.

4. Materials and Methods
4.1. Plant Material and Sample Collection

Strawberry plants (Fragaria × ananassa ‘Benihoppe’) were grown in the greenhouse
in Shangzhuang Experimental Station (China Agricultural University), Beijing (S 116◦23′,
W 39◦56′), China. The daughter plants of ‘Benihoppe’ were rooted on 6 June 2018, which
we marked as the 0 week (0 w) (Figure S1). The shoot apices were sampled once weekly
from 1 August 2018 (8 w) to 26 September 2018 (16 w), with three biological replicates each
time, and each biological replicate contained the shoot apices of 5 plants. All collected
samples were immediately frozen in liquid nitrogen and then stored at −80 ◦C. Sampling
was performed at approximately 10 a.m. to reduce the possibility of differences in gene
expression due to circadian oscillation. The temperatures and day lengths in Beijing in
August and September are shown in Figure S1.

4.2. RNA Isolation and Qualitative and Quantitative Analysis of Total RNA

Total RNA samples were isolated from strawberry shoot apices using the E.Z.N.A.
Total RNA Kit (Omega, R6834-01, Norcross, GA, USA) according to the manufacturer’s
protocol. First-strand cDNAs were synthesized from total RNA using HIScript II Reverse
Transcriptase (Vazyme, R233-01, Nanjing, China). The qRT-PCR reactions were performed
in 10 µL volumes containing 1 µL cDNA as a template using ChamQ Universal SYBR
qPCR Master Mix (Vazyme, Q711-02, Nanjing China) on an ABI Q6 Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). The 2−∆∆CT method was used to analyze
the qRT-PCR expression data [72]. FaACTIN was used as the internal control for the
normalization of gene expression in strawberries. The name and sequences of gene-specific
primers are given in Table S1.

4.3. RNA-seq

All RNA samples were delivered to Hangzhou Lianchuan Biotechnology Co. Ltd.
(Hangzhou, China) to prepare cDNA libraries and high-throughput RNA sequencing on
the Illumina 4000 sequencing instrument. HISAT2 software (https://ccb.jhu.edu/software/
hisat/index.shtml accessed on 2 March 2022) was used for alignment, and valid reads
were aligned to the reference octoploid strawberry genome (https://datadryad.org/stash/
dataset/doi:10.5061/dryad.b2c58pc accessed on 2 March 2022) [73]. Splicing and merging
of transcripts were performed with Stringtie software (https://ccb.jhu.edu/software/
stringtie/ accessed on 2 March 2022); FPKM was used to estimate the quantification of
gene expression levels. A corrected p-value of <0.05 and |log2foldchange| ≥1 were set
as the thresholds for significant differential expression. The raw sequence data have been
submitted to the NCBI Sequence Read Archive under accession number PRJNA746082.

4.4. Gene Expression Pattern Analysis and Functional Annotation

EdgeR software (https://bioconductor.org/packages/release/bioc/html/edgeR.html
accessed on 2 March 2022), was used for transcript quantification, difference comparison,
and visualization, and the differential expression results were graphically displayed using
R (https://www.r-project.org/ accessed on 2 March 2022) and Tbtools (https://github.
com/CJ-Chen/TBtools accessed on 2 March 2022). The GOseq R package (http://www.
bioconductor.org/packages/release/bioc/html/goseq.html accessed on 2 March 2022) was
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used for Gene Ontology (GO) enrichment analysis, and KOBAS software was used for the
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (http://kobas.cbi.pku.edu.
cn/kobas3/ accessed on 2 March 2022).

4.5. Shoot Apical Meristem Microscopy

Morphological observation of SAMs was carried out once a week from 8w, and five
plants were sampled each time. After sampling, leaves were peeled off to expose the
apical meristem step by step, and meristem morphologies were photographed using a
microscope (Sz61, Olympus, Tokyo, Japan) equipped with a RisingCam industrial digital
camera (E3ISPM20000KPA, Hangzhou, China).

4.6. Sequence Alignments and Phylogenetic Analyses

Alignments were performed using BioEdit 7.0 (https://bioedit.software.informer.
com/7.0/) and ClustalW (http://www.ch.embnet.org/software/ClustalW.html accessed
on 2 March 2022). Phylogenetic analyses were performed using MEGA 7.0 (https://www.
megasoftware.net/ accessed on 2 March 2022). The CDS sequences of MADS family
and SEB family members from Arabidopsis were downloaded from TAIR (https://www.
arabidopsis.org/ accessed on 2 March 2022). The primers are listed in Table S1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23116126/s1.
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