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Abstract: A critical survey on the various theoretical models of thermoreversible gelation, such as the
droplet model of condensation, associated-particle model, site–bond percolation model, and adhesive
hard sphere model, is presented, with a focus on the nature of the phase transition predicted by them.
On the basis of the classical tree statistics of gelation, combined with a thermodynamic theory of asso-
ciating polymer solutions, it is shown that, within the mean-field description, the thermoreversible
gelation of polyfunctional molecules is a third-order phase transition analogous to the Bose–Einstein
condensation of an ideal Bose gas. It is condensation without surface tension. The osmotic compress-
ibility is continuous, but its derivative with respect to the concentration of the functional molecule
reveals a discontinuity at the sol–gel transition point. The width of the discontinuity is directly related
to the amplitude of the divergent term in the weight-average molecular weight of the cross-linked
three-dimensional polymers. The solution remains homogeneous in the position space, but separates
into two phases in the momentum space; particles with finite translational momentum (sol) and a net-
work with zero translational momentum (gel) coexist in a spatially homogeneous state. Experimental
methods used to detect the singularity at the sol–gel transition point are suggested.

Keywords: thermoreversible gelation; phase separation; cross-linking

1. Introduction

Thermoreversible gelation in solutions of polymers, as well as of low molecular weight
molecules, has been attracting interest from researchers [1–7]. Many examples of the phase
diagrams with sol–gel transition lines have been reported in the literature, early ones of
which are atactic polystyrene in various organic solvents [8,9], poly(n-butylmethacrylate)
in 2-propanol [10,11], poly(vinyl chloride) in dimethyl malonate [12], etc. Quite recently,
some reviews and conceptual works have appeared with relation to responsive gels [13,14],
hydrogels for biomedical applications [6,7,15], and hydrogen-bonding supramolecular
gelators [16–18]. However, the thermodynamic nature of the transition from a sol state to
a gel state, and vice versa (sol–gel transition), has not yet been clarified from a scientific
point of view. In particular, the fundamental question on whether a real singularity in the
physical quantities is accompanied with the transition as is in a usual phase transition, or if
the transition is a sharp but continuous crossover, has not been answered yet.

Some of the data reported in the references were obtained by static measurements
(differential scanning calorimetry, low-angle light scattering, osmometry, etc.), and others
were by rheological measurements (viscosity, complex modulus, diffusion coefficient of
test particles, etc.). In a reversible weak gel, cross-links in the network are so weak that
they may be broken by an external force. Therefore, the transition point largely depends on
the method of the measurement for detection. In addition, the time required to establish
gel networks (gelation time) is usually much longer than the time taken for the melting
of the gel because of the necessary diffusion time for the formation of cross-links by
association. Hence, the transition temperature from sol to gel depends on the cooling rate,
and is often observed to be lower than that of melting (for cold-setting gels). For these
fundamental reasons, there have been intense arguments and serious confusion on the
nature of thermoreversible gelation.
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In order to study the thermodynamic nature of the sol–gel transition, we must go
back to the definition of a gel. The opinion, however, is divided depending on how the
researchers observe the gel state. The static measurements listed above attempt to find the
percolation point where the connectivity of the constituent molecules, or particles, by cross-
linking grows to the macroscopic dimensions. At the gel point, the largest cross-linked
cluster covers the entire system and loses its center-of-mass translational degree of freedom.
The gel point is defined, therefore, by the point where the weight-average molecular weight
of the connected clusters (three-dimensional associated polymers) becomes infinite

M̄w = ∞ (1)

irrespective of whether the bonds, or cross-links, are irreversible or reversible. This defini-
tion of the gel point was presented in the classical theory of the gelation reaction [19–24].

The gel point can also be defined rheologically as the point where the solution loses
its fluidity [3,25]. The diffusion of the molecules in the solution becomes so slow that they
look localized on the time scale of the observation. The viscosity is enhanced so highly that
the it looks impossible for the solution to flow. The complex viscosity apparently changes
from a liquid value to a solid one, and hence the dynamic loss modulus behaves similarly
to the storage modulus at the transition point.

These two pictures are mutually complementary. However, to avoid unnecessary
confusion, we confine the research in this article to the equilibrium properties, and adopt
the first definition Equation (1) for the gel point. Hence, our solutions may flow after the
gel point is passed by the repetition of the dissociation and association of the cross-links,
although they retain an entirely connected network structure (transient gel).

In this paper, we review various theoretical models of the thermoreversible sol–gel
transition reported in the literature and compare them from the viewpoint of statistical
thermodynamics. From such a comparative study, we show that the gelation is a special
type of condensation by attractive force, i.e., condensation without surface tension of the
condensate. We also demonstrate that the site–bond correlated percolation model becomes
equivalent to the associating polymer solution model in the limit of a strong intermolecular
associative force.

2. Methods and Results
2.1. Condensation without Surface Tension

In order to consider cross-linking by molecular association, we refer back to old
studies on the condensation phenomena by a short-range attractive force. We start with the
similarity between sol–gel transition and gas–liquid transition. In particular, particulate
gels formed by the association of colloid particles have a strong similarity to amorphous
liquid particles. To construct the analogy between the gelation of functional molecules in a
solvent and condensation of gases into dense phases (liquid or solid), we briefly review the
statistical theory of condensation by Mayer and his collaborators [26–30].

To evaluate the partition function of a gas in which molecules interact with the pairwise
additive potential u(r), Mayer [26,30] introduced the function

f (r) ≡ e−u(r)/kBT − 1 (2)

at a given absolute temperature T to avoid a divergence due to the repulsive part (hard core)
in u(r), and expanded the partition function in powers of the molecular density. The result
of Mayer’s theory can be summarized in terms of the power series [31]

Gk(z) ≡ ∑
l≥1

lkblzl (3)
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for k = 0, 1, 2 · · · , whose coefficient bl is the l-th cluster integral

bl(T) ≡
1

Vl!

∫
· · ·

∫
∑ ∏

i<j
f (ri,j)dr1r2 · · · rl (4)

The sum is taken over all possible ways of interacting pairs belonging to a single
connected cluster. These cluster integrals are formally introduced in the theory to sum
up all terms in the density power series. They do not necessarily describe the property of
spatially connected molecules (associated molecules), but provide a mathematical tool
rather than physical attributes.

The free energy per molecule is

F = ln z− ρ−1G0(z) (5)

in terms of the activity z, and the density ρ ≡ N/V of the molecule (v ≡ ρ−1 is the volume
per particle). The density and the pressure p are given by

ρ = G1(z) (6a)
p

kBT
= G0(z) (6b)

as functions of the activity. Upon eliminating the activity in these coupled equations, we
find the equation of state (p–ρ isotherm), through which, we can study phase transitions.

The slope of the pressure in this theory is given by(
∂p/kBT

∂ρ

)
T
=

1
l̄w

=

(
∂ ln z
∂ ln ρ

)
T

(7)

where

l̄w ≡
G2(z)
G1(z)

(8)

is the weight-average number of molecules in the clusters. The nature of the equation
of state is therefore determined by the detailed form of the coefficients bl . In particular,
the radius of the convergence of the functions Gk(z) and the nature of the singularities on
the convergence boundary are governed by the coefficients bl for large l.

To study the degree of discontinuity at the gas–liquid transition point, the second
derivative of the pressure was also calculated. It is(

∂2 p/kBT
∂ρ2

)
T
=

1
ρ

(
1− l̄z

l̄w

)(
∂ ln z
∂ ln ρ

)
T

(9)

where l̄z ≡ G3(z)/G2(z) is the z-average number of molecules in the clusters.
Using the saddle point method, Mayer et al. [28] found that, for a usual force potential

of van der Waals type, the cluster integrals take the form

bl(T) '
exp[−γ(T)l2/3]

l5/2 b0(T)l (10)

for large l, where b0(T) is a certain nonsingular function of T, and γ(T) is the surface
tension of the clusters. This asymptotic expression was later derived more rigorously by
Born and Fuchs [32] and Kahn and Uhlenbeck [33] by applying the method of steepest
descent to the grand partition function as a function of the complex activity. From these
studies, the radius of the convergence of the power series Gk(z) is found to be given by
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z = b0(T)−1. The nature of the singular behavior of the pressure and the compressibility
depends on whether the series Equation (3)

Gk(b−1
0 ) =

∞

∑
l=1

lk

l5/2 exp
[
−γ(T)l2/3

]
(11)

on the radius of convergence take finite values, or tends to infinity for k = 1, 2. If the
surface tension is positive, these series take finite values for any integer k. Hence, there is a
finite value

ρs = G1(b−1
0 ) (12)

for the density ρs at z = b−1
0 . Because Equation (6a) is divergent (ρ is infinitely large) as

soon as z exceeds b−1
0 , ρs is regarded as the density of the condensation point. At this

condensation point, the slope of the pressure is finite because G2(b−1
0 ) in Equation (7)

is finite.
However, if the surface tension γ is zero in a certain temperature range,

G0(b−1
0 ) = ζ(5/2) = 1.342 and G1(b−1

0 ) = ζ(3/2) = 2.612 are finite, but all higher mo-
ments are infinite: Gk(b−1

0 ) = ∞ (for k ≥ 2). (ζ(x) is Rieman’s zeta function [34] of x.)
Therefore, the slope of the pressure is zero at the condensation point.

Mayer assumed the existence of the temperature Tm (below the critical temperature Tc
of a gas–liquid transition), at which, the surface tension of the cluster vanishes. For T < Tm,
the condensation takes place with the finite slope of the pressure (first order phase transi-
tion). Because there is a sudden break in the shape of the p–ρ curve at ρs, supersaturation
of the vapor would be expected. He proved that the existence of the density ρf (the density
of the condensed phase) is larger than ρs, at which, the pressure starts to increase again.

For Tm < T < Tc, the condensation takes place with zero slope of the pressure, allowing
no extrapolation to a higher pressure of the supersaturated vapor. Compression of the
system at a constant temperature in this region induces a uniform increase in density
throughout the whole system; droplets change into liquid continuously one by one. He
also assumed the existence of the density ρf (volume vf) in this region, but it was a logical
guess rather than mathematical proof [29]. The existence of vf can only be confirmed after
the structure of the condensed phase (liquid, amorphous solid, crystal, etc.) is clarified. In
what follows, we show that thermoreversible gelation is a condensation of the latter type:
condensation with no surface tension.

2.2. Sponge Phase of Associated Particles

Before moving on to the detailed description of our model of thermoreversible gela-
tion, we next consider the associated particle model of condensing systems proposed by
Frenkel [35,36] and Band [37–41]. Just after Mayer’s work appeared, Band [37,38] real-
ized that Mayer’s general results can be derived almost immediately from the theory of
associating assemblies discussed by Fowler [31]. In this model, the field of the molecular
interaction force is assumed to be limited to a small region around any molecule, so that it
forms an assembly of molecules, referred to as particles, or physical clusters, such as dimers,
trimers, etc., in order to distinguish itself from Mayer’s mathematical clusters. However,
it neglects interactions among associated particles. The system is therefore regarded as
an ideal gas of associated particles. Frenkel [35,36] also introduced the same model to
study heterogeneous fluctuations and pre-transition phenomena in the neighborhood of
the phase transition.

Consider a system in a gas phase (A) changing into a condensed phase (B) by forming
associated particles. Let NA be the number of molecules that remain in the A phase
(unimers), and let Nl be the number of associated particles consisting of l molecules
(referred to as l-particles) in the B phase. The total number of molecules is given by

N = NA + ∑
l≥2

Nl (13)
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The free energy of the system is then found to be

F = NAµA + ∑
l≥2

∆Al Nl + kBT

(
NA ln

NA
N

+ ∑
l≥2

Nl ln
Nl
N

)
(14)

because of the ideality assumption, where µA is the chemical potential of the gas phase A, and

∆Al = µBl + γl2/3 (15)

is the free energy of a particle of the size l. Here, µB ≡ liml→∞ ∆Al/l is the chemical
potential of a molecule in the B phase, and γ is the surface tension of the particles. The ideal
mixing entropy is assumed.

By minimization of this free energy under the constraint (13), we find that the most
probable distribution of the particles takes the form

nl ≡
Nl
N

= e−βl−αl2/3
(16)

where β ≡ (µB − µA)/kBT is the difference in the chemical potentials, and α ≡ γ/kBT is
the dimensionless surface tension. The ratio of the number of molecules in the two phases
is then given by

NB
NA

= ∑
l≥2

le−αl2/3
[
e−(µB−µA)/kBT

]l
(17)

The difference from Mayer’s theory nl = blzl is evident. The pre-factor l−5/2 is
missing in this treatment. If α > 0, the sum is finite at the transition point where µA = µB
holds (and hence e−(µB−µA)/kBT = 1 holds), so the transition is discontinuous. If α = 0,
there is no phase transition; all molecules continuously grow to particles of the B phase.
The nature of the transition is thus directly related to the convergence of the power series.

Hill [42] and Stillinger [43] studied the relation between the Frenkel–Band theory of
association equilibrium and Mayer’s cluster integral theory from the viewpoint of inter-
molecular interaction potential. Stillinger [43] pointed out the possibility of a sponge-like
structure in physical clusters at temperatures higher than the gas–liquid transition temper-
ature. If the range of the attractive interaction is short enough, thermal agitation would
virtually completely overcome the attractive forces. Only the requirement of overlapping
particle spheres should hold the clusters together. Such a sponge-like structure can be
identified as a gel network, and the transition exactly corresponds to what we will study in
the following sections with regard to thermoreversible gelation.

The associated particle model was later refined by Fisher [44] to apply specifically to
the droplet formation in a gas–liquid phase transition. Fisher’s droplet model assumes
that the associated particle is a droplet with well-defined surface free energy Wl , which
satisfies the condition Wl/l → 0 as l → ∞, most simply Wl = γ(T)lσ with 0 < σ < 1,
and neglects interactions between the droplets. The basic equations are the same as Mayer’s
Equations (6a) and (6b):

ρ = q0

∞

∑
l=1

e−γ(T)lσ

lτ−1 zl (18a)

p
kBT

= q0

∞

∑
l=1

e−γ(T)lσ

lτ
zl (18b)

where ρ = v−1 is the density, q0 is a constant, σ = 1− 1/d = 2/3 is the exponent of a surface
area (d = 3 is the space dimension), z is the activity of the molecule, and τ (2 < τ < 2.5) is
the parameter due to the closing effect on the surface of the droplet. If γ > 0, we have a first-
order gas–liquid transition at z = 1. At the critical point [44,45], we have the simultaneous
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conditions γ(Tc) = 0 and z = 1. Hence, ρc = q0ζ(τ − 1) and pc/kBTc = q0ζ(τ), where
ζ(x) is the zeta function of x.

The droplets model was later explored by many researchers in relation to the critical
phenomena [45], nucleation of supersaturated vapor [46], percolation and spinodal [47–49], etc.
What we consider for gels in this article is the other possibility, such that γ(T) = 0, but z
changes in the region z < 1. We therefore have the coupled equations

ρ = q0

∞

∑
l=1

l
lτ

zl (19a)

p
kBT

= q0

∞

∑
l=1

1
lτ

zl (19b)

2.3. Associated Particle Model of Polymer Solutions

We now apply the associated particle model to the solutions in which primary func-
tional molecules of the molecular weight n (in terms of the number of statistical repeat units
on them) carrying the number f of functional groups are dissolved in a solvent [4,50–55].
We mainly consider polymers with a high n value, but can also include low-molecular-
weight molecules with small n, such as low-mass gelators. For simplicity, we assume
that the functionality of the primary molecules is monodisperse and that the functional
groups form pairwise bonds that can break and recombine by thermal motion. We consider
a model incompressible solution consisting of N primary functional molecules and N0
solvent molecules. The total volume of the solution is V = Ωa3, where Ω ≡ N0 + nN is
the total volume of the solution counted in the unit of the volume a3 of a solvent molecule,
which is assumed to be equal to the volume of a statistical repeat unit on the primary
functional molecule.

Our starting free energy is based on the Flory–Huggins theory of polymer solu-
tions [24,56–58], but the molecular association is taken into consideration (referred to as
associating polymer solutions APS). It is given by

F = ∑
l≥1

Nl ln φl + N0 ln(1− φ) + ∑
l≥1

β∆Al Nl + g(φ)NG (20)

where β ≡ 1/kBT, Nl is the number of associated particles (physical clusters) formed
with l primary molecules (referred to as l-particle), φl ≡ nNl/Ω is their volume fraction,
φ ≡ nN/Ω is the total volume fraction of the primary molecules, and ∆Al ≡ µ◦l − lµ◦1 is the
free energy change accompanying the formation of an l-particle from the separate primary
molecules in their standard reference state (superscript circle). The mixing enthalpy (Flory’s
χ-parameter [56]) need not be considered here because we are not concerned in this paper
with the liquid–liquid phase separation induced by the van der Waals interaction. We focus
on a reversible gelation by associative force only.

To incorporate the post-gel regime, we have included the last term: the free energy
of the gel network (condensed phase) consisting of a macroscopic number NG of the
primary molecules. The free energy needed to bind a molecule onto the gel part is given by
g(φ) ≡ β(µ◦G1 − µ◦1). In general, it depends on the concentration because the structure of
the gel changes with the concentration. The specific form of g(φ) will be discussed in detail
in the following section.

By differentiation, we find, for the chemical potentials

β∆µl = 1 + β∆Al + ln φl − nlρ + nlg′(φ)νG(1− φ) (21a)

β∆µ0 = 1 + ln(1− φ)− ρ− g′(φ)νGφ (21b)

β∆µG = −nρ + g(φ) + ng′(φ)νG(1− φ) (21c)
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an l-particle, a solvent molecule, and a molecule in the gel, respectively, where

ρ ≡ ∑
l≥1

νl + 1− φ (22)

is the total number of particles possessing the translational degree of freedom, and g′(φ) is
the derivative of g(φ). The sum

νS ≡ ∑
l≥1

νl (23)

gives the number density of the finite particles in the solution. For the gel part, νG ≡ NG/Ω
is the number density of the primary molecules in the gel, and φG = nNG/Ω = nνG is
the volume fraction of the gel. The gel fraction, defined by the weight fraction of the gel
relative to the total weight of the primary molecules, is given by w = φG/φ. The volume
fraction of the sol part is then φS = φ(1− w).

In thermal equilibrium, the solution has a distribution of connected particles with a
population distribution fixed by the equilibrium condition

∆µl = l∆µ1 (24)

for association and dissociation. Then, we find that the volume fraction of the l-particles is
given by

φl = Klφ1
l (25)

where φ1 is the volume fraction of the primary molecules that remain free from association
(referred to as unimers), and Kl = exp(l − 1− β∆Al) is the equilibrium constant.

Because the volume fraction φ1 of the unimers plays the role of the activity, let us
rewrite it as z ≡ φ1. The number νl and the volume fraction φl are then given by

νl = blzl , φl = nlblzl (26)

where the coefficient bl ≡ Kl/nl has been introduced. The volume fraction φS of the sol
part and the total number of associated particles νS are then given by

φS = ∑
l≥1

φl = nG1(z) (27a)

νS = ∑
l≥1

νl = G0(z) (27b)

where functions
Gk(z) ≡ ∑

l≥1
lkblzl (bl ≡ Kl/nl) (28)

for k = 0, 1, 2 · · · have been introduced. In terms of the gel fraction w ≡ φG/φ, the relation

φ = φS + φG (29)

is transformed into the equation for the volume fraction of the sol part

φ

n
(1− w) = G1(z) (30)

In the post-gel regime where the gel exists, there is an additional condition regarding
the equilibrium between sol and gel. It is

∆µG = ∆µ1 (31)

which leads to the relation
g(φ) = 1 + ln z (32)
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Hence, the binding free energy g(φ) is uniquely related to the activity z of the func-
tional molecule.

The osmotic pressure of the solution is related to the chemical potential of the solvent
by the thermodynamic relation πa3/kBT = −∆µ0. Explicitly, we have

πa3

kBT
= νS − φ− ln(1− φ) +

1
n

g′(φ)φw (33)

In the pre-gel regime, the pressure is basically proportional to the total number νS

of associated particles, since all molecules with a translational degree of freedom equally
contribute to the pressure within the ideal gas approximation. In the post-gel regime, there
is a contribution from the gel given by the last term. If the binding energy is independent
of the concentration, however, the osmotic pressure is independent of the gel fraction.
By solving Equation (30) with respect to z, and substituting the result into Equation (33),
we obtain the osmotic pressure as a function of the temperature and volume fraction of the
primary molecules.

The total free energy per primary molecule is

F = 1 + ln z− 1
φ

G0(z) +
n
φ
(1− φ) ln(1− φ) (34)

This is analogous to Mayer’s formula (5), except the last term (mixing entropy of
the solvent).

We next calculate the slope of the osmotic pressure ∂π/∂φ, and find the osmotic
compressibility defined by KT ≡ (kBT/a3)(∂φ/∂π)T/φ as a function of the temperature
and the volume fraction. If the pressure slope becomes zero, the compressibility is divergent.
Thus, it indicates a phase transition.

By taking the concentration derivative of Equation (33), we find(
∂πa3/kBT

φ∂φ

)
T
=

κ(z)
nφ

+
1

1− φ
(35)

for the slope of the osmotic pressure. Here, the new factor κ is defined by

κ(z) ≡ n
(

∂νS

∂φ

)
T
=

G1(z)
G2(z)

=
1

l̄w(z)
(36)

in the pre-gel regime, where l̄w(z) is the weight-average degree of polymerization of
cross-linked polymers. The activity z is a function of φ and temperature T through the
relation (27a). Since we have, alternatively,

κ(z) =
(

∂ ln z
∂ ln φ

)
T

(37)

this result is the same as Mayer’s one (7), except the last term 1/(1− φ) in the slope (35),
which comes from the mixing entropy of solvent molecules. (In the case of gas–liquid
transition, vacancy plays the role of the solvent and has no mixing entropy.) This term
does not cause any singularity. It simply gives the increment of the pressure in the high
concentration region of the primary molecules due to the finiteness of the molecular volume.
If we use the approximation ln(1− φ) ' −φ in the last term of Equation (34) by assuming
a low concentration, and put n = 1 for low-molecular-weight molecules, Mayer’s formula
is exactly recovered.

In the post-gel regime, the function κ(z) in the slope has an additional term due to the
finite gel fraction

κ(z) ≡ ∂

∂ ln φ

(
1 + w

∂

∂ ln φ

)
ln z (38)
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The singularity in the osmotic pressure originates in this κ function: the translational
entropy of associated particles.

At this stage, we introduce a new function σ(φ, T) by the definition

σ(φ, T) ≡
(

∂πa3/kBT
φ∂φ

)
T
=

κ(z)
nφ

+
1

1− φ
(39)

for later convenience. The osmotic compressibility is described by K−1
T = φ2σ(φ, T), so that

the spinodal condition is simply
σ(φ, T) = 0 (40)

If we included the enthalpy of mixing (van der Waals interaction) in terms of Flory’s
χ-parameter in our starting free energy of the APS model, we would have obtained

σ(φ, T) =
κ(z)
nφ

+
1

1− φ
− 2χ(T) = 0 (41)

for the spinodal condition.

2.4. Application of the Classical Gelation Theory

We now consider specific models for association [4]. We first split the free energy of
association into three parts: ∆Al = ∆Acomb

l + ∆Aconf
l + ∆Abond

l .
In order to find the combinatorial part ∆Acomb

l , all particles are assumed to take tree
forms. The cycle formation within a particle is neglected. We consider the entropy change
in combining l identical f -functional molecules into a single Cayley tree. The classical tree
statistics [22,23] (see also Chapter XII in Flory’s textbook [24]) gives ∆Scomb

l = kB ln[ f lωl ]
for the entropy of combination, where

ωl ≡
( f l − l)!

l!( f l − 2l + 2)!
(42)

is Stockmayer’s combinatorial factor. The free energy is given by β∆Acomb
l = −∆Scomb

l /kB.
For the conformational free energy ∆Aconf

l , we employ the lattice theoretical entropy
of disorientation [24,56]

Sdis(n) = kB ln
(

nζ(ζ − 1)n−2

σsen−1

)
(43)

for a chain consisting of n statistical units, where ζ is the lattice coordination number,
and σs the symmetry number of the chain. This entropy is produced when a polymer chain
carrying the number n of the statistical units is brought from the hypothetical crystalline
state to an amorphous one. The first bond starting from the chain end can be placed
in any direction among the nearest-neighboring ζ cells. The following bonds have only
ζ − 1 possible ways of placement because one of the nearest-neighboring cells is already
occupied by the preceding monomer. We thus have the factor (ζ − 1)n−2. The remaining
factor n/σsen−1 is the artifact of the lattice theory. We then find

∆Sconf
l = Sdis(ln)− lSdis(n) = kB ln

[(
σs(ζ − 1)2

ζen

)l−1

l

]
(44)

Finally, the free energy of bond formation ∆Abond
l is given by

β∆Abond
l = (l − 1)β∆ f0 (45)

because there are l − 1 bonds in a tree of l molecules (∆ f0 is the free energy change on
forming one bond).
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Combining all of the results together, we find

Kl = n f lωl

(
f λ

n

)l−1
(46)

for the equilibrium constant, where

λ(T) ≡ σs(ζ − 1)2

ζe
e−β∆ f0 (47)

is the association constant, which provides a measure of the strength of a physical bond.
The total volume fraction and the total number of particles in the solution are then

given by using Equations (27a) and (27b) as

λ

n
φ(1− w) =

∞

∑
l=1

lωlzl (48a)

λνS =
∞

∑
l=1

ωlzl (48b)

The parameter z is here defined by z ≡ λ f φ1/n. (φ1 being the volume fraction of
the unimers.)

2.4.1. Pre-Gel Regime

We first consider the pre-gel regime where all particles are finite. From the fundamental
two relations (48a) and (48b) given above with w = 0, the function κ is given by

κ(z) = ∑ lωlzl

∑ l2ωlzl =
1

l̄w(z)
(49)

so that it is identified to be the reciprocal of the weight-average aggregation number l̄w
of particles. In what follows, we show that κ is continuous at the gel point concentration,
but its derivative (∂κ/∂φ)T has a discontinuity.

It is now clear that the moments of the Stockmayer’s distribution defined by

Sk(z) ≡
∞

∑
l=1

lkωlzl (k = 0, 1, 2, · · · ) (50)

play exactly the same roles of the functions Gk(z) in the theories of Mayer and Frenkel–
Band. The number-average and weight-average of the particle distribution are given by

l̄n =
S1(z)
S0(z)

(51a)

l̄w =
S2(z)
S1(z)

(51b)

The osmotic pressure is

πa3

kBT
=

S0(z)
λ(T)

− φ− ln(1− φ) (52)

where the activity z is related to the volume fraction φ by

λφ

n
= S1(z) (53)
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The slope of the pressure is(
∂πa3/kBT

φ∂φ

)
T
=

1
nφl̄w(z)

+
1

1− φ
(54)

The moments Sk(z) can be exactly calculated by introducing a new parameter α, which
is the positive root of the equation

z ≡ α(1− α) f−2 (55)

for a given value of z. The first three moments of Stockmayer’s distribution are explicitly
calculated to be [22]

S0(z) =
α(1− f α/2)

f (1− α)2 (56a)

S1(z) =
α

f (1− α)2 (56b)

S2(z) =
α(1 + α)

f [1− ( f − 1)α](1− α)2 (56c)

In order to see the physical meaning of α, let us calculate the extent of the reaction,
i.e., the probability for a randomly chosen functional group to be associated. Since an
l-particle includes the total of f l functional groups, among which, 2(l − 1) are associated,
the extent of the reaction is given by 2[S1(z)− S0(z)]/ f S1(z) = α. Thus, it turns out that α,
introduced by the formal relation (55), actually gives the extent of the reaction.

By using α, the average particle sizes are given by

l̄n =
1

1− f α/2
(57a)

l̄w =
1 + α

1− ( f − 1)α
(57b)

Therefore, it is obvious that the gel point is identified to be α = α∗, where

α∗ ≡ 1
f − 1

(58)

because the weight-average particle size becomes infinite at this point. The activity at the
gel point is then given by

z∗ ≡ ( f − 2) f−2

( f − 1) f−1 (59)

The volume fraction at the gel point is therefore

λφ∗

n
= S1(z∗) =

( f − 1)
f ( f − 2)2 (60)

All moments are monotonically increasing functions of z, and have a common radius
of convergence z∗. For z > z∗, all moments diverge. Exactly on the radius of convergence
z∗, S0 and S1 take finite values, but all moments with k ≥ 2 are infinite. The number
average also diverges at α = α0 ≡ 2/ f , but, since α∗ < α0, we have to study its post-gel
behavior on the basis of the proposed treatment of the post-gel regime.

In terms of the reactivity α, we find the osmotic pressure as

πa3

kBT
=

(
1
n
− 1
)

φ− f
2n

φα− ln(1− φ) (61)
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The slope of the pressure is(
∂πa3/kBT

φ∂φ

)
T
=

1− ( f − 1)α
nφ(1 + α)

+
1

1− φ
(62)

In the pre-gel regime (α < α∗), the volume fraction φS occupied by the molecules
belonging to the sol must always be equal the total polymer volume fraction φ. Thus,
from Equation (48a), the total volume fraction φ and the extent of association α satisfy
the relation

λψ =
α

(1− α)2 (63)

where ψ ≡ f φ/n (the total number concentration of the functional groups) is used instead
of the volume fraction φ.

We can solve this equation for α, and find

α =
1

2λψ

{
1 + 2λψ−

√
1 + 4λψ

}
(64)

At the sol–gel transition point, the binding free energy, the free energy for a primary
molecule to be bound to the gel network, is

g(φ∗) = 1 + ( f − 1) ln( f − 1)− ( f − 2) ln( f − 2) + ln( f λ/n) (65)

from Equation (32). This critical value gives

z∗ =
n
f λ

exp[g(φ∗)− 1] (66)

which agrees with Equation (59). The concentration of polymers at the gel point is then
given by Equation (60), or

λ(T)ψ∗ =
f − 1

( f − 2)2 (67)

This condition gives the sol–gel transition line on the temperature-concentration plane.
To study the singularity at the gel point, we examine how the weight-average diverges.

A simple calculation gives

l̄w(z) '
A

φ∗ − φ
(68)

and hence
κ(z) =

φ∗ − φ

A
(69)

with the amplitude

A ≡ f n
( f − 2)3λ(T)

(70)

The analogy between vapor condensation and gelation in the random polymerization
of polyfunctional molecules was originally noticed by Stockmayer [22] in his statistical–
mechanical analysis of the gelation reaction and molecular weight distribution function.
Later, the analogy was explored by introducing physical clusters rather than Mayer’s math-
ematical clusters [42,43]. On the basis of Hill’s criterion for a bond formation, an attempt to
derive Stockmayer distribution within the theoretical framework of Mayer was made under
the condition of no ring-closure [59,60]. Gibbs et al. [61] applied the tree approximation to
the Mayer’s cluster integrals and derived very flat p–v isotherms, the horizontal portion
of which represents gas–liquid coexistence. The form that they assumed for the cluster
integrals was

bl =
ll−2

l!
b0(T)l−1 (71)
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so that it is very close to the asymptotic form of Equation (10), but leads to slightly different
behaviors of Gk(z) near the transition point.

2.4.2. Similarity to Bose–Einstein Condensation

At this stage, we readily realize that Equations (48a) and (48b) are mathematically
parallel to those we encountered in the study of the Bose–Einstein condensation (BEC) of
ideal Bose gases [30,62–64]. The number density N/V and the pressure p of an ideal Bose
gas consisting of N molecules confined in the volume V is given by

λ3
T N
V

=
∞

∑
l=1

zl

l3/2 (72a)

λ3
T p

kBT
=

∞

∑
l=1

zl

l5/2 (72b)

where z is the activity of the molecule, and λT ≡ h/(2πmkBT)1/2 is the thermal de Broglie
wave length. The coefficient of the infinite series on the right hand side is replaced from
Stockmayer’s combinatorial factor ωl to 1/l5/2, but other parts are completely analogous.
The infinite summations on the right hand side of these equations are known as Truesdell’s
function [65] of order 3/2 and 5/2. Their singularity appearing at the convergence radius
z = 1 was studied in detail [65]. Since the internal energy of the Bose gas is related to
the pressure as U = 3pV/2, the singularity in the compressibility and that in the specific
heat have the same nature and reveal discontinuity in their derivatives [62–64]. (See also
Chapter 14 in Mayer’s textbook [30].) Hence, the transition (condensation of macroscopic
number of molecules into a single quantum state of zero momentum) turns out to be a
third-order phase transition.

We now show that a similar picture holds for our gelling solution; a finite fraction of
the total number of primary molecules condenses into a single state (gel network) with
no center of mass translational degree of freedom (no momentum), although we have
no quantum effect. The gel network extends to the entire system, and hence loses its
translational degree of freedom.

The analogy of BEC can be seen more clearly if we replace Stockmayer’s combinatorial
factor ωl by its asymptotic form

ωl '
1

l5/2

(
1
z∗

)l
(73)

for large l, where z∗ is the critical value (59). This form can be derived by applying Stirling’s
formula N! '

√
2πNNNeN for a large N to Equation (42). We find that

λφ

n
=

∞

∑
l=1

1
l3/2 (

z
z∗

)l (74a)

λν =
∞

∑
l=1

1
l5/2 (

z
z∗

)l (74b)

Thus, we can see that the singularity at z = z∗ is identical to those in Truesdell’s
functions at z = 1. In our previous study [54], we referred to this important similarity
in the more general case of multiple association. Later, the nature of the singularity was
clarified [66] in relation to the coexisting phase separation.

Comparing with the asymptotic form of Equation (10) of the cluster integral, we
can readily see that there is no term corresponding to the surface tension in ωl for the
tree particles. The reason why particles of the tree form have no surface tension is easily
understood as follows. The surface free energy of a particle is given by γ(T)l(d−1)/d in a
space of dimensions d. Because the dimensions of a tree are infinite [67], the surface free
energy is proportional to the size l of the tree, so that it can be adsorbed into the factor z∗.
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Physically, a primary molecule on the surface of an associated particle of tree form has
the same, or with negligible difference, contact number with solvent molecules as that of a
free primary molecule because of the geometrical characteristics of a tree form. Therefore,
no significant difference in the interaction energy is produced when a primary molecule is
attached on a tree particle, thus leading to no surface tension.

We can push this analogy further still by considering loops (rings) instead of trees.
To overcome the severe limitation in accounting for cyclic structures in tree statistics,
Jacobson and Stockmayer [68,69] studied the linear polycondensation ( f = 2) in which
open chains and closed loops coexist. If we apply their idea to reversible loop formation, we
can treat it within the theoretical framework of Mayer, Frenkel–Band, or APS. The cluster
integrals for a loop of size l is exactly given by

bl =
1

l5/2 b0(T)l (75)

because the probability of closing the ends of an open chain constructed with the number l
of constituent Gaussian chains is proportional to 1/l5/2 (including the symmetry number).
If the primary chains are not Gaussian, but obey the scaling law due to the excluded volume
effect, the ring closure probability is proportional to 1/lτ , where τ = νd + γ− 1. (d = 3 is
the space dimensions, ν = 0.6 is the Flory’s exponent of the radius of gyration of a chain,
and γ = 1.13 is the exponent of the total number of self-avoiding random walks [70].) The
exponent τ changes from 2.5 to 2.96, but the nature of the functions Gk(z) (G0, G1 are finite
whereas Gk (k ≥ 2) are infinite at z = 1) remains the same, so the singular behavior of the
osmotic pressure remains the same [71].

A similar factor of the loop entropy appeared in the fusion of DNA double he-
lices [72–74]. When a double helix melts partially, a loop made up of the combination
of the complementary strands is created, and the entropy of loop formation appears. Thus,
the BEC of loops is exactly reproduced within the classical statistical mechanics [71–74].

2.4.3. Analyses of the Singularity

In the post-gel regime where φ > φ∗ (α > α∗), we have an additional equilibrium
condition (32). The activity z of the solute molecule is related to its binding free energy of
the gel.

Since the reactivity of a functional (associative) group in the sol can, in general, be
different from that in the gel, let us write the former as αS and the latter as αG. The average
reactivity α of the system as a whole is given by

α = αS(1− w) + αGw (76)

where w is the weight fraction of the gel.
The volume fraction φS = φ(1− w) of polymers belonging to the sol is consequently

given by
λφS

n
= S1(α

S) (77)

in the post-gel regime, so it is different from the total φ that is given by S1(α). The total
number of finite clusters must also be replaced by

λνS = S0(α
S) (78)

This gives the number of particles that have a translational degree of freedom. The gel
network covers the entire solution and has no translational degree of freedom. If we use
the total reactivity α in this equation instead of αS in the post-gel regime, we have an
unphysical result such that νS becomes negative for α > 2/ f because of Equation (56a).
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The problem regarding how the reaction inside the gel proceeds in the post-gel regime
depends on the structure of the gel. To find αG as a function of the concentration of the
primary functional molecules, several models are possible.

2.4.4. Stockmayer’s Treatment

Because all particles are assumed to take a tree form, Stockmayer [22,23] proposed
that the gel must also retain a tree form. Hence, in the post-gel regime, the extent of the
reaction in the gel should take the value αG = α0, where

α0 ≡ lim
l→∞

( f − 2)l + 2
f l

=
2
f

(79)

is the reactivity of an infinite tree structure without cycles. He also assumed that the
extent of the reaction of functional groups in the finite particles remains at the critical value
αS = α∗ throughout the post-gel regime. The osmotic pressure is therefore given by

πa3

kBT
=

S0(z∗)
λ(T)

− φ− ln(1− φ) (80)

From the definition (76), the gel fraction w takes the form

w =
( f − 1)α− 1

1− α0
(81)

where α (> α∗) is the extent of the reaction of the entire system, including all functional
groups. It is a linear function of α, and reaches unity (all molecules belong to the gel) at α0,
before the reaction is completed. The volume fraction of the sol remains constant at φS = φ∗.
The number-average particle size remains constant at l̄n = ( f − 2)/2( f − 1), whereas the
weight-average is divergent l̄w = ∞ in the post-gel regime.

In Figure 1, the osmotic pressure πa3/kBT as functions of the volume fraction of
primary molecules is shown. For simplicity, the primary molecules are assumed to be
trifunctional f = 3 and of low molecular weight (n = 1). The association constant λ is
changed from curve to curve. The gel point is indicated by a circle for each value of λ.
The pressure is continuous at the gel point.

In Figure 2, the compressibility for the same systems is shown. At the gel point, it
is continuous, but has a cusp whose slope is discontinuous. This slope discontinuity is
enhanced by the increase in the association constant λ. The line connecting the top of the
cusps forms a sol–gel transition line.

We thus find that the discontinuity in the slope of the function κ is given by

∆
(

∂κ

∂φ

)
T
=

1
A

(82)

This leads to a discontinuity in the osmotic compressibility of the form

∆(
∂KT
∂φ

)T = −K2
T(

φ∗

n
)∆(

∂κ

∂φ
)T = − B

σ(φ∗, T)2 (83)

where

B ≡ f 2( f − 2)9λ(T)4

( f − 1)3n5 (84)

is a constant depending only on the temperature, functionality, and the number of statistical
units on a chain. For large-molecular-weight primary molecules, the amplitude B is small.
This is the main reason why the experimental detection of the singularity has so far
been difficult.
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Figure 1. The osmotic pressure πa3/kBT plotted against the volume fraction of the primary molecules
of low molecular weight (n = 1). The functionality of the molecule is fixed at f = 3. The association
constantλ is varied from curve to curve. The gel points are indicated by circles.
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Figure 2. The osmotic compressibility KT ≡ (∂φ/∂(πa3/kBT))/φ plotted against the volume fraction
of the primary molecules of low molecular weight (n = 1). The functionality of the molecule is fixed
at f = 3. The association constant is varied from curve to curve. It is continuous across the gel point,
but its concentration derivative is discontinuous.

The binding free energy is constant at the value of Equation (65). From Equation (48a),
which is now equivalent to

λψ(1− w) = λψ∗ (85)

we find
w = 1− φ∗/φ (86)

The result is schematically shown in Figure 3 on the temperature–concentration phase
plane. If we cool the solution from P at a constant concentration, we hit the sol–gel transition
line at temperature Tg, where the gel network starts to appear. The gel extends to the entire
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system without phase separation in the coordination space. The molecules are however
separated into two phases in the momentum space—molecules with finite momentum
(sol) and with zero momentum (gel)—because the gel is macroscopic and has no degree of
freedom for the center of mass translational motion. The concentration of the sol remains
at the critical value, and therefore the solution moves along the sol–gel transition line by
further cooling. The gel grows, but retains a tree structure.

S G

T
g

T

φS(T) φ*= φ(T
g
)0 1

P

T
E

M
P

E
R

A
T

U
R

E

VOLUME FRACTION

Figure 3. Sol–gel equilibrium in Stockmayer’s post-gel treatment shown on the temperature–
concentration plane. The entire solution contains the sol part (S) and the gel part (G) in equilibrium
in a spatially homogeneous state. By cooling, the concentration of the sol remains at the critical value
so that it moves along the sol–gel transition line.

2.4.5. Flory’s Treatment

Theoretically, Stockmayer’s picture [22,23] is not the only consistent way to treat the
post-gel regime, but other pictures are possible without breaching the fundamental laws of
thermodynamics. In fact, Flory proposed a different picture in his work on the gelation
reaction of trifunctional molecules [19–21]. In his treatment, molecules in the sol part
react with those in the gel part with an increase in the concentration, and, as a result,
the formation of cyclic linkages within the gel part is allowed.

Using the definition (55) for α, the activity z takes a maximum value z = z∗ at α = α∗.
Therefore, two values of α can be found for a given value of z in the post-gel regime, where
α > α∗ holds. For a given α, the value of z is fixed by the relation (55). There is another root
α′ (shadow root) lying below α∗ of the equation for a given value of z. Flory postulated
that α′ gives the extent of the reaction in the sol. Hence, we have

αS = α′ (87)

For the total volume fraction, the relation

λφ

n
= S1(α) (88)

remains valid. The volume fraction of the sol part in Equation (77) is changed to

λφS

n
= S1(α

′) (89)
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leading to the sol fraction wS = S1(α
′)/S1(α). Equation (78) is also changed to

λνS = S0(α
′) (90)

because the number of particles can be counted only for finite particles In the literature [75],
there is a statement that “In fact one can easily check that the free energy, eqn (2.15), and all
its derivatives are perfectly analytical at the gel point”. The error in this paper resides in the
treatment of the reaction in the postgel regime. It claims that the study is based on Flory’s
postgel picture, but in fact it simply missed the extent of reaction α′ of the sol, and hence it
failed to find the gel fraction. (Superscript S indicates the sol part.)

The function κ that appeared in the compressibility is

κ = n
(

∂νS

∂φ

)
T
=

1
l̄S
w(α

′)
(91)

where

l̄S
w(α

′) =
1 + α′

1− ( f − 1)α′
(92)

refers to the weight-average particle size in the sol part in the post-gel regime. Thus,
from the post-gel form of Equation (38) of κ, we also find a discontinuity

∆
(

∂κ

∂φ

)
T
= − 4

A
(93)

in the slope of the osmotic compressibility in Flory’s treatment, although the sign of the
discontinuity becomes negative. The gel fraction is given by

w = 1− (1− α)2α′

(1− α′)2α
(94)

The gel fraction reaches unity only at the limit of complete reaction α = 1. The extent
of association αG in the gel can be obtained by the definition of the total reactivity (76).
Explicitly, it gives

αG =
α + α′ − 2αα′

1− αα′
(95)

This value is obviously larger than α0 (infinite limit of the tree) so that, in Flory’s
picture, cycle formation is allowed within the gel network. Its cycle rank is given by

ξ =
αG

2
− 1 (96)

The free energy g(φ) for binding a primary molecule onto the gel network turns out
to be

g(φ) = 1− ( f − 1) ln(λψ) + f ln[(
√

1 + 4λψ− 1)/2] (97)

It is a monotonically decreasing function of the concentration. With an increase in the
concentration, the network structure becomes tighter, so the binding of a polymer chain
becomes stronger. Since the average number of bonds per molecule is ( f /2)αG = αG/α0,
the binding free energy per bond is given by α0g(φ)/αG. This is not a constant, but changes
as the reaction proceeds.

The result is schematically shown in Figure 4. If we cool the solution from P at a
constant concentration, we hit the sol–gel transition line at temperature Tg, where the gel
network starts to appear. By further cooling, the solution moves along the new line, which
lies above the sol–gel transition line because the concentration of the sol decreases below
the critical value. The gel network grows and forms cycles within it.
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Figure 4. Sol–gel equilibrium in Flory’s post-gel treatment shown on the temperature–concentration
plane. By cooling, the concentration of the sol deviates from the sol–gel transition line to lower
concentration region because the concentration of the sol part becomes lower than the critical value
as gelation proceeds. The gel parts contains cycles.

2.4.6. Other Post-Gel Treatments

The difference in the above two treatments was later examined from a kinetic point
of view. For an irreversible cross-linking reaction, Ziff and Stell [76] clarified the reaction
mechanism (sol–gel interaction) in these two treatments after the gel point is passed. They
found that, in Stockmayer’s treatment, reactive groups in the sol do not interact with
those in the gel, and the gel grows only through a cascade process from the sol to the gel,
whereas, in Flory’s treatment, all functional groups are allowed to react. On the basis of
their kinetic study, they proposed a third model that takes the reaction between the sol and
gel into account as in Flory’s picture, while the cycle formation in the gel is forbidden as in
Stockmayer’s one.

In classical tree statistics, the number of the functional groups on the surface of a
tree-like cluster is of the same order as that of the groups inside the cluster, so that a
simple thermodynamic limit without a surface term is impossible to take. The equilibrium
statistical mechanics for the polycondensation was later refined by Yan [77] by taking the
surface correction into tree-like systems. He found the same result as Ziff and Stell.

Later, in order to ensure the equilibrium distribution, additional terms describing the
reversible reaction (fragmentation) were introduced to the kinetic equation by van Dongen
and Ernst [78]. Since their study was limited only to Flory’s and Stockmayer’s model,
the possibility of other new treatments within the classical tree statistics for reversible
gelation remains an open question. From the mathematical analysis given in this paper,
however, it is highly probable that a new thermodynamically consistent treatment, even if
it exists, leads to the third-order singularity lying somewhere between Stockmayer’s one
and Flory’s one.

Since the appearance of APS, there have been studies accumulated on thermoreversible
gelation by computer simulation. They are mainly concerned with the percolation of the
clusters, and there have only been a few reports that seriously check the osmotic pressure.
Kumar and Panagiotopoulos [79] used a chain model carrying strongly associative stickers
regularly placed along the chain, and studied the nature of the transition by a grand
canonical Monte Carlo simulation on a lattice. They showed that the osmotic pressure
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exhibits a cusp-like behavior at a low temperature, just like the form shown in Figure 1 of
the present paper. They attributed the behavior to the critical micelle concentration (cmc)
because it was independent of the system size, and reached the conclusion that it would
not grow to a singularity. Since the third order singularity is expected to be very weak
and difficult to detect experimentally, further careful studies on the pressure by computer
simulation are eagerly hoped for.

2.5. Percolation Models for Gelation

In a quite different way from the classical theory of gelation, the percolation model of
gelation focuses on the geometrical structure and connectivity of the system. We describe
the percolation model with an attempt to apply it to the gelation problem [70,80–82].

Percolation models are roughly classified into percolation on regular lattices and
percolation in continuum space. Both of them study the scaling laws for the anomaly
of geometrical and physical properties near the percolation threshold on the basis of the
self-similarity of the connected objects. In this section, we consider percolation on regular
lattices. Percolation in continuum space will be discussed in the following section.

There are two types of lattice percolation problems: site percolation and bond percolation.

2.5.1. Site Percolation

First, we focus on the site percolation. In a site percolation, molecules are randomly
distributed on the lattice sites. Neighboring pairs of molecules are regarded as connected.
Let Ω be the total number of the lattice sites, and N be the number of molecules placed on
them. The percolation probability p defined by p ≡ N/Ω is identical to the volume fraction
φ discussed above. When p exceeds a certain threshold value pc, connected particles
(clusters) of infinite size appear. This critical value pc depends on the space dimensions d
and the lattice structure.

The cluster distribution function fl is defined by

fl(p) ≡ Nl
N

(98)

wher Nl (l = 1, 2, 3 · · · ) is the number of connected clusters consisting of l molecules
(referred to as l-mers). The number density νl of l-mers is defined by

νl(p) ≡ Nl
Ω

(99)

In the region p > pc after the percolation threshold is passed, the infinite cluster
coexists with finite clusters. Let N∞ be the number of molecules in the infinite cluster.
The total molecules are decomposed into two parts

N = ∑
l≥1

lNl + N∞ (100)

Dividing by Ω, we find the relation

p =
∞

∑
l=1

lνl + P∞(p) (101)

where
P∞(p) ≡ N∞

Ω
(102)

is the volume fraction of the infinite cluster. The gel fraction wG is then given by

wG =
N∞

N
=

P∞(p)
p

(103)
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In the critical region near the percolation threshold, the structure of the clusters are
self-similar; the structure observed in a certain length scale looks similar to a part of it when
the part is magnified properly, and, hence, they are superimposable to each other. Thus, it
is known that the cluster distribution function obeys the scaling law

fl(p) =
1
lτ

F(
l

l∗(p)
) (104)

where τ is a power index referred to as the Fisher index, and l∗(p) is the reference size of
the clusters [70,80,81]. The size l∗(p) is shown to be the z-average cluster size l̄z. Practically,
it is the size of the largest cluster. Since it diverges at pc, the index σ is introduced by the
scaling law

l∗(p) ' |p− pc|−1/σ (105)

The index σ and τ are two fundamental structural indices of the percolation theory.
The function F(x) is a smooth scaling function that decays sufficiently quickly. On the basis
of these two power indices τ and σ, scaling laws of various averages and the gel fraction
can be derived [80,81].

The defect of the site percolation model is that all clusters are fixed on the lattice. There
is no translational motion of their mass centers, so the pressure and temperature effect
cannot be studied. If we assume that clusters obeying the distribution function (99) move
freely with no inter-cluster interaction as in the Frenkel–Band model of associated particles,
the pressure is proportional to the total number νS ≡ ∑l≥1 νl of finite clusters. Its slope
is therefore (

∂νS

∂φ

)
=

1
l̄w

(106)

and we go back to Mayer’s Equation (7). The scaling law with the index τ leads to a
singularity of the compressibility.

Another serious deficiency of the site percolation model resides in the effect of tempera-
ture. At high percolation probability p (volume fraction of the particles), in particular, at the
limit of p = 1, the system always remains percolated no matter how high the temperature
is. In other words, there is no temperature-dependent transition.

2.5.2. Site–Bond Correlated Percolation

To overcome such deficiencies of the site percolation model, Coniglio et al. [83,84]
introduced random bond formation between the nearest neighboring molecules in the
standard lattice gas model. Solvent (A) and solute (B) molecules placed on a lattice in-
teract with each other in two ways: the usual van der Waals interaction Wα,β (α, β =A,B)
and reversible bond formation with the bond energy εBB. In what follows, the model is
referred to as site–bond percolation (SBP). In this paper, we focus only on the bond formation
and neglect the van der Waals interaction, as in the preceding sections. Hence, we fix
WAA = WAB = WBB = 0, and εBB = 0 with probability ρu for non-bonded solute pairs,
and εBB = −ε with probability 1− ρu for bonded pairs. The Hamiltonian is

H = −ε ∑
<i,j>

τijπiπj − µ ∑
i

πi (107)

where πi = 0, 1 is the variable for the lattice gas solute molecules, τij = 0, 1 is the variable
of the bond formation for the pair (i, j), and µ is the chemical potential of the particle.
The grand partition function is then calculated by

Ξ(T, µ) = ∑
{τ}

∑
{π}

exp

{
βε ∑

<i,j>
τijπiπj + βµ ∑

i
πi

}
(108)



Int. J. Mol. Sci. 2022, 23, 10325 22 of 31

Summing up with respect to all τi,j (annealed average), we find that

Ξ(T, µ) = ∑
{π}

exp

{
K ∑

<i,j>
πiπj + L ∑

i
πi

}
(109)

where K ≡ ln[ρu +(1− ρu)eβε] and L ≡ βµ. By introducing the Ising variables σi = {−1, 1}
through the relation πi = (1 + σi)/2, the grand partition function can be related to the
canonical partition function

Z(J, H) ≡ ∑
{σ}

exp

{
J ∑
<i,j>

σiσj + H ∑
i

σi

}
(110)

for the Ising magnet by the equation

Ξ(T, µ) = e−Ω( f K/4+L)/2Z(J, H) (111)

where J ≡ K/4 and

H ≡ 1
2

(
f K
2

+ L
)
=

βµ

2
+ const (112)

( f is the number of the nearest neighboring sites). The volume fraction of the solute
molecules is given by

φ =
1
Ω ∑

i
〈πi〉 =

1
2
[1 + m(J, H)] (113)

where

m ≡ 〈σi〉 = −
(

∂F

∂H

)
J

(114)

is the maginitization of the Ising magnet, and F = −Ω−1 ln Z(J, H) is the free energy of
the Ising magnet. The pressure is given by

p
kBT

=
f K
8

+ H −F (J, H) (115)

Therefore, if we knew the free energy of an Ising ferromagnet as a function of the
temperature and the magnetic field, we can study the p–v curve of the lattice gas.

The slope of the pressure in the isotherm is then obtained by(
∂p/kBT

∂φ

)
T
=

(
∂p/kBT

∂H

)
J

(
∂H
∂φ

)
T

(116)

Using the definition of the magnetization, we find(
∂p/kBT

∂H

)
J
= 1 + m = 2φ (117)

so that (
∂p/kBT

∂φ

)
T
=

(
∂ ln z
∂ ln φ

)
T

(118)

where z ≡ eβµ is the activity. This relation is in agreement with the relation (7) in Mayer’s
theory, and also Equation (35) in APS, except the last term. The last term of Equation (35)
comes from the difference between the chemical potential of the solvent in a solution and
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that of a vacancy of a gas. If we have vacancies instead of solvent molecules, we have,
for the activity of the solute molecules,

βµ1 = ln z =
1
n

(
1 + w

∂

∂ ln φ

)
ln φ1 − ln(1− φ)

Hence, the two relations are identical., so that it is a model-independent general relation.
In the ideal case where there is no bond formation, we have J = 0, so that m = tanh H.

The pressure and concentration are given by

p
kBT

= H + ln(2 cosh H) (119)

and
φ =

1
2
(1 + tanh H) (120)

By eliminating H, we find

p
kBT

= − ln(1− φ) (121)

and hence
∂p/kBT

∂φ
=

1
1− φ

(122)

This agrees with the APS Equation (54), with n = 1 and l̄w = 1.

2.5.3. Exact Solution on the Bethe Lattice

We next consider the exact solution of SBP on the Bethe lattice presented by
Coniglio et al. [83,84]. It is well known that the Ising model of a ferromagnet on a Bethe
lattice can be solved exactly. The result is summarized for instance in Baxter [67]. The so-
lution was applied to the site percolation problem of the Ising lattice gas by Odagaki [85]
and Coniglio [86]. We first review these works on the site percolation problem, and then go
back to the SBP problem.

The solution of the Ising ferromagnet on a Bethe lattice can be described as follows.
Let ξ ≡ e−2J , η ≡ e−2H , and η1 ≡ ηx f−1 be the three fundamental parameters. These
parameters are written as z ≡ e−2K, µ ≡ e−2h and µ1 ≡ µxq−1 in Ref. [67]. Since we use
the letter z for the activity and µ for the chemical potential, we have changed these letters.
The coordination number q is replaced by f to compare with the Flory–Stockmayer theory.
The parameter x is defined by

x ≡ ξ + η1

1 + ξη1
(123)

and is related to the magnetization by

m =
1− ηx f

1 + ηx f (124)

In terms of the activity z ≡ eL = eβµ, we find η = ξ f /z because H = ( f K/2 + L)/2.
By eliminating η and η1, we find

z =
ξ(1− ξx)

x− ξ
(ξx) f−1 (125)

The concentration of the solute molecules is

φ =
1
2
(1 + m) =

1
1 + ηx f =

z
z + (ξx) f (126)
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and the pressure can be found from the exact solution of the Ising free energy [67] as

p
kBT

=
f
2

K +
1
2

ln z +
f
2

ln(1− ξ2)− 1
2

ln
{

1 + ξ2 − ξ(x +
1
x
)

}
− 1

2
( f − 2) ln

(
x +

1
x
− 2ξ

)
(127)

We then eliminate the activity z by using Equations (125) and (126), and find x in terms
of the concentration and temperature as [85]

x =
ξ

2φ

{
−(1− 2φ) +

√
1 + 4φ(1− φ)(ξ−2 − 1)

}
(128)

The activity as a function of the concentration is found by substituting this into
Equation (125). With all of these results, we can find the pressure explicitly as a function of
the concentration

p
kBT

=
f
2

ln
{

1
2ξ−2

[
1 + 2(1− φ)(ξ−2 − 1) +

√
1 + 4φ(1− φ)(ξ−2 − 1)

]}
− ln(1− φ) (129)

We focus on a solute molecule and find the probability q for one of its nearest neigh-
boring cites to be occupied by a solute molecule. It is given by the correlation function
q = 〈π0π1〉/〈π0〉 and calculated to be [85,86]

q =
1

1 + ξη1
=

1− ξx
1− ξ2 (130)

Substituting the above x, we find

q =
1 + 2(ξ−2 − 1)φ−

√
1 + 4φ(1− φ)(ξ−2 − 1)

2(ξ−2 − 1)φ
(131)

In this result, we consider the limit of strong bond energy ξ → 0 with a fixed ξ−2φ.
The factor (1−φ) in the square root can be replaced by 1 in this limit, so the probability q agrees
with the reactivity α in Equation (64) for APS. The association constant f λ corresponds to the
factor ξ−2 − 1 of the Ising model. Because ξ−2 − 1 = eK − 1 = (1− ρu)(eβε − 1), the relation
is summarized as

f λ(T) = (1− ρu)(eβε − 1) (132)

In the limit of strong bond energy, 1 is neglected in the second factor. The relation
reduces to

f λ(T) = (1− ρu)eβε (133)

Therefore, we see that, if we take the strong bond limit ξ → 0 with finite ξ−2φ, the site
percolation model reduces to APS with association constant (133).

The volume fraction of the particles can be written as

φ =
q

1 + (1− q)2(ξ−2 − 1)
(134)

in terms of the probability q. This equation reduces to APS Equation (63) in the limit of the
strong bonds (ξ << 1).

The weight-average molecular weight of the connected clusters in the site percolation
problem is given by [85,86]

l̄w(x) =
1 + q

1− ( f − 1)q
=

2− ξ(x + ξ)

1− ξ2 − ( f − 1)(1− ξx)
(135)

so that the percolation point is decided by the equation

1− ξ2 − ( f − 1)(1− ξx) = 0 (136)
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or q = 1/( f − 1). The concentration at the percolation point is therefore

φ∗ =
f ′

2 f − 3 + f ′′2ξ−2 (137)

where f ′ ≡ f − 1, f ′′ ≡ f − 2, etc., have been used.
We now see the trouble with this site percolation model. In the limit of high tem-

perature ξ → 1, the percolation line has a finite limiting value φ∗ = 1/ f ′. In other word,
the system remains percolated no matter how high the temperature is if the concentration
is higher than the critical value 1/ f ′. There is no percolation transition by the temperature
change. This unphysical result originates from the assumption that a nearest neighboring
pair is always regarded as connected. In fact, q = 1 (connectivity 1) always trivially holds
at φ = 1 (no solvent) as is seen from Equation (131).

To remedy this defect of site percolation, Coniglio et al. [83,84] introduced the SBP
model, in which, the nearest neighboring pair is either bonded (with probability pB) or
unbonded (with probability 1− pB). The connectivity probability q is replaced by

α ≡ pBq (138)

in all of the above relations. In particular, the weight-average molecular weight and the
percolation threshold is given by

l̄w =
1 + α

1− ( f − 1)α
(139)

as in Equation (57b), but now α = pBq.
This relation is the same both in APS (the limit of strong bond) and SBP (bond forma-

tion introduced for the nearest neighboring pairs). Both models have a sol–gel transition
at full volume fraction φ = 1. However, the thermodynamic nature of the transition
is different.

In order to see the difference, we study the slope (118) of the pressure. First, by taking
the derivative of Equation (125) with respect to the concentration, we find

∂ ln x
∂ ln z

=
1

f ′ − (1− ξ2)x/(1− ξx)(x− ξ)
(140)

Substituting into the relation

∂ ln φ

∂ ln z
= (1− φ)

(
1− f

∂ ln x
∂ ln z

)
(141)

obtained from the derivative of Equation (126), we find

∂p/kBT
∂φ

=
κ(x)
1− φ

(142)

where

κ(x) ≡ [1− ξ2 − f ′(1− ξx)]x + f ′(1− ξx)ξ
(1− ξ2)x− (1− ξx)(x− ξ)

(143)

The spinodal condition is therefore given by κ(x) = 0, or, explicitly,

(1− ξ2)x− f ′(1− ξx)(x− ξ) = 0 (144)

This condition for the spinodal of the Ising model is different from the percolation
condition (136), and hence the percolation line is not accompanied by any singularity.
However, if we take the strong bond limit ξ → 0 in this spinodal condition (with finite
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ξx) , we can see that the spinodal condition becomes identical to the percolation condition.
In other words, the slope of the pressure vanishes on the percolation line.

As for the treatment of the post-gel regime, the percolation model on a Bethe lattice has
a serious problem. A Bethe lattice with a finite number N of cites has the total f N− 2(N− 1)
of the free functional groups on the surface if we fill the lattice with functional molecules.
Hence, in the thermodynamic limit of N → ∞, the reactivity of the nearest neighboring
molecular pairs has an upper limit 2/ f . Therefore, Flory’s treatment allowing for cycle
formation is impossible. This is one of the most important differences between the classical
tree statistics of the polyfunctional molecules in a three-dimensional off-lattice free space
and the percolation model on a Bethe lattice. For the latter, Stockmayer’s treatment is the
only possible treatment of the post-gel regime.

2.6. Adhesive Hard Sphere Model

Let us move onto percolation in a continuum space. In the study of the gas–liquid
phase transition of spherical particles, Baxter introduced a model in which hard sphere
particles interact with each other by the attractive force potential of a rectangular well
shape (referred to as an adhesive hard sphere model AHS; see Figure 5a,b) [87,88]. In the
limit of the surface adhesion, i.e., narrow force range and strong attractive force, he found
the analytic solution of the thermodynamic problem within Percus–Yevick approximation.
Since then, AHS is often used as a model system for the study of gelation phenomena in
globular proteins, colloid dispersions, silica aerogels, and other particulate gels.

dσ
0

- ε

u(r)

y

σ

x y

z

θ

φ

(a) (b)

(c)

(d)

Figure 5. (a) Interacting adhesive hard spheres, (b) Baxter potential, (c) patchy hard spheres iteracting
by adhesive Baxter force, (d) functional molecules employed by Flory–Huggins gelation model.
Functional groups (dark spheres) on the surface of molecules interact by adhesive Baxter force.

Consider N spherical particles of radius σ/2 in a container of volume V. The volume
fraction φ = (4π/3)(σ/2)3N/V is used for the concentration. The attractive potential u(r)
has a depth −ε and width ∆ ≡ d− σ. Baxter [87] introduced the reduced temperature τ by
the definition

ε

kBT
≡ ln

[
12τ

(
1− σ

d

)]
(145)

The second virial coefficient of AHS is

A2(T) = −
1
2

∫ ∞

0
f (r)4πr2dr (146)
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where
f (r) ≡ e−u(r)/kBT − 1 =

σ

12τ
δ(r− σ) + θ(r− σ)− 1 (147)

is the Mayer’s function (2) for AHS. It can be normalized as A∗2 ≡ A2(T)/AHS
2 by using

the hard sphere system AHS
2 = (4πσ3/3) as the reference system. In the Baxter limit,

τ = 1/4(A∗2 − 1). If we apply Mayer’s theory of condensation, the coefficients (cluster
integrals) bl for AHS are constructed by this special form of f (r).

In the limit of short range d→ σ and strong force ε→ ∞, the spheres form branched
sponge-like clusters in which they are connected to each other by surface adhesion [87].
Above a certain volume fraction, the clusters percolate over the entire container [89–92].

AHS systems show interesting phase diagrams in which gas–liquid phase transition
(thermal problem) coexists with percolation transition (connectivity problem). The perco-
lated cluster can be regarded as a porous gel comprising spherical particles. There have been
theoretical attempts to construct phase diagrams on the τ-φ plane [90,91]. Within Percus–
Yevick approximation, Chiew and Glandt [90] found that the percolation line is given by In
the dilute region, this approximation is poor. In particular, the gelation temperature must
decrease to −∞ in the limit of φ→ 0, while Equation (148) gives a finite τ.

τ =
19φ2 − 2φ + 1

12(1− φ)2 (148)

Because the analytical solution of the problem is difficult to find, molecular simulations
are used to construct the phase diagram [93–97].

From a thermodynamic point of view on the sol–gel transition, AHS retains the
same deficiency as the site percolation; in the limit of high density, the system remains
percolated at any high temperature. To refine AHS, there have been several attempt to
replace the Baxter potential by patchy sticky hard spheres [98–100], which carry a varied
number f of attractive patches on the surface (Figure 5c). Two spheres interact via a sticky
Baxter potential if the line joining the centers of the two spheres intersects a patch on each
sphere, and via a hard sphere potential otherwise. The area and distribution of attractive
patches on the sphere surface are changed to study how the percolation line and phase
separation (gas–liquid) line shift. The analytical study and Monte Carlo simulation [98]
on the systems with f = 1, 2 with a varied patch area showed that the percolation line
shifts to a higher concentration and lower temperature region as the patch area decreases.
However, because the analytical study of the pressure was based on the virial expansion
up to the third order of the density, or on the integral equation approximation for closure,
it was impossible to find any singularity across the percolation line. If the number f is
increased, with a smaller patch area, the cluster integrals of such a patchy AHS take the
form similar to ωl in tree statistics with the functionality f (Figure 5d) for a large cluster size
l. There is a strong tendency to form tree-type clusters rather than spherical droplets. As a
result, the percolation transition splits substantially away from the gas–liquid transition
line, as was pointed out by Stillinger [43] for the association model. We can expect that
patchy AHS with f ≥ 3 reveals a temperature-controlled transition even in the limit of a
high density.

3. Discussion

As for the absolute value of the discontinuity in the slope of the osmotic compressibility,
the experimental observation seems to be difficult to detect since the amplitude B is small
for polymeric gels with n >> 1. (For a small f , such as trifunctional molecules with f = 3,
for example, we have B = 9λ4/8n5.) However, there is a good chance for observation to
be successful if we take advantage of the interference of gelation with phase separation.
In most associating solutions, molecules interact not only with associative force but also
non-associative vdW force. The latter (positive χ-parameter) leads to liquid–liquid phase
separation with the spinodal condition (40) with modified Equation (41). As we approach
the spinodal point along the sol–gel transition line where the condition σ(φ∗, T) = 0 is
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satisfied, the discontinuity in the compressibility is enhanced by critical fluctuations, as seen
from Equation (83), and there may be a chance to observe the singularity.

The effect of fluctuations in cluster formation is important near the sol–gel transition
point as it usually is in many phase transitions. It may change the nature of the transition.
In the present gelation problem, one has to consider it from two sides. Firstly, the effect
of cycle formation during the gelation reaction beyond the classical tree statistics must be
considered. Secondly, concentration fluctuations in the polymer solution near a critical
point must be considered beyond the mean-field Flory–Huggins treatment. These two
different aspects of fluctuations should be studied from a unified theoretical point of view
without violating the fundamental law of thermodynamics. This is an open problem.
The critical exponent and the nature of the singularity may be changed by these fluctuation
effects near the transition point. If this is the case, the criterion necessary for the mean-
field prediction to be valid (Ginzburg criterion) should also be found in order to observe
non-classical singularity in the experimeriments.

4. Conclusions

We have shown that, within the mean-field treatment of both the gelation reaction and
polymer solution (the model of associating polymer solutions), thermoreversible gelation
is a third-order phase transition analogous to Bose–Einstein condensation. The gel network
corresponds to a Bose condensate with no translational motion (no momentum). There is a
frequent exchange of molecules between the gel network and the sol part (particles with
finite momentum), but, on thermal average, a finite fraction of the number of molecules
lose their momenta in the post-gel regime. Physically, this is caused by the sparse surface
structure of associated (cross-linked) particles (clusters) with no surface tension. The site–
bond percolation model on a Bethe lattice leads to the same conclusion if we take the limit
of a strong associative force.

In order to avoid complexity and focus on gelation, we considered associative force
only, and discarded the usual van der Waals (vdW) interaction by which the solution
is driven into the liquid–liquid phase separation. We may construct phase diagrams
showing phase separation coexisting with sol–gel transition by the inclusion of vdW force
in terms of conventional χ-parameters. There are several types of the interference of the
two phase transitions depending on the balance between the vdW force and associative
force. The sol–gel transition line crosses the phase separation line (binodal and spinodal) at
the top, or on the shoulder, of the phase separation region [101]. Such a crossing point is
called either a tricritical point or critical endpoint depending upon the relative position of the
transition curves.
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