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Supporting Information  

 

Figure S1: Scheme of the fabrication process of rolled bilayers. a) the top layer is stretched for the desired amount (from 20 
% to 60 %, in this work), then b) the top layer is blocked at a fixed strain. c) Application of the bottom layer to the top one to 

achieve the bilayer shown in d). e) A support is placed below the bilayer to enable the cutting on one side of the bilayered 
membrane, which rolls f) without external constraints. 

 
Figure S2: SEM image of the topographic features built on the top layer. Scale bar is 30 µm. 
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Figure S3: Example of a spiral fitting process applied to an image of a rolled structure acquired with an optical microscope. 
Spiral fit process: in red, points along the midline of an experimental sample are shown; in blue, the fit with an Archimedean 
spiral fitting process was performed to extract the inner and outer radii of the samples. The spiral fitting procedure started 
with the acquisition of a microscope image of the samples. These images were later processed in MATLAB, where a set of 
points along the midline of the bilayers were collected. An algorithm compared the set of points with many Archimedean 
spirals and found the one that best fit the experimental data. In the end, we extracted a set of inner and outer diameters 
from the spirals that best fit the data. 

 

 
Figure S4: Thickness vs. strain applied (20 %, 40 % and 60 %). The presence of the pillars (height: 23.6 ± 0.4 µm) has not been 

considered in this graph. Differences between the experimental groups were not statistically significant. 

 
Figure S5: Thickness of the top (_top) and bottom (_bot) layers for the different applied strain values. The presence of pillars 

(23.6 ± 0.4 µm) has not been considered in this graph. Differences between the experimental groups were not statistically 
significant. 
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Figure S6: Thickness of the top (_top) and bottom (_bot) layers for different spin speed values, applying a strain mismatch of 
60% at the top layer. The presence of pillars (23.6 ± 0.4 µm) has not been considered in this graph. 

Table S1: Comparison of the inner and outer radii of model predictions and experimental data for the inner unit’s geometry. 

Mean value outer 

spiral 

Experiment 

(mm) 

Model  

(mm) 

Error (%) 

Inner radii 1.314 1.44 9.6 

Outer radii 1.393 1.535 10.19 

 

Figure S7: Spiral fitting characterization for the outer roll of the hierarchical spiral. 
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Figure S8: Image of the custom-made stretching setup adapted for the fabrication of the hierarchical structure. 
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Spontaneous curvature of the bilayer 

Let ei, i = 1, 2, 3 be an orthonormal basis corresponding to the Cartesian coordinates 

xi. We consider two separate layers with (undeformed) lengths lr (top) and l0<lr 

(bottom) and thicknesses (1−β)h0 and βh0, 0<β<1, respectively. The bottom layer 

is then stretched along the direction e1 by λ=lr/l0=1+ε, with ε = 0.2, 0.4, 0.6 the pre-

strain, and glued to the top layer. Hence, the bilayer attains its reference configuration, 

where x1 ∈ [- lr/2, lr/2] and x3 ∈ [- hr/2, hr/2] span the longitudinal and the thickness 

directions, respectively. This deformation process may be described by the 

deformation gradient for the bottom layer: 

𝑭0
𝑏 = 𝜆𝒆1 ⊗𝒆1 +

1

√𝜆
(𝒆2 ⊗𝒆2 + 𝒆3 ⊗𝒆3),    (S1) 

where we have assumed incompressibility, while the deformation gradient for the top layer is 

𝑭𝑜
𝑡 = 𝑰. Following [21], we then represent the plane strain bending motion from the reference 

configuration through the deformation gradient: 

𝑭 = 𝜆𝑟(𝑟)𝒆𝑟 ⊗𝒆3 + 𝜆𝜃(𝑟)𝒆𝜃 ⊗𝒆1 + 𝒆2 ⊗𝒆2,  𝜆𝑟(𝑟) =
𝑙𝑟

2�̅�𝑟
,  𝜆𝜃(𝑟) =

𝑙𝑟

𝜆𝑟(𝑟)
  (S2) 

where 2�̅� is the bending angle, er -eθ is a polar basis in the bending plane e1 -e3. Here, we have 

assumed the bending to be isochoric and r is the radial coordinate, with 𝑟𝑖
𝑡 , 𝑟𝑖

𝑏(𝑟𝑒
𝑡 , 𝑟𝑒

𝑏) the 

coordinates of the intradoses (extradoses) of the top and bottom layers, respectively. The total 

deformation gradient that causes stress within the bilayer is thus 𝐅𝐅0
b for the bottom layer and 

F for the top layer. Considering a Neo-Hookean constitutive response for both layers, the 

Cauchy stress in each layer reads: 

𝐓𝑡 = 𝐺𝑡(𝜆𝑟
2𝒆𝑟 ⊗𝒆𝑟 + 𝒆𝜃 ⊗𝒆𝜃) − 𝑝𝑡𝐈 + 𝐺𝑏𝒆2 ⊗𝒆2,    (S3) 

𝐓𝑏 = 𝐺𝑏[
𝜆𝑟
2

𝜆
𝒆𝑟 ⊗𝒆𝑟 + (𝜆𝜃𝜆)

2𝒆𝜃 ⊗𝒆𝜃] − 𝑝𝑏𝐈 +
𝐺𝑏

𝜆
𝒆2 ⊗𝒆2,   (S4) 
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Where pt, pb are the Lagrange multipliers associated to the incompressibility constraints: 

(1 − 𝛽)ℎ0𝑙𝑟 = �̅�((𝑟𝑒
𝑡)2 − (𝑟𝑖

𝑡)2),   
1

√𝜆
𝛽ℎ0𝑙𝑟 = �̅�((𝑟𝑒

𝑏)2 − (𝑟𝑖
𝑏)2),  (S5) 

with 𝑟𝑒
𝑏=𝑟𝑖

𝑡, and Gt, Gb are the shear moduli of the top and the bottom layer, respectively. At 

this point, it is convenient to introduce the change of variables 

𝜔 = 4�̅�
ℎ0

𝑙𝑟
,  𝛾𝑖

𝑡 =
�̅�(𝑟𝑖

𝑡)2

ℎ0𝑙𝑟
,  𝑧 =

𝑙𝑟

2�̅�
=

2h0

𝜔
,  (S6) 

With this, the incompressibility constraints eq. (5) may be manipulated to provide the following 

relations: 

𝑟𝑒
𝑡 = 𝑧√𝜔(𝛾𝑖

𝑡 + 1 − 𝛽),  𝑟𝑖
𝑏 = 𝑧√𝜔(𝛾𝑖

𝑡 − 𝛽 √𝜆⁄ ),  (S7) 

Upon introducing the radial 𝑇𝑟
𝑡,𝑏 = 𝐓𝑡,𝑏𝒆𝑟 ∙ 𝒆𝑟 and hoop 𝑇𝜃

𝑡,𝑏 = 𝐓𝑡,𝑏𝒆𝜃 ∙ 𝒆𝜃 stresses and upon 

solving the balance of forces: 

𝜕𝑇𝑟
𝑡,𝑏

𝜕𝑟
+

𝑇𝑟
𝑡,𝑏−𝑇𝜃

𝑡,𝑏

𝑟
= 0,  

𝜕𝑇𝜃
𝑡,𝑏

𝜕𝜃
= 0,    (S8) 

for each layer, along with the boundary/interface conditions: 

𝑇𝑟
𝑡(𝑟𝑒

𝑡) = 0,  𝑇𝑟
𝑏(𝑟𝑖

𝑏) = 0,  𝑇𝑟
𝑡(𝑟𝑖

𝑡) = 𝑇𝑟
𝑏(𝑟𝑒

𝑏)  (S9) 

the constitutive equations eq. (4) and the incompressibility conditions eq. (5), we obtain the 

pressure terms and the following relation from the interface condition: 

𝜔2 =
1

𝛼(1−𝛽)+𝛽𝜆3 2⁄
[
𝛼

𝛾𝑖
𝑡 −

𝛼

𝛾𝑖
𝑡+1−𝛽

+
1

𝜆
(

1

𝛾𝑖
𝑡−𝛽 √𝜆⁄

−
1

𝛾𝑖
𝑡)],   (S10) 

with α=Gt/Gb. Finally, by imposing that the resultant bending moment vanishes, i.e.: 

𝑀 = ∫ 𝑟𝑇𝜃
𝑏𝑑𝑟 +

𝑟𝑒
𝑏

𝑟𝑖
𝑏 ∫ 𝑟𝑇𝜃

𝑡𝑑𝑟
𝑟𝑒
𝑡

𝑟𝑖
𝑡 = 0,    (S11) 

and accounting for eq. (10), we get a non-linear equation in the unknown 𝛾𝑖
𝑡: 

2𝛼log
1 − 𝛽 + 𝛾𝑖

𝑡

𝛾𝑖
𝑡 +

2

𝜆
log

𝛾𝑖
𝑡

𝛾𝑖
𝑡 − 𝛽 √𝜆⁄

+ 
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−
(𝛽(1−𝛽+𝛾𝑖

𝑡)+𝛼(−1+𝛽)𝛽𝜆−𝛼(−1+𝛽)𝛾𝑖
𝑡𝜆3 2⁄ )(𝛼(−1+𝛽)(−1+𝛽−2𝛾𝑖

𝑡)−𝛽2𝜆+2𝛽𝛾𝜆3 2⁄ )

𝜆(−1+𝛽−𝛾𝑖
𝑡)𝛾𝑖

𝑡(𝛽−𝛾𝑖
𝑡√𝜆)(𝛼−𝛼𝛽+𝛽𝜆3 2⁄ )

= 0

  (S12) 

Once solved (numerically) for 𝛾𝑖
𝑡, the latter equation allows to compute ω from eq. (10). Then, 

using eqs. (6)-(7), we may finally estimate the spontaneous curvature of the bilayer as: 

𝑘𝑠 =
2

𝑟𝑖
𝑏+𝑟𝑒

𝑡,      (S13) 
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