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Abstract: This work contains an analysis of the impact of modifying a bioresorbable polymer
—polycaprolactone (PCL)—with various additives on its antibacterial properties. To this end, samples
of PCL filament containing various content levels of graphene (GNP), 0.5%, 5%, 10%, were obtained
using injection molding. Polymer samples without additives were used for comparison. The next
step was to assess the antimicrobial impact of the preparations under study against the following mi-
croorganisms: Staphylococcus aureus ATCC 25293, Escherichia coli ATCC 25922, Candida albicans ATCC
10231. Effective bactericidal activity of PCL with small amount of GNP, especially against C. albicans
and S. aureus was confirmed. A decrease in this property or even multiplication of microorganisms
was observed in direct proportion to the graphene content in the samples.
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1. Introduction

Polymers are a very important group of materials used in modern medicine. Polymers
are used as scaffolding materials for artificial skin and tissue engineering. Polymers are
also used in carrier formulations for transdermal and transdermal drug delivery. Poly-
caprolactones (PCLs) are used in a wide range of applications due to their properties [1,2].
Both natural and synthetic polymers are used in artificial medical applications such as
heart valves, stents, urethral catheters and ureteral stents, cartilage scaffolds, joints, blood
vessels, artificial skin manufacturing, artificial kidney/hemodialysis membranes, and in
drug delivery nanosystems.

One of its main advantages is biodegradation [3,4], the duration of which may de-
pend on many factors, such as, for example, an aerobic and anaerobic environment [5].
In particular, biodegradable polymeric biomaterials have the great advantage of being
degradable and removable once their function is fulfilled. The range of applications is wide,
and degradable polymers are used in clinical practice as surgical sutures and implants.
The use of polycaprolactone allows for inexpensive implant manufacturing and does not
expose the patient to subsequent surgeries stemming from the necessity of its removal [6].

Specific polymers offer a wide variety of possibilities for specific uses in biomedical
applications. There are various methods of producing PCL implants, such as solvent
casting, foaming, electrospinning, phase separation, or molding [7,8]. The simplest, most
profitable and effective method of 3D printing is fused deposition modeling (FDM). This
process is based on the extrusion of thermoplastic material through a nozzle using spool
filament and on the deposition of layer after layer [9].

Polycaprolactone is a biocompatible, nontoxic aliphatic polyester that can be degraded
by hydrolysis of its ester linkages in physiological conditions, and it is approved by the
FDA for biomedical applications. It is especially very interesting for the preparation of
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long-term implantable devices and is widely used in long-term implants and controlled
drug release applications.

Polycaprolactone possesses some antibacterial properties [10,11]. This particular
feature is very important. Tissue damage from surgery or ingestion of foreign bodies
further increases susceptibility to infection, activates the host’s defenses, and promotes the
production of inflammatory mediators, which are enhanced by bacterial activity and toxins.
These types of implants can be used in particular in laryngology, where the surgical field in
the area of the nose and sinuses is not perfectly sterile.

Many researchers indicate the need for PCL modifications that increase its bactericidal
effectiveness. PCL itself can be a carrier of antibacterial substances [12,13]. Its modifications
consist mainly in adding substances with known bactericidal characteristics. These could
be copper, silver, zinc oxide, bioglass, or graphene [14–18].

Graphene is an advanced material which successfully finds application in medicine.
Biomedical applications of graphene and its composites include its use for gene delivery
and small drug molecules. In addition, it is used for biofunctionalization of proteins,
anticancer therapy, and as an antimicrobial agent for bone and dental implants. One of
its characteristics is antibacterial properties [19]. All aspects of the antibacterial activity
of graphene have not yet been fully recognized; however, the antibacterial mechanism of
graphene involves both physical and chemical modes of action. Various mechanisms of
antimicrobial action of graphene have been proposed, including oxidative stress, (reactive
oxygen species produced by graphene inactivate proteins and lipids, preventing bacte-
ria from multiplying), electron transport (it can act as an electron acceptor and abstract
electrons from bacterial membrane, which may compromise the membrane integrity), and
membrane stress. It has a specific surface that enhances the antibacterial effect by enabling
compatible interactions with bacteria membranes. It is believed that the cytotoxicity and
inhibition of bacterial proliferation and adhesion are responsible for it [20], just as the direct
contact of its sharp edges with the membranes of microbial cells causes the destructive
extraction of lipid particles from their interior [21].

Due to its physical and chemical properties and biocompatibility, graphene and
graphene oxide can be used as innovative biomedical materials for biodefense, drug distri-
bution in the body, neo-biotherapy, regenerative medicine, and implant surgery. However,
graphene-based nanomaterials can be biocompatible or toxic to living cells. The response
of biological cells to these nanomaterials depends largely on the number of layers, lateral
size, purity, dosage, surface chemistry, and hydrophilicity.

This work presents a comparative analysis of the bactericidal properties of poly-
caprolactone samples with the addition of varying content of graphene in the form of
nanoparticles (graphene nanoplatelets) (GNP). Typical human pathogens—S. aureus, E. coli,
and C. albicans were used in the study. The materials intended for research were the
filaments sticks manufactured for the 3D printing technique.

2. Results

Graphene nanoplates (GNPs) used as fillers consist of sheets of graphene with a
total thickness of several nanometers. SEM images of the introduced GNPs are presented
in Figure 1. Plaque-shaped graphene agglomerates are observed. Graphene tends to
agglomerate in chunks because of its small particle size, large surface area, and superior
particle activity. The morphology is not well-defined, and the agglomerates have an
irregular shape with dimensions in the order of a few microns.
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Figure 1. SEM (Scanning Electron Microscope) images of GNP additives. 

Polycaprolactone blends were prepared containing 0.5, 5, and 10 wt% of graphene 
content. PCL filaments in the form of composite sticks, for further 3D printing, were made 
using the injection molding method [22]. Three types of sticks named as PCL/GNP_0.5, 
PCL/GNP_5, and PCL/GNP_10 were produced, and a pure PCL filament stick was used 
as a reference material. Macroscopic images of samples are presented in Figure 2. 
Filaments with a diameter of 1.75 mm and a length of 50 mm were obtained. The samples 
differ in the intensity of black color. 

 
Figure 2. The macroscopic images of obtained composite sticks. 

As opposed to pure PCL, the PCL/GNP sticks exhibited a more irregular surface 
caused by the GNP present on the surface (Figure 3a,c,e). Investigation of the cross-section 
of the composite sticks allowed for the analysis of the material in a profile perpendicular 
to the surface (Figure 3b,d,f). The results indicate that GNP and its agglomerates appeared 
on the surface and in the cross section of the samples. 

Figure 1. SEM (Scanning Electron Microscope) images of GNP additives.

The lowest graphene concentration selected was 0.5 wt%, an intermediate value of
5 wt%, and the maximum concentration used was 10 wt%.

Polycaprolactone blends were prepared containing 0.5, 5, and 10 wt% of graphene
content. PCL filaments in the form of composite sticks, for further 3D printing, were made
using the injection molding method [22]. Three types of sticks named as PCL/GNP_0.5,
PCL/GNP_5, and PCL/GNP_10 were produced, and a pure PCL filament stick was used
as a reference material. Macroscopic images of samples are presented in Figure 2. Filaments
with a diameter of 1.75 mm and a length of 50 mm were obtained. The samples differ in
the intensity of black color.
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Figure 2. The macroscopic images of obtained composite sticks.

As opposed to pure PCL, the PCL/GNP sticks exhibited a more irregular surface
caused by the GNP present on the surface (Figure 3a,c,e). Investigation of the cross-section
of the composite sticks allowed for the analysis of the material in a profile perpendicular to
the surface (Figure 3b,d,f). The results indicate that GNP and its agglomerates appeared on
the surface and in the cross section of the samples.

The SEM (Scanning Electron Microscope) micrographs of the obtained samples were
compared with the same magnification X500, X1000, X3000, and X50000. Small agglomer-
ates of graphene formed by sheets were observed on the surface of all modified filaments
(Figure 4).

Figure 5 shows the cultivation and growth of C. albicans.
Negative controls—normal (no microbial growth). Positive controls—normal (growth

of colonies from the reference microbial strains).
The number of observed microorganisms expressed in the form of the CFU number

after 17 h of incubation and the resulting antibacterial efficacy (ABE) are both presented in
Table 1.
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Table 1. Overview of the number of microorganisms in individual preparations [CFU] and antibacte-
rial efficacy [ABE] for a given sample.

Staphylococcus aureus ATTC 25923—Initial Density
1.5 × 105 CFU/mL

Escherichia coli ATTC 25922—Initial Density
1.5 × 105 CFU/mL

Candida albicans ATTC 10231—Initial Density
1.5 × 105 CFU/mL

Preparation Tested

The Number of CFU/mL
after 17 h of Incubation
with the Preparation in

Individual Samples

Antibacterial Efficacy
(ABE) [%] in Individual

Samples

The Number of CFU/mL
after 17 h of Incubation
with the Preparation in

Individual Samples

Antibacterial Efficacy
(ABE) [%] in Individual

Samples

The Number of CFU/mL
after 17 h of Incubation
with the Preparation in

Individual Samples

Antibacterial Efficacy
(ABE) [%] in Individual

Samples

PCL

63,300 9.57
2.1 × 108—confluent

growth obtained for each
repeat test

0 1000 95.98
51,350 26.64 0 500 97.99
49,750 28.93 0 350 98.59
2980 57.43 0 300 98.8

PCL/GNP_0.5

12,050 82.78
2.1 × 108—confluent

growth obtained for each
repeat test

0 11,550 53.61
8050 88.5 0 10,150 59.24
4750 93.21 0 5500 77.91
900 98.71 0 4300 82.73

PCL/GNP_5
7.0 × 104—confluent

growth obtained for each
repeat test

0
2.1 × 108—confluent

growth obtained for each
repeat test

0 29,500 0
0 0 25,500 0
0 0 25,250 0
0 0 25,000 0

PCL/GNP_10
7.0 × 104—confluent

growth obtained for each
repeat test

0
2.1 × 108—confluent

growth obtained for each
repeat test

0
5.0 × 104—confluent

growth obtained for each
repeat test

0
0 0 0
0 0 0
0 0 0

In the charts (Figures 6 and 7), the summary of the antibacterial efficacy in the form of
average ABE values [%] has been presented.
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3. Discussion

Macro- and microscopic evaluations were performed. The results indicate that graphene
nanoparticles were successfully incorporated into the polymer filaments. Higher GNP
concentration caused an increase in particle agglomeration. A detailed description of the
process parameters and the influence on the properties of the obtained materials was pre-
sented in our earlier publication [22]. The results show that at concentrations higher than
10 wt%, the production process becomes difficult. The presence of graphene in the sample
was found to improve its mechanical properties: when 0.5 wt% of graphene was added,
it was found that the graphene sheets were evenly dispersed in the amorphous phase
of the semicrystalline matrix PCL. Initial cell culture studies have shown that scaffolds
printed using PCL/GNP filaments support the proliferation of cells. The positive results
of preliminary investigation on the composite sticks encouraged us to proceed with the
microbiological tests described herein.

The results show a significant antimicrobial effect against S. aureus and C. albicans.
However, this effect appears to decrease with increasing graphene content. We found no
antimicrobial effect at all against E. coli.

In the case of S. aureus, PCL without additives shows only slight antimicrobial activity
at the 30% ABE level. Modification with a small amount of graphene (0.5%) significantly
increases the antimicrobial efficacy, reaching a level of 90% ABE. Further increasing the
graphene content significantly reduces and suppresses the antimicrobial properties of PCL.
Several authors emphasized that graphene exhibits antimicrobial properties in the form of
oxides [23]. The structure of graphene may damage the cell membranes of microorganisms
and thus eliminate them.

During sample preparation, polymer granules were dry-mixed with GNP powder. It
is highly likely that the carbon particles precipitated during the preparation of the culture
suspension served as food for the cultured bacteria. However, we concluded that adding
only a small amount of graphene (0.5%) to the PCL samples significantly increased their
antimicrobial efficacy compared to pure PCL, and further increasing the graphene content
effectively reduced the antimicrobial effect.

None of the tested samples showed activity against E. coli. In all cases, the inoculated
suspensions induced confluent growth of these bacteria. However, a number of researchers
confirmed that PCL shows activity against E. coli, but only if the polymer is modified, for
example, by silver nanoparticles [24,25].

PCL and PCL/GNP_0.5 showed significant antimicrobial activity against C. albicans:
for PCL, the average ABE was about 98%; when GNP was added to PCL, this value
dropped to 68%. Increasing the content of graphene in the samples effectively reduced
the antimicrobial activity. This may be due to the fact that carbon particles present in
the suspension can become food for bacteria, through a similar process as in the case of
Staphylococcus aureus.
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4. Materials and Methods
Sample Preparation

This research employed polycaprolactone, (PCL, Mn 80 kDa, Sigma Aldrich, St. Louis,
MO, USA) and graphene nanoplatelets (polycarboxylate chemically modified graphene
nanoplatelets, Sigma Aldrich GNP). In order to produce filaments for further 3D printing,
polymer blends with additives and pure PCL granulate were prepared. The polymer
granules were dry mixed with GNP powder to obtain 0.5, 5, and 10% by weight of graphene
content in the blend. After combining the ingredients, each of the mixtures was mixed in a
mechanical mixer for 20 min. Filaments in the form of modified sticks were manufactured
in the process of injection molding using a BabyPlast 6/10P (Rambaldi Group, Molteno,
Italy) injection molding machine. The parameters of filament production were described in
the work [22].

Microstructural analyses to assess the surface of all samples were carried out in a Nova
NanoSEM 200 FEI (Waltham, USA) scanning electron microscope. All the samples were
placed on a stainless-steel plate and covered with a carbon thin film by sputtering to avoid
the electrostatic charge accumulation. Filaments in the form of sticks were evaluated using
a stereomicroscope from the OPTA-TECH company (Warsaw, Poland), equipped with a
CMOS 3 camera and OptaViewIS software version 4.3.0.6001. For microbiological tests,
filaments were cut and bars with dimensions of 1.75 mm × 6 mm were prepared as shown
in Figure 8. All the samples were plasma sterilized.
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Figure 8. Shape of PCL with 10% GNP samples for microbiological tests.

Polycaprolactone sticks with the addition of 0.5, 5, and 10 wt% graphene were evalu-
ated for bactericidal activity against three selected reference microbial strains:

(1) Staphylococcus aureus ATCC 25293
(2) Escherichia coli ATCC 25922
(3) Candida albicans ATCC 10231

All stages of microbiological tests were carried out in accordance with the principles of
asepsis and antiseptics. Each preparation was tested in each replicate with four replicates.
A single sample of the test preparation was placed in a 2 mL suspension of the standard
strain of the microorganism with a final density of 1.5 × 105 CFU / ml in tryptone water
(CFU—colony forming union, i.e., a colony forming unit or single cell of the microorganism).
The positive control was the volume 2 mL of a suspension of a given reference strain of
microorganism in tryptone water, whereas a negative control was 2 mL of tryptone water.
After 17 h of dynamic incubation (Therm-Shaker PST-60HL-4 from bioSan, Riga, Latvia) at
37 ◦C (S. aureus and E. coli) or 35 ◦C (C. albicans) from each test sample and control, 20 µL
of the suspension was plated on a solid culture medium: Columbia agar with 5% sheep
blood (S. aureus), Mac Conkey agar (E. coli), or Sabouraud agar (C. albicans). After 24 h
of incubation at 37 ◦C (S. aureus and E. coli) or 48 h incubation at 35 ◦C (C. albicans), the
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observed microbial colonies were counted using the automatic colony counter “aCOLyte”
(Synbios, Cambridge, UK) to determine bactericidal efficacy (ABE—antibacterial efficacy)
or fungicide (AFE—antifungal efficacy) of the tested preparations [26,27].

5. Conclusions

The use of PCL polymers is widespread in modern medicine. Appropriate modifica-
tions of this polymer can enhance its basic properties: in this case, the antimicrobial effect.
Adding a small amount of graphene can significantly improve these properties.

The results of our research show that increasing the content of graphene in the ex-
cipients reduces their bactericidal effect or increases the multiplication of bacteria. It is
essential that the newly created biomaterials must always be analyzed in detail. Although
the base ingredients separately have good bactericidal properties, their combination may
reduce this effect.

The bacteria which were selected in our work, constitute a saprophytic flora in hu-
mans [28–30]. However, in many cases, these bacteria can cause serious infections, and they
often affect people with weakened immunity or those undergoing immunosuppressive
therapy. The materials tested can be successfully used in implantology, where a temporary
tissue skeleton needs to be created. This is particularly important in cases where the risk of
perioperative infection is high, such as in otorhinolaryngologic nasal surgery.
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Scaffolds modified with graphene as future implants for nasal cartilage. J. Mater. Sci. 2020, 55, 4030–4042. [CrossRef]

23. Kalwar, K.; Sun, W.X.; Li, D.L.; Zhang, X.J.; Shan, D. Coaxial electrospinning of polycaprolactone@chitosan: Characterization and
silver nanoparticles incorporation for antibacterial activity. React. Funct. Polym. 2016, 107, 87–92. [CrossRef]

24. López, E.J.; Espinosa, C.L.F.; Donohue, C.A.; Reyes, L.S.Y. Antimicrobial Activity of Silver Nanoparticles in Polycaprolactone
Nanofibers against Gram-Positive and Gram-Negative Bacteria. Ind. Eng. Chem. Res. 2015, 55, 12532–12538. [CrossRef]

25. Calderone, R.A.; Fonzi, W.A. Virulence factors of Candida albicans. Trends Microbiol. 2001, 9, 327–335. [CrossRef]
26. Xiaoyi, X.; Qingbiao, Y.; Yongzhi, W.; Haijun, Y.; Xuesi, C.; Xiabin, J. Biodegradable electrospun poly(l-lactide) fibers containing

antibacterial silver nanoparticles. Eur. Polym. J. 2006, 42, 2081–2087.
27. Mangadlao, J.D.; Santos, C.M.; Felipe, M.J.L.; Leon, A.C.C.; Rodrigues, D.F.; Advincula, R.C. On the antibacterial mechanism of

graphene oxide (GO) Langmuir–Blodgett films. Chem. Commun. 2015, 51, 2886–2889. [CrossRef]
28. Mayer, L.F.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [CrossRef]
29. Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [CrossRef]
30. Kaper, J.; Nataro, J.; Mobley, H. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [CrossRef]

http://doi.org/10.12659/MSM.911770
http://doi.org/10.1088/1748-605X/aa87f2
http://www.ncbi.nlm.nih.gov/pubmed/29072194
http://doi.org/10.1007/s13205-016-0531-6
http://www.ncbi.nlm.nih.gov/pubmed/28330282
http://doi.org/10.1007/s10965-013-0347-6
http://doi.org/10.1016/j.msec.2018.08.009
http://doi.org/10.1021/nn202451x
http://doi.org/10.1021/nn101097v
http://doi.org/10.1186/s11671-015-0749-y
http://doi.org/10.1088/0957-4484/25/16/165101
http://www.ncbi.nlm.nih.gov/pubmed/24670485
http://doi.org/10.1007/s10853-019-04298-7
http://doi.org/10.1016/j.reactfunctpolym.2016.08.010
http://doi.org/10.1021/acs.iecr.6b02300
http://doi.org/10.1016/S0966-842X(01)02094-7
http://doi.org/10.1039/C4CC07836E
http://doi.org/10.4161/viru.22913
http://doi.org/10.1056/NEJM199808203390806
http://doi.org/10.1038/nrmicro818

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Conclusions 
	References

