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Abstract: MicroRNAs (miRNAs) regulate multiple transcripts and thus shape the expression land-
scape of a cell. Information about miRNA expression and distribution across cell types is crucial
for the understanding of miRNAs’ functions and their translational applications as biomarkers or
therapeutic targets. In this study, we identify cell-type-specific miRNAs by combining multiple
correspondence analysis and Gini coefficients to dissect miRNAs’ expression profiles and chromatin
activity score profiles, which results in collections of chromatin activity-specific miRNAs in 91 cell
types and expression-specific miRNAs in 124 cell types. Moreover, we find that cell-type-specific
miRNAs are closely associated with disease miRNAs, such as T-cell-specific miRNAs, which are
closely associated with cancer prognosis. Finally, we constructed mirCellType, an online tool based
on cell-type-specific miRNA signatures, to dissect the cell type composition of complex samples with
miRNA expression profiles.

Keywords: microRNA; cell type specificity; miRNA expression profiles; chromatin activity; miRNA–
disease association

1. Introduction

MicroRNAs (miRNAs) are short, non-coding, single-stranded RNAs that mediate the
degradation and/or translational repression of their target mRNAs [1]. As their binding to
target mRNAs requires only partial complementary pairing, miRNAs can regulate multiple
transcripts in a given cell type [2]. This broad regulatory capacity enables miRNAs to
profoundly shape the expression landscape of a cell. In other words, the expression and
distribution of miRNA in a cell type are crucial for gene regulation and dysregulation
in physiological and pathological conditions, respectively. However, miRNAs are not
evenly distributed across cell types, with most having unique expression patterns and
some even being expressed only in rare cell populations [3–6]. In addition, multiple
experimental studies have demonstrated that cell-type-specific miRNAs could be associated
with a range of human diseases, including cardiovascular diseases, liver diseases, and
cancers [7,8]. These lines of experimental evidence also highlight the diagnostic, prognostic,
or predictive biomarker capabilities that cell-specific miRNAs may hold. For example,
miR-1 and miR-133 are preferentially expressed in cardiac and skeletal muscle cells and can
contribute to heart failure by regulating the apoptosis of cardiomyocytes [9,10]. Vascular
smooth muscle cell-specific miR-214 exerts a pivotal role in vascular remodeling and
hypertension [11]. Hepatocyte-specific miR-122 is a biomarker for drug-induced liver
injury (DILI) [12].

Several previous studies have analyzed the cell type specificity of miRNAs in samples
with complex cell type composition, such as the blood and nervous system. Juzena et al.
utilized differential expression analysis to identify specific miRNA transcriptional signa-
tures in seven blood cells [13]. Jovičić et al. revealed that four principal cell type miRNAs
are differentially expressed in the rat cortex to regulate specific phenotypes of neural cell
types [14]. However, these studies have investigated only a few abundant cell types in
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one particular tissue. The lack of attention to less abundant cell types and cell types dis-
tributed across multiple tissues limits the accurate identification of the cell type distribution
of miRNAs.

With the development of high-throughput small RNA sequencing (sRNA-seq), an
extensive atlas of miRNA expression in human cells is being developed: the primary [15,16].
One of the latest advances is that Lorenzi et al. established a miRNA expression atlas across
169 human cell types, providing a foundation for the further exploration of cell type
expression-specific miRNAs [15]. However, the samples of these data are cell lines or
isolated cells from tissues, resulting in an incomplete range of cell types due to the varying
rarity of cell types. Recent single-cell omics technologies should be an excellent supplement
to probe the in vivo cell type distribution of miRNAs, but direct single-cell sequencing
of miRNAs requires extensive cell processing and, therefore, is still only applicable to a
limited number of cells [17,18]. On the contrary, the newly published single-cell chromatin
accessibility atlas across 222 cell types [19] has given us an alternative approach. This atlas
is established by the sci-ATAC-seq technique, which can address cellular heterogeneity
and reveal transcriptionally active regions of individual cells. Thus, the cell type specificity
of miRNAs can be explored not only by the expression levels of miRNAs in different cell
types, but also by the chromatin accessibility (also called chromatin activity) of miRNA in
different cell types.

Here, based on the aforementioned expression and chromatin activity atlases of
miRNAs, we identified cell-type-specific miRNAs for 124 and 91 cell types, respectively.
We demonstrated the associations of cell-type-specific miRNAs with diseases and cancer
prognosis. Finally, we proposed mirCellType, an online tool to infer the cell type compo-
sition of complex samples based on the identified cell-type-specific miRNA signatures,
which would further facilitate the development of miRNA biomarkers by highlighting the
cell-type-specific sources of tumor miRNAs or circulating miRNAs.

2. Results
2.1. Overview of the Cell-Type-Specific miRNA Catalogs

Based on high-throughput chromatin accessibility and the expression atlas, we ob-
tained a chromatin activity score profile of 1650 miRNAs for 91 cell types and an expres-
sion profile of 1198 miRNAs for 124 cell types (see Materials and Methods for details).
We next applied the multiple correspondence analysis (MCA) method, a clustering-free
multivariate statistical method for the robust extraction of per-cell signatures, to extract
the top 20 ranked miRNAs for each cell type in either profile. For each set of the per-
cell type miRNA signatures, we only retained miRNAs with a Gini coefficient >0.5 to
ensure their absolute specificity. As a result, a miRNA catalog with cell-type-specific ex-
pression and a miRNA catalog of cell-type-specific chromatin activity were generated,
containing an average of 17.6 and 19.2 cell-type-specific miRNAs per cell type, respectively
(Dataset 1 at Figshare: https://doi.org/10.6084/m9.figshare.20186321.v3 (accessed on
19 November 2021), Figure 1A).

A miRNA is not necessarily exclusive to one cell type; instead, similar cell types
could share cell-type-specific miRNAs in part. We utilized the Jaccard index, a metric of
two-set similarity, to quantify the fraction of specific miRNAs shared by two cell types. The
results demonstrate that cell types with similar biological functions or origins had higher
similarity in their specific miRNA sets. For instance, the similarity coefficients between the
chromatin activity-specific miRNA sets of immune cells such as T cells, B cells, and mast
cells were all greater than 0.7 (Figure 1B). In addition, the similarity index between ovarian
microvascular endothelial cells and ovarian surface epithelial cells expression-specific
miRNA sets was 0.67, suggesting that specific miRNAs are partially shared between similar
cell types distributed in the same organ (Figure 1C).

https://doi.org/10.6084/m9.figshare.20186321.v3
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Figure 1. Overview of the cell-type-specific miRNA catalogs. (A) Jitter plot showing the number of 
miRNAs per cell type in the catalog of cell-type-specific miRNAs. (B) Clustering heatmap showing 
the similarities (measured by the Jaccard index) between 91 cell-type-specific chromatin activity 
miRNA sets. (C) Clustering heatmap showing similarities (measured by Jaccard index) between 124 
cell-type-specific expression miRNA sets. The 2 representative dense clusters of cell types are high-
lighted by the red boxes. 
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Figure 1. Overview of the cell-type-specific miRNA catalogs. (A) Jitter plot showing the number of
miRNAs per cell type in the catalog of cell-type-specific miRNAs. (B) Clustering heatmap showing
the similarities (measured by the Jaccard index) between 91 cell-type-specific chromatin activity
miRNA sets. (C) Clustering heatmap showing similarities (measured by Jaccard index) between
124 cell-type-specific expression miRNA sets. The 2 representative dense clusters of cell types are
highlighted by the red boxes.

2.2. Correlation of Cell Type Specificity of miRNAs with Transcription Factor–miRNA and
miRNA–Target Regulations

Transcription factors (TFs) can serve as upstream regulators of miRNAs, activating or
repressing miRNA expression. To further understand the regulatory relationship between
TFs and cell-type-specific miRNAs, we analyzed the correlation between the cell-type-
specific index of a miRNA and the number of TFs that have regulatory associations with
the same miRNA. As shown in Figure 2A,B, both the cell type chromatin activity specificity
index (Spearman rho = −0.42, p-value < 0.001) and the cell type expression specificity index
(rho = −0.38, p-value < 0.001) were significantly negatively correlated with the number
of TFs. That is, the stronger the cell type specificity is, the less TF regulation there is,
indicating that extensive TF regulation could be related to wide miRNA expression.
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Figure 2. Correlation of cell type specificity of miRNAs with the numbers of regulating TFs and
target genes. (A) Correlations between cell type chromatin activity specificity index and the number
regulating of TFs. (B) Correlations between cell type expression specificity index and the number
of regulating TFs. (C) Correlations between cell type chromatin activity specificity index and the
number regulating of target genes. (D) Correlations between cell type expression specificity index
and the number of regulating target genes.

In addition, both the cell type chromatin activity specificity index (rho = −0.08,
p-value < 0.001) and the cell type expression specificity index (rho = −0.18, p-value < 0.001)
were also negatively correlated with the number of target genes from the perspective of the
downstream regulation of miRNAs. This result suggests that cell-type-specific miRNAs are
not extensively involved in the post-transcriptional regulation of genes and tend to play
more specific regulatory roles in particular cell types.
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2.3. Association of Cell-Type-Specific miRNAs with Disease miRNAs

Next, to analyze the relationship between cell-type-specific miRNAs and disease,
we investigated the correlation between cell type specificity and disease spectrum width
(DSW) [20], which is a metric to assess how extensively a miRNA is involved in human
diseases. We only found a negative correlation with DSW for the cell type expression
specificity index (rho = −0.21, p-value < 0.001, Supplementary Figure S1). Similarly, the
expression specificity index had a weak negative correlation with the MIC score [21], an
indicator of miRNAs’ importance (rho = −0.16, p-value < 0.001, Supplementary Figure S1).
The results elucidate that cell-type-specific miRNAs with lower DSW and MIC scores,
while not having broad regulatory capacity, are more disease-specific and may show better
specificity when adopted as biomarkers.

Moreover, we performed disease association enrichment analysis for each cell-type-
specific miRNA set, and obtained significant enrichment in 29 chromatin activity-specific
sets and 57 expression-specific sets (Dataset 2: https://doi.org/10.6084/m9.figshare.2018
6321.v3 (accessed on 19 November 2021)). For example, as shown in Figure 3A, chromatin
activity-specific miRNAs in ventricular cardiac muscle cells are enriched in various cardio-
vascular disease terms. The expression-specific miRNAs in endothelial cells of the liver
sinusoids are enriched in liver diseases (e.g., hepatitis C virus infection, and liver fibrosis),
cardiovascular diseases (e.g., heart failure and hypertension), and leukemia (Figure 3B).

Int. J. Mol. Sci. 2022, 23, x  6 of 14 
 

 

 
Figure 3. Association of cell-type-specific miRNAs with disease miRNAs. (A) Disease association 
enrichment analysis results of chromatin activity-specific miRNAs in ventricular cardiac muscle 
cells. (B) Disease association enrichment analysis results of expression-specific miRNAs in endothe-
lial cells of the liver sinusoids. (C) Associations of cell type chromatin activity-specific miRNAs with 
disease causal miRNAs. (D) Associations of cell type expression-specific miRNAs with disease 
causal miRNAs. 

Furthermore, because disease causal miRNAs are directly involved in disease mech-
anisms [22,23], we are also concerned with whether there is a difference in cell type spec-
ificity between disease causal miRNAs and non-causal miRNAs. The result indicates that 
causal miRNAs for multiple cancers, such as head and neck tumors, are more inclined to 
be cell type chromatin activity-specific miRNAs (Figure 3C), while causal miRNAs in 
asthma and cardiac infarction are more likely to be cell type expression-specific miRNAs 
(Figure 3D). Together, the above results demonstrate the significant associations between 
cell-type-specific miRNAs and disease miRNAs, supporting their functional feasibility as 
potential disease markers. 

2.4. Relationship between T-Cell-Specific miRNAs and Cancer Prognosis 
Several studies have shown that the dysregulation of individual miRNAs in T cells 

leads to impaired immune tolerance, which in turn leads to cancer development and pro-
gression [24,25]. Moreover, immunotherapy targeting T cells has achieved good outcomes 
in clinical practice in recent years, so we next focused on the relationship between T-cell-
specific miRNAs and cancer prognosis. Using available TCGA clinical data, we determine 
the impact of T cell chromatin activity-specific miRNAs and expression-specific miRNAs 
on survival in 35 cancers (Supplementary Figure S2). Although many T cell chromatin 
activity-specific miRNAs are not included in the TCGA miRNA expression profile, in 
CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma), higher ex-
pression levels of all three T-cell-specific miRNAs with TCGA miRNA expression data 
(i.e., hsa-mir-150, hsa-mir-142, and hsa-mir-3941) were associated with better prognosis 

Figure 3. Association of cell-type-specific miRNAs with disease miRNAs. (A) Disease association
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cells of the liver sinusoids. (C) Associations of cell type chromatin activity-specific miRNAs with
disease causal miRNAs. (D) Associations of cell type expression-specific miRNAs with disease
causal miRNAs.
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Furthermore, because disease causal miRNAs are directly involved in disease mecha-
nisms [22,23], we are also concerned with whether there is a difference in cell type specificity
between disease causal miRNAs and non-causal miRNAs. The result indicates that causal
miRNAs for multiple cancers, such as head and neck tumors, are more inclined to be cell
type chromatin activity-specific miRNAs (Figure 3C), while causal miRNAs in asthma and
cardiac infarction are more likely to be cell type expression-specific miRNAs (Figure 3D).
Together, the above results demonstrate the significant associations between cell-type-
specific miRNAs and disease miRNAs, supporting their functional feasibility as potential
disease markers.

2.4. Relationship between T-Cell-Specific miRNAs and Cancer Prognosis

Several studies have shown that the dysregulation of individual miRNAs in T cells
leads to impaired immune tolerance, which in turn leads to cancer development and pro-
gression [24,25]. Moreover, immunotherapy targeting T cells has achieved good outcomes
in clinical practice in recent years, so we next focused on the relationship between T-cell-
specific miRNAs and cancer prognosis. Using available TCGA clinical data, we determine
the impact of T cell chromatin activity-specific miRNAs and expression-specific miRNAs
on survival in 35 cancers (Supplementary Figure S2). Although many T cell chromatin
activity-specific miRNAs are not included in the TCGA miRNA expression profile, in CESC
(cervical squamous cell carcinoma and endocervical adenocarcinoma), higher expression
levels of all three T-cell-specific miRNAs with TCGA miRNA expression data (i.e., hsa-
mir-150, hsa-mir-142, and hsa-mir-3941) were associated with better prognosis (Figure 4A).
Regarding the T cell expression-specific miRNAs, it was observed that in several typical
immune-cell-infiltrating tumors, such as BLCA (bladder urothelial carcinoma), HNSC (head
and neck squamous cell carcinoma), and KIRC (kidney renal clear cell carcinoma), they are
most likely to be associated with cancer prognosis (Supplementary Figure S2A). Indeed,
9 out of the 13 T expression-specific miRNAs affected the survival of KIRC patients, and
most of them are beneficial to prognosis (Figure 4B). The expression of T-cell-specific miR-
NAs is associated with survival and treatment outcomes in different cancers, suggesting
that these specific miRNAs may be utilized as prognostic biomarkers in cancer treatments.

2.5. mirCellType: An Online Tool to Probe Cell-Type-Specific miRNA Signatures

In cell type heterogeneous complex tissue samples, the average signal of transcriptome
measurements is derived from different underlying cell populations. We constructed
mirCellType (http://www.rnanut.net/mircelltype/ (accessed on 29 May 2022)), a tool
based on cell-type-specific miRNA signatures, to analyze cellular components in complex
tissue samples with the miRNA expression profiles as its input. The query interface of
mirCellType is shown in Figure 5A. Users can select either miRNA signatures from cell-
type-specific expression or those from cell-type-specific chromatin activity. This online
tool provides two methods to evaluate cellular components: the single-sample genomic
enrichment analysis (ssGSEA) method and the abundance-based method (see Section 4 for
details). Its output includes the estimated cell composition scores (enrichment scores from
the ssGSEA method or abundance from the abundance-based method) and a clustered
heatmap visualization thereof.

http://www.rnanut.net/mircelltype/
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To exemplify its usage, we applied mirCellType to the TCGA BRCA (breast invasive
carcinoma) miRNA expression profile to map the miRNA landscape of the tumor mi-
croenvironment in 1086 samples. We selected cell type chromatin activity-specific miRNA
signatures and ssGSEA methods for analysis. In the ssGSEA enrichment score heatmap
(Figure 5B), the cellular origin of the miRNAs differed significantly between the tumor
samples. We then selected the samples with the top 25% and bottom 25% enrichment scores
for luminal epithelial cells of mammary glands or basal cells, and further compared the
survival between two groups. Interestingly, patients with low enrichment scores of luminal
epithelial cells of mammary glands or low enrichment scores of basal cells have a good
prognosis, suggesting an association between the proportion of these two cell types in
cancer samples and cancer prognosis (Figure 5C). In addition, we also analyzed BRCA data
using abundance-based methods and identified other cell types that might be associated
with BRCA prognosis, with scores based on cell type chromatin activity/expression-specific
miRNA signatures, and the results are shown in Supplementary Figure S3. These sample
results suggest that the mirCellType tool, which applies cell-type-specific miRNA signa-
tures, allows researchers to gain a better insight into the cellular heterogeneity in the cell
type mixture of tissue samples.

3. Discussion

Cell-type-specific miRNAs play an essential role in shaping cellular identity in health
and disease by orchestrating important cellular processes and altering the expression of
protein-coding genes [26]. Although many studies have identified cell type expression-
specific miRNAs, most studies have investigated only a few cell types in one tissue [13,14].
In recent years, large-scale miRNA expression profiles have been published, mainly in
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bulk tissue or tumor cell lines [5]. Due to the inherent cellular heterogeneity of tissues, the
tissue expression atlas of miRNAs cannot identify the specific cellular origin of miRNA
expression. As for cancer cell lines, they are known to have abnormalities in functions and
show significant alterations in gene expression profiles compared to normal cells. These
issues limit the identification of cell-type-specific expression patterns of miRNAs. It was
not until recently that a sizable miRNA expression atlas with various isolated cell types
has become available, providing the key resource to identify cell type expression-specific
miRNAs [15]. In addition, the single-cell atlas of human genome chromatin accessibility,
published just last year [9], provides novel information on cell types because sci-ATAC-seq
does not require the isolation of particular cells. It also provides us with a new approach to
identify cell-specific miRNAs and to discriminate them from transcriptional activity.

To date, there have been several studies that focused on the cell type specificity of
particular tissues. For example, Juzenas et al. proposed a catalog of human peripheral
blood cell-specific miRNAs [13], which included only seven cell types. In monocyte cells,
we also determined the specificity of hsa-mir-301a, hsa-mir-301b, hsa-mir-301a, and hsa-
mir-23a. In agreement with their results, we found that hsa-mir-30a and hsa-mir-577 were
specific in B cells. The differences that exist between the two results are likely caused by
different miRNA analysis platforms. We also noted some well-known cell-type-specific
miRNAs in our results, such as hsa-mir-1, hsa-mir-133a, hsa-mir-133b and hsa-mir-206 in
skeletal myofibroblasts and ventricular cardiomyocytes chromatin activity-specific miRNAs.
These miRNAs are called myomiRs and can regulate key genes in muscle development
and functions [10].

As for the methodology, most of the above studies identified cell-type-specific miRNAs
by differential expression analysis. Although this approach is easy to understand, and can
quickly find miRNAs with cell type expression pattern restrictions, miRNAs with very
low total expression, even with cell type specificity, cannot be identified. Moreover, this
approach does not ensure that specific miRNAs are found in all cell types, thus limiting
the identification of cell-type-specific miRNAs. In our study, multiple correspondence
analysis (MCA), a statistical technique that represents both observations (e.g., cell type)
and variables (e.g., miRNAs) in a low-dimensional space, was applied. In MCA biplane
plots, analytical distances can be calculated not only between cell types and miRNAs, but
also between each cell type and each miRNA to estimate their association. The closer the
miRNA is to the cell, the more it can be considered as a specific miRNA for that cell. The
most interesting feature of this method is that it allows the determination of the cell-type-
specific miRNAs for all cell types in the input miRNA atlas. On this basis, we also set a
threshold for the Gini coefficient of each miRNA to ensure that the cell type signature is
indeed specific.

In conclusion, we have explored cell-type-specific miRNAs, including chromatin
activity-specific and expression-specific miRNAs, in a relatively comprehensive manner.
These cell-type-specific miRNA catalogs can be used as a start point to elucidate the role of
miRNAs in cell development and specific diseases. On the other hand, our studies have
limitations, such as the lack of independent validation with an orthogonal experimental
approach. Single-cell small RNA sequencing, although it could be applied to a very limited
number of cells in comparison with single-cell mRNA sequencing at the current stage,
would be a promising candidate for the validation (and even identification) of cell-type-
specific miRNAs in the future.

4. Materials and Methods
4.1. Data Collection and Processing

Expression profiles of miRNAs across 169 human cell types were taken from Lorenzi et al. [15]
and the renormalized counts by library (i.e., counts per million, CPM) were used. As for
chromatin activity, we used the peak per cell data from the human genome chromatin
accessibility atlas published by Zhang and colleagues [19]. The peak matrix generated from
the single-nucleus ATAC-seq data was integrated to form the miRNA chromatin activity
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matrix, where the chromatin activity of one miRNA in one cell could be quantified by sum-
ming the scores of all peaks in the cell within the 2 kb around the genome coordinate of the
miRNA. Information on the genome coordinates of miRNA genes was obtained from the
miRBase database [26] (https://mirbase.org/, v22, accessed on 19 November 2021). Finally,
the cell type chromatin activity was calculated as the average chromatin activity among
the cells annotated as the same cell type. To obtain more consistent cell type annotation,
all cell type names for both atlases were mapped to the closest Cell Ontology [27] terms, if
applicable. By merging and collating the same cell type names after mapping, we finally
obtained a chromatin activity profile containing 91 cell types and an expression profile
containing 124 cell types.

4.2. Cell-Type-Specific miRNA Catalog

We first applied the MCA method to the per cell type expression and chromatin
activity matrix of miRNAs to extract the first 20 unbiased miRNA signatures in each cell
type. Then, only miRNAs with a Gini coefficient greater than 0.5 were preserved. The
retained miRNAs were regarded as cell-type-specific miRNAs.

MCA is a statistical technique that can represent both observations (cell types) and
variables (miRNAs) in a low-dimensional space [28,29]. Briefly, we started by linearly
converting the expression values in a continuous scale between 0 and 1. MCA performed a
dimensionality reduction of the matrix, where both cells and miRNAs were represented in
the same vector space. The miRNA ranking of each cell was calculated based on the distance
of the miRNAs to the cell in the vector space, where the 20 miRNAs that showed the closest
distances were considered as the specific miRNA signatures of the cell type. A detailed
description of the MCA method can be found in the original article by Akira et al. [30].

Note that even for cell types that have less specific miRNAs, MCA will still fetch
20 nominal specific miRNAs. Therefore, another hard thresholding of cell type specificity
is required. To this end, we calculated the Gini coefficient [31] for each miRNA as the
cell-type-specific index. The Gini coefficient can be calculated as follows:

Gini = n+1
n −

2 ∑n
i=1(n+1−i)xi
n ∑n

i=1 xi
(1)

where xi is the expression or chromatin activity intensity of the miRNA in the i-th cell type
(descending ordered). n is the number of cell types. The more widespread the distribution
of a miRNA is, the closer the value is to 0; the more specific the distribution is, the closer
the value is to 1.

4.3. Comparative and Correlation Analysis of Cell-Type-Specific miRNA Sets

We first compared specific miRNA signatures from different cell types. Here, we
introduced the Jaccard index to explore the similarity of different cell-type-specific miRNAs.
The formula is as follows:

J(A, B) = |A∩B|
|A∪B| =

|A∩B|
|A|+|B|−|A∩B| (2)

where A and B denote the specific miRNA sets from two different cell types.
To better understand the biological functions of cell-type-specific miRNAs, we per-

formed a series of correlation analyses between the miRNA specificity index and other
miRNA biological features. We first downloaded literature-compiled human TF-miRNA
regulatory data from TransmiR v2.0 (http://www.cuilab.cn/transmir, accessed on
5 May 2021) [32] and counted the number of transcription factors regulating each cell-
type-specific miRNA. Similarly, miRNA–mRNA targeting relationship data supported
by experimental evidence were downloaded from miRTarBase v8.0 (http://miRTarBase.
cuhk.edu.cn/, accessed on 5 May 2021) [33] and the number of target genes of each cell-
type-specific miRNA was counted. In addition, Disease Spectrum Width (DSW) scores
were calculated using human miRNA–disease associations from the HMDD v3.2 database

https://mirbase.org/
http://www.cuilab.cn/transmir
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
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(http://www.cuilab.cn/hmdd/, accessed on 19 November 2021) [22], which represent
the importance of a miRNA in human diseases. We also obtained MicroRNA Impor-
tance Calculator (MIC) scores [21] as another measure of the importance of miRNA from
http://www.cuilab.cn/mic/ (accessed on 19 November 2021).

4.4. Disease Association Enrichment Analysis

The whole set of experimentally validated miRNA-disease associations and the causal
miRNA-disease association subset were obtained from HMDD v3.2 (http://www.cuilab.
cn/hmdd/, accessed on 19 November 2021) [22]. The enrichment of disease associated
miRNAs among cell-type-specific miRNAs were analyzed by the clusterProfiler R func-
tional enrichment package with customized annotation files recording the known asso-
ciations between miRNAs and diseases [34]. FDR < 0.05 was defined as the threshold of
significance. We further focused on miRNAs that are causally associated with diseases,
which are generally directly involved in disease mechanisms [22,23]. The Fisher’s exact
test was used to determine whether there is a significant association between the causal
miRNAs of one disease and the specific miRNAs of one cell type. Only diseases containing
at least 5 causal association miRNAs were considered here to avoid less confident results
from poorly annotated diseases.

4.5. TCGA Data Collection and Survival Analysis

MiRNA expression data in tumor samples were retrieved from the TCGA database
(https://portal.gdc.cancer.gov/, accessed on 15 April 2022). Samples from patients without
any available survival time or events were removed. We obtained data for 35 cancer types:
ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA, FPPP, HNSC, KICH, KIPAN,
KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, READ,
SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, and UVM. For each cancer
type, we performed survival analysis for T cell chromatin activity-specific miRNAs and
T cell expression-specific miRNAs, based on the TCGA miRNA expression and survival
information. Survival curves were generated using the Kaplan–Meier method. Based on
the expression of each miRNA, each sample was assigned to one of two groups: a low-
expression group or a high-expression group. The log-rank test was used to assess the
statistical significance of the survival differences between the high- and low-expression
categories. The significance cut-off was p < 0.05. Kaplan–Meier analysis and log-rank test
were performed using the R package survival.

4.6. mirCellType Server Construction

We established mirCellType, an online tool to infer the cell type composition of com-
plex/bulk samples (e.g., peripherical blood) based on the identified cell-type-specific
miRNA signatures. Its input was a miRNA expression matrix, where rows were miR-
NAs and columns were samples. Repeated miRNA names were combined. mirCellType
provided two analysis methods. The first one adopted ssGSEA (single-sample genomic
enrichment analysis) to score each sample. ssGSEA determined an enrichment score of a set
of cell-type-specific miRNAs in the top of a ranked miRNA expression profile. The ssGSEA
algorithm was implemented by using the R package GSVA. The second method was to
calculate the expression abundance of specific miRNAs. We calculated the corresponding
per-sample scores, which were also called abundance scores here, by using the log2 geo-
metric mean of cell-type-specific miRNAs. The web interface and webserver construction
were accomplished with the HTML + PHP + Apache framework.

http://www.cuilab.cn/hmdd/
http://www.cuilab.cn/mic/
http://www.cuilab.cn/hmdd/
http://www.cuilab.cn/hmdd/
https://portal.gdc.cancer.gov/
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