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Abstract: The development of in vitro/in vivo translational methods for synergistically acting drug
combinations is needed to identify the most effective therapeutic strategies. We performed PBPK/PD
modelling for siremadlin, trametinib, and their combination at various dose levels and dosing
schedules in an A375 xenografted mouse model (melanoma cells). In this study, we built models
based on in vitro ADME and in vivo PK/PD data determined from the literature or estimated by the
Simcyp Animal simulator (V21). The developed PBPK/PD models allowed us to account for the
interactions between siremadlin and trametinib at PK and PD levels. The interaction at the PK level
was described by an interplay between absorption and tumour disposition levels, whereas the PD
interaction was based on the in vitro results. This approach allowed us to reasonably estimate the
most synergistic and efficacious dosing schedules and dose levels for combinations of siremadlin
and trametinib in mice. PBPK/PD modelling is a powerful tool that allows researchers to properly
estimate the in vivo efficacy of the anticancer drug combination based on the results of in vitro studies.
Such an approach based on in vitro and in vivo extrapolation may help researchers determine the
most efficacious dosing strategies and will allow for the extrapolation of animal PBPK/PD models
into clinical settings.

Keywords: anticancer drugs; preclinical study; pharmacokinetics; pharmacodynamics; drug
combination; PBPK/PD modelling; MDM2 inhibitor; MEK inhibitor

1. Introduction

Metastatic melanoma is a cancer condition that is dangerous and difficult to treat
due to its ability to spread early and aggressively. Before the development of new ther-
apeutic strategies, the median survival of patients with metastatic melanoma was only
6–9 months [1] and the 10-year survival rate was less than 10% [2]. Although recent thera-
peutic advances for metastatic melanoma have considerably increased the overall survival
of patients with melanoma, a subset of patients do not respond to immunotherapy or
targeted therapies [3,4]. Such limited responses may be explained by arising resistance.
Drug combinations targeting multiple signalling pathways in cancer cells may provide
a remedy for emerging resistance development [5], and this is why new anticancer drug
combinations and therapies are so important and urgently required. One of the novel
therapeutic options is the drug combination of siremadlin (MDM2 inhibitor) and trame-
tinib (MEK inhibitor). Preclinical evidence suggests that siremadlin (previously known
as HDM201) and trametinib synergistically act in melanoma treatment [6,7]. To assess
how polytherapy may improve the anticancer response, the performance of preclinical
translational studies and the development of in vitro/in vivo translational methods are

Int. J. Mol. Sci. 2022, 23, 11939. https://doi.org/10.3390/ijms231911939 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231911939
https://doi.org/10.3390/ijms231911939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8596-5044
https://doi.org/10.3390/ijms231911939
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231911939?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 11939 2 of 21

highly needed. A bench-to-bedside approach is much more challenging for drug combina-
tions than for a single drug because it must combine assumptions regarding the interaction
between two (or more) drugs at both the pharmacokinetic (PK) and pharmacodynamic (PD)
levels [8,9]. One of the solutions allowing for such a prediction is physiologically based
pharmacokinetic–pharmacodynamic (PBPK/PD) modelling. The PBPK/PD modelling
approach allows researchers to combine information on the drug characteristics with their
knowledge of physiology and biology at the organ and whole-organism levels. Such an
approach allows researchers to achieve a representation of the drug in a biological system
and the simulation of drug concentration–time profiles (pharmacokinetic profiles) and to
link it to the drug’s efficacy (its pharmacodynamic effect). This modelling approach offers
an advantage over the traditional PK/PD modelling approach because it potentially allows
for extrapolation into conditions for which pharmacokinetic studies have not been con-
ducted. PBPK models consider different organs and tissues (whole-body PBPK model) that
are the most relevant to the absorption, distribution, metabolism, and excretion (ADME) of
the drug. Thus, the drug concentration–time (pharmacokinetic) profile can be accurately
simulated in particular organs and tissues. Such a prediction is of high pharmacological
relevance because it enables the estimation of drug exposure at the site of its action (for
example, in a tumour), which may be difficult or impossible to experimentally measure in
animals or humans.

Analysis of the interactions between two or more drugs at the PD level is difficult
because of a lack of consensus on which theoretical model should be used to describe
the drug interaction type. As previously discussed, this issue is usually related to a
dilemma when a drug combination is classified as synergistic according to one model
but antagonistic in the other [6,10–12]. In this study, we chose the previously proposed
synergy metrics δ score (from the Synergyfinder package analysis) and β parameter (from
the Synergy package analysis) to be tested as translational in vitro/in vivo PD interaction
parameters [6].

Our main goal in this study was to develop and optimise a PBPK/PD model which
could allow the translation of the in vitro drug combination results to an in vivo situation.
An approach that involves using the results from in vitro studies coupled with PBPK/PD
modelling may accurately describe the observed tumour growth inhibition (TGI) data and
may suggest the most synergistic and efficacious schedules and dose levels for siremadlin
and trametinib in mice in vivo. This modus operandi may lead to more accurate estimations
of drug combination efficacy in virtual clinical trials (VCTs), which might be performed on
a virtual representation of cancer patients and ultimately provide the rationale for using
this drug combination in clinical trials on real patients with melanoma cancer.

2. Results
2.1. PBPK Models (with and without PK Interaction)

The developed PBPK models properly described the observed concentration–time
data for siremadlin, trametinib, and their combination in plasma, A375 tumour, and other
tissues (the muscle, spleen, brain, heart, kidneys, skin, lungs, gut, and liver), as shown
in Figures 1–7. These results are in line with those of a numerical analysis of fold errors
(the predicted and observed values) for the most important pharmacokinetic parameters
AUC0–24h, Cmax, and Tmax, which, in most cases, were within the 2-fold error range 0.5–2.0
(Tables S3–S6).
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Regarding the estimated AUC0–24h, the PBPK simulation for siremadlin indicated that
this parameter was accurately predicted for all tissues within a fold error of 0.93, except for
the A375 tumour tissue, which was slightly overestimated (1.22), as shown in Table S3. We
obtained a similar observation for the estimated trametinib AUC0–24h. The estimated fold
errors were also close to unity (0.93) in all tissues except for the A375 tumour, for which we
noted a 0.96-fold error (Table S4).

Concerning the predicted Cmax for siremadlin, this parameter was overpredicted in
the following tissues: the plasma (1.10), A375 tumour (1.00), brain (1.31), skin (1.57), and
gut (1.15); please refer to Figures 1, 3a,c, 6c and 7c and Table S3. Compared with the tissues
that were well supplied with blood, the Cmax was somewhat underpredicted in the muscles
(0.89), spleen (0.95), heart (0.89), kidney (0.97), lungs (0.99), and liver (0.94), as shown in
Figures 4a,c, 5a,c, 6a and 7a and Table S3. Regarding trametinib, the estimated fold errors
for this PK parameter were somewhat overpredicted in all the tissues (range: 1.00–2.08), as
shown in Figures 2, 3b,d, 4b,d, 5b,d, 6b,d and 7b,d and Table S4. We noted a significant
fold error (2.08) in the brain tissue, which could have been caused by the suboptimal blood
perfusion for this tissue in the constructed PBPK model (Figure 3b).

Regarding the Tmax parameter for siremadlin, the estimations for this parameter
were generally overpredicted for all the tissues (1 < fold error < 2). The exceptions were
the gut and A375 tumour tissue, for which this parameter was slightly underpredicted
(0.74) and remarkably overpredicted (4.26), respectively. This may have been caused by
unoptimised tumour blood perfusion in the mouse model; alternatively, the observed
Tmax values might not have been not properly determined due to sparse sampling, as
depicted in Figures 1, 3a,c, 4a,c, 5a,c, 6a,c and 7a,c and Table S3. Concerning the predicted
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Tmax for trametinib, the calculated fold errors for most of the tissues were within a 2-fold
error range. The only exception was for the brain tissue (fold error 0.11), which may have
been caused by suboptimal blood perfusion for this tissue in the constructed PBPK model
(Figures 2, 3b,d, 4b,d, 5b,d, 6b,d and 7b,d and Table S4).

Basic PBPK models were further improved by introducing PK interactions as a result
of the coadministration of the two studied drugs. The PK interactions could be explained
by the altered absorption process and distribution in the tumour compartment as well
(Table S2). The modification of those parameters allowed us to accurately fit the models to
the data with PK interaction in the plasma and other organs (Figures 1–7).

In the developed models assuming PK interactions, we estimated the most important
pharmacokinetic parameters (AUC0–24h, Cmax, and Tmax). In most cases, those parameters
were within the 2-fold error range (0.5–2.0). Regarding the estimated AUC0–24h for the
siremadlin model assuming PK interaction, this parameter was slightly underestimated for
all the tissues (within a fold error range of 0.76–0.86), except for the A375 tumour tissue,
for which this parameter was slightly overestimated (1.54), as shown in Table S5. Our
observation was similar for the estimated trametinib model assuming PK interaction. The
estimated fold errors for the AUC0–24h were also slightly underestimated (fold error range:
0.76–0.88) in all the tissues except for the A375 tumour and plasma, for which we noted
1.22- and 1.02-fold errors, respectively (Table S6).

Concerning the predicted Cmax for the siremadlin model assuming PK interaction, this
parameter was overpredicted in the following tissues: the plasma (1.15), A375 tumour (1.00),
brain (1.02), skin (1.31), and gut (1.00); please refer to Figures 1, 3a,c, Figures 6c and 7c and
Table S5. Compared with the tissues that were well supplied with blood, the Cmax was some-
what underpredicted in the studied tissues, including the muscle (0.89), spleen (0.90), heart
(0.94), kidney (0.84), lungs (0.86), and liver (0.86), as shown in Figures 4a,c, 5a,c, 6a and 7a
and Table S5. Regarding the trametinib model considering PK interaction, the estimated
fold errors for this parameter were slightly overpredicted in the following tissues: the
plasma (1.10), A375 tumour (1.00), spleen (1.33), and brain (1.29). In the well-perfused
tissues, the Cmax was slightly underestimated in the muscle (0.88), heart (0.70), kidney
(0.96), lungs (0.61), gut (0.77), and liver (0.85). However, in this model, we also noted that
the Cmax value of the skin was underestimated (Figures 2, 3b,d, 4b,d, 5b,d, 6b,d and 7b,d
and Table S6).

Regarding the Tmax parameter for the siremadlin model assuming PK interaction, estima-
tions of this parameter was generally overpredicted for all the tissues (1 < fold error < 2), except
for the liver and A375 tumour tissues, for which this parameter was slightly underpredicted
(0.81) and considerably overpredicted (3.38), respectively. This may have been caused by
unoptimised tumour blood perfusion in the mouse model, or the observed Tmax values
might not have been not properly determined due to sparse sampling, as depicted in
Figures 1, 3a,c, 4a,c, 5a,c, 6a,c, 7a,c and Table S5. Concerning the predicted Tmax for the
trametinib model accounting for PK interaction, the calculated fold errors in most of the
tissues were within a 2-fold error range. The only exceptions were for the brain tissue (fold
error 0.17), which may have been caused by suboptimal blood perfusion for this tissue, and
the gut (fold error 2.79), which may have been due to one or more of the following reasons:
the combined effect of the high modification of the ka parameter, sparse sampling of the
gut tissue homogenate, or homogenisation of the initial fragment of the intestine where the
trametinib concentrations more quickly appeared (Figures 2, 3b,d, 4b,d, 5b,d, 6b,d and 7b,d
and Table S6).

Generally, Tmax was the PK parameter most often mispredicted. Such a discrepancy
between the predicted and observed values might have been related to the fact that we
report the observed Tmax values on the highest observed Cmax, which might not have been
properly determined due to the sparse sampling of the observed data.

In the final stage of the siremadlin and trametinib PBPK model development, we
compared the models’ predictions with external PK data digitised from the literature [13,14].
We assumed that differences in the used formulations between our study and the already-
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published data would only be associated with the absorption process (Table S2). As shown
in Figures S1 and S2, the developed PBPK models were able to effectively capture the
plasma concentration–time data observed in the external studies, which therefore validated
those models. The final PBPK models’ parameters with and without PK interactions are
summarised in Tables S2, S7 and S8.

2.2. PD (TGI) Models

To determine the characteristics of unperturbed tumour growth, we plotted the log
tumour volume versus time for the mean tumour volume in vehicle-treated animals, as
shown in Figure S3. As a result, the growth curve in the vehicle control group was initially
characterised by a fast-growing exponential phase that ultimately approached a plateau
once a certain tumour volume was reached, indicating the saturation of the tumour growth.
According to our current knowledge, this may have been caused by rapid tumour growth,
which leads to limited oxygen and nutrient supply [15]. The selected logistic growth model
best described the unperturbed tumour growth in terms of the model score.

The final perturbed TGI models for siremadlin and trametinib assumed logistic tu-
mour growth, the Skipper–Schabel–Wilcox (log-kill) tumour-cell-killing hypothesis, drug
effects described by the exponential drug-killing model, acquired resistance to the therapy,
and treatment effect delay described by the signal distribution model with four transit com-
partments. For drugs administered in monotherapy, those models were able to accurately
capture the changes in tumour volume in time, with a mean relative error (RE) < 20%, as
shown in Figure 8 and Table S9.
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To properly fit the tumour volume data, TGI modelling for drug combinations required
additional parameters for the drug interactions at the PK and PD levels. We tested two
different parameters that were determined to be drug interaction parameters at the PD
level during the in vitro data analysis (Table S1). We selected the β parameter from the
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MuSyC drug interaction model as the translational in vitro/in vivo PD parameter. We
predicted that the interactions at the PK level (the AUC ratio parameters for siremadlin
and trametinib) would be dose-dependent in all the tested drug combination arms. The
predicted tumour volumes for the drug combination were within a mean RE of <20%, as
shown in Figure 9 and Table S9.
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We successfully verified the TGI models with external efficacy data, as described in
Section 4.5.2 and as shown in Figures S5 and S6 and Tables S10 and S11.

The key input parameters for the final TGI models for the single drug and drug
combination are shown in Tables S9–S11.

2.3. PBPK/PD Estimation with Universal Model for Drug Combination at Human Equivalent
Doses (HEDs)

We created a universal model based on a visual inspection of the data from the current
study, validation studies, and score analysis. Determining the relationships between the TGI
model parameters allowed us to carefully extrapolate the values of the model parameters
for different doses and dosing regimens (Tables S12, S15–S17 and Figures S7–S14). As
shown in Figure 10, the results of the tumour volume simulations after two cycles of the
combined therapy at HEDs revealed that at least 40 days (960 h) of continuous dosing of
trametinib with siremadlin (regardless of the siremadlin dosing regimen) is needed for
complete tumour regression (tumour volume ≤ 32 mm3). Additionally, the results from
simulations for two therapy cycles suggested that the synergistic efficacy of the siremadlin
and trametinib drug combination reduces the number of trametinib doses needed to achieve
tumour stasis (tumour volume ≤ 170 mm3) to only 21 doses in a treatment cycle. In general
simulations of combinations accounting for continuous siremadlin dosing, the results
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indicated that qdx7 or qdx14 had a higher efficacy than intermittent dosing schedules qwx2
or qdx1, as shown in Figures S15, S16 and S19. Simulations of siremadlin, trametinib, and
their combination efficacy after one and two cycles of therapy at HEDs are depicted in
Figures S15–S19.
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Figure 10. Simulation of siremadlin and trametinib combination efficacy at HEDs (2 therapy cycles)
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3. Discussion

The developed mouse PBPK/PD models for the MDM2 inhibitor siremadlin, the MEK
inhibitor trametinib, and their therapeutic combination were able to describe both the phar-
macokinetic and pharmacodynamic profiles of those drugs. The models consider the oral
(P.O.) administration of siremadlin and trametinib, full-body distribution model, hepatic
metabolism for siremadlin, and intravenous clearance for trametinib. Additionally, the
models implement a permeability-limited tumour distribution model and drug interactions
at absorption and tumour distribution levels, which allowed us to capture changes in
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siremadlin and trametinib concentrations in plasma and other tissues (e.g., the heart, liver,
spleen, muscle, brain, kidney, A375 tumour, lung, gut, and skin) when we separately or
simultaneously administered both compounds. The interactions at the absorption level
include changes in the absorption rate constant (ka) for siremadlin and alterations in the
absorption rate constant (ka), fraction absorbed (fa), and lag time (tlag) in the case of
trametinib. We hypothesised that those two drugs are competing for intestinal transporters
related to absorption. Whereas siremadlin might be preferentially transported, a satu-
ration of absorption and transport mechanisms may decrease trametinib absorption. In
turn, in tumour interaction depending on the shift in passive permeability and efflux P-gp
transporter clearances, an increased disposition of both compounds may occur, which may
additionally abolish tumour resistance, which is often related to increased efflux transporter
abundance and activity [16–21]. However, further PK studies are needed to confirm such
observations in plasma and tumour compartments. The application of PBPK models for
siremadlin and trametinib allowed us to calculate key the pharmacokinetic parameters
AUC0–24h, Cmax, and Tmax, which were mainly within the 2-fold error range for all tissues
except the A375 tumour and brain tissues. This may have been caused by suboptimal
blood perfusion in those tissues. In the case of the A375 tumour, a slower distribution
and, consequently, a higher predicted Tmax than that observed was probably related to
insufficient blood perfusion. Applying higher blood perfusion would be possible, but it
might be out of the range of measured perfusion in human melanoma xenografts [22–24].
In models assuming coadministration and associated PK interaction, we also characterised
the AUC0–24h, Cmax, and Tmax mainly within the 2-fold range for all the tissues except for
the A375 tumour, brain, and gut. Regarding the A375 tumour and brain tissues, the high
Tmax fold error might be related to unoptimised blood perfusion in this model. The higher
calculated trametinib Tmax for the gut may have been related to the combined effect of the
considerable modification of the ka parameter with the sparse sampling of the gut tissue
homogenate, or to the homogenisation of the initial fragment of the intestine (where the
concentrations more quickly appeared), which could have impacted the predicted Tmax for
this tissue. The Tmax was the PK parameter most often mispredicted. Such a discrepancy
between the predicted and observed values for this parameter might have been related to
the fact that we used the observed Tmax values on the highest observed Cmax, which might
not have been accurately determined because of the sparse sampling of the observed data
in this study. We successfully verified the obtained PBPK models with external PD data
extracted from the literature [13,14].

The developed TGI models describe the time course of siremadlin and trametinib effi-
cacy when administered separately and together to mice xenografted with A375 melanoma
cells. The logistic growth model best described the unperturbed tumour growth using data
from the current study and validation sets.

Based on previously performed in vitro studies, it is known that compounds’ killing
effect is concentration- and time-dependent with an initial delay in the response, and
resistance that might arise. These initial assumptions led us to develop final perturbed TGI
models for siremadlin and trametinib. The models assume logistic tumour growth, the
Skipper–Schabel–Wilcox (log-kill) tumour-cell-killing hypothesis, drug effect described by
the exponential drug killing model, acquired resistance to the therapy, and treatment effect
delay described by the signal distribution model with four transit compartments. The delay
in the effect of these drugs is most likely related to the duration of the signal transduction
associated with the activation of the p53–MDM2 and MAPK pathways, resulting in cell
death. Resistance is an inherent part of anticancer treatment; therefore, a population of
resistant cells was assessed for both drugs separately and when combined in the performed
study, and its description may play a critical role in predicting and optimising the treatment
response and may improve therapy scheduling [25,26]. Modelling the drug combination
approach required the selection of a PD interaction parameter that could be translational in
in vitro/in vivo extrapolation. The selected β parameter from the MuSyC drug interaction
model was the most optimal solution for the modelling data obtained from the present
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study; however, further PK/PD studies on mice coupled with PBPK/PD modelling are
needed to validate the optimal PD interaction parameter choice. We successfully verified the
created PBPK/PD models with different dosing and scheduling regimens from external PD
data. The final TGI models for the unperturbed and perturbed groups properly predicted
tumour volume within 20% of the mean relative error acceptance criteria for the data from
the present study and external PD data.

Among the most relevant limitations of the present work is that the current models are
restricted only to the experimental data available from a single mouse study with a limited
number of animals (n = 6); additionally, no data from other mouse melanoma xenografts
were available. Furthermore, differences in the exposure ratios (AUC ratio) in the models
using external PD data may have been caused by the different formulations used in those
studies, but they could also be explained by the variability in the resistance parameter
lambda. However, because the used cell lines were authenticated, the possibility that the
genomic drift impacted the arising resistance is unlikely. The selected TGI model for the
MDM2 inhibitor is similar to already reported models for RG7388 (idasanutlin) [27] and
HDM201 (siremadlin) [28] molecules from the same class. Even though those models were
built on data from osteosarcoma SJSA-1 derived mouse xenografts, common mechanisms
such as delayed drug effects and arising resistance can be concluded for this class of
small-molecule inhibitors.

The results of an in-depth analysis of the TGI models’ parameter dependencies allowed
us to extrapolate PD model predictions for different doses and dosing frequencies of the
studied drugs after one or two cycles of the therapy, which allowed us to select the most
optimal therapeutic strategies that ensure a high efficacy. The modelling and simulation
approach suggested several effective dosing schedules; however, the most important
are those assuming tumour stasis and complete tumour regression. The simulations of
the tumour volume after two cycles of the combined therapy at HEDs revealed that at
least 40 days of continuous dosing of trametinib combined with siremadlin (regardless of
the siremadlin dosing regimen) is needed for the tumour to completely regress (tumour
volume ≤ 32 mm3). Moreover, these simulations suggested that the synergistic efficacy
of the siremadlin and trametinib drug combination reduces the number of successive
trametinib doses needed to achieve tumour stasis (tumour volume ≤ 170 mm3) to only
21 doses in the treatment cycle. This might be especially useful for patients who may
develop hypersensitivity, a serious skin rash, or other adverse events grade 2 or higher
after using trametinib [29]. Such suggestions may play a role in the development of a
potential clinical trial protocol to study melanoma-bearing patients that will be treated with
a siremadlin and trametinib combination.

In the simulations of the combination, trametinib seemed to be less effective than in
monotherapy, which might be explained by the assumed higher resistance to the therapy
when both drugs are simultaneously administered (but smaller parts of the cell population
will be resistant). Additionally, by comparing the results from the efficacy simulations
after 40 doses of trametinib (Figure S17) with data from the administration of 36 doses
(Figure S6, external PD data from the literature), the simulation results suggested a higher
efficiency, which might be related to the variability in the lambda parameter or exposure
ratio. The presented PBPK/PD translational approach also has other associated limitations,
such as not considering the influence of MDM2 inhibition in stromal or immune microenvi-
ronments [30–32]. Nonetheless, despite these many limitations, the developed PBPK/PD
models reasonably accurately described the PK and time course of the tumour growth
across all doses and dosing schedules.

Further analyses are encouraged to externally validate the developed PBPK/PD
models for siremadlin, trametinib, and their combination toward predicting tumour volume
after human equivalent dose administrations.

The in vitro/in vivo translational approach presented in this study facilitated the
determination of the most synergistic and efficacious schedules and dose levels for the
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siremadlin and trametinib combination in mice and may provide a rationale for planned
translational modelling between mice and melanoma-bearing patients.

Recently published clinical data on siremadlin [28,33] and trametinib [29,34] combined
with the findings of this study may support the extrapolation of animal PBPK/PD data into
a clinical situation. Nonetheless, due to the limited amount of in vivo drug combination
data available from this study, such extrapolation may only predict the initial efficacy in
patients. The performance of additional in vivo efficacy studies with a larger number of
animals and different melanoma xenografts is warranted to improve simulation predictions,
although the performance of virtual clinical trials (VCTs) may also facilitate simulation
prediction improvement regarding the melanoma patient subpopulation. Further develop-
ment of the clinical PBPK/PD models for siremadlin and trametinib is needed to construct
a proper drug combination model in clinical settings.

PBPK/PD modelling is a powerful tool that allows researchers to properly estimate
the in vivo efficacy of anticancer drug combinations based on the results of in vitro studies.
Such an approach may indicate the most efficacious dosing strategies. This method allows
for better planning of the clinical trials and estimation of drug combination efficacy in such
trials on the virtual representation of cancer patients.

4. Materials and Methods
4.1. Materials

Siremadlin (catalogue number HY-18658) and trametinib (catalogue number HY-10999)
used in this study were obtained from MedChemExpress. PEG 400 (catalogue number
81172) and Cremophor RH40 (catalogue number 07076) were provided by Merck (for-
merly Sigma-Aldrich), EtOH (catalogue number 1016/12/19) was provided by POCH, and
Labrafil M1944CS (catalogue number 178290) was provided by Gattefosse. The A375 cell
line used in the single drug administration in vivo studies was obtained from American
Type Culture Collection (CRL-1619). For drug combination in vivo studies, the A375 cell
line was provided by European Collection of Authenticated Cell Cultures (88113005).

4.2. Software

PK parameters were estimated with Microsoft Excel (Excel version 2016, Microsoft
Corporation, Redmond, WA, USA, 2016, https://www.office.com). Digitalisation of the
literature-derived data was performed with the use of WebPlotDigitizer software (version
4.4, Ankit Rohatgi, Pacifica, CA, USA, 2021, https://automeris.io/WebPlotDigitizer). PD
modelling was performed with Monolix software (Monolix version 2021R1, Lixoft SAS,
Antony, France, 2022, http://lixoft.com/products/monolix/). Monolix custom PD model
in Mlxtran can be found in Code S1. PBPK/PD modelling was performed in Simcyp
simulator software (Simcyp Animal V21, Certara UK Limited, Sheffield, UK, 2022, https:
//www.certara.com/software/simcyp-pbpk). Custom PK interaction and PD models in
Lua can be found in Codes S2 and S3. The relationship between PD parameters in the
universal PD model was determined by 2D curve fitting in Microsoft Excel and 3D curve
fitting in Python ZunZun3 tool (ZunZunSite3, James R. Phillips, Birmingham, AL, USA,
2016, http://findcurves.com).

4.3. Studies Involving Animals

Crl:CD-1-Foxn1nu female 4–5-week-old mice from Charles River Germany inoculated
subcutaneously with A375 cells were used for in vivo studies. Determination of compound
concentrations in plasma, heart, liver, spleen, muscle, brain, kidney, A375 tumour, lung,
gut, and skin tissue homogenates were performed with the use of a quantitative LC-
MS/MS system. Tissues were resected at the following timepoints: 1.5, 4, 8, 24 h (n = 3
per timepoint). Pharmacokinetic parameters (AUC, Cmax, relative AUC ratio, and Tmax)
and tissue:plasma partition coefficients (Kp) were calculated using MS Excel 2016. Area
under the concentration versus time curve was calculated using the linear trapezoidal

https://www.office.com
https://automeris.io/WebPlotDigitizer
http://lixoft.com/products/monolix/
https://www.certara.com/software/simcyp-pbpk
https://www.certara.com/software/simcyp-pbpk
http://findcurves.com
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rule. Tissue:plasma partition coefficients (Kp) were calculated as proposed by Rodgers and
Rowland [35] with an assumption of linear pharmacokinetics [36] (Equation (1)).

Kp (Ktissue:plasma) = Ctissue,ss/Cplasma,ss = AUCtissue/tau/AUCplasma/tau = AUCtissue/AUCplasma, (1)

where C is concentration in particular tissue or plasma at steady state (ss), AUC is observed
area under the curve for particular tissue/plasma, and tau is the dosing interval.

Determination of tumour growth was performed after oral gavage of vehicle (60% PEG
400 (v/v), 10% Cremophor RH40 (v/v), 10% EtOH (v/v), and 20% Labrafil M1944CS (v/v)),
siremadlin, trametinib, or their combination in vehicle. The volume of the administration
(10 mL/kg) of the compounds was always adjusted to the mouse body weight. Initial
tumour volumes, doses, dose schedules, and numbers of animals in particular in vivo
studies are summarised in Table 1.

Table 1. Summary of performed in vivo studies on CD-1 nude mice xenografted with A375 tumour.

Compound Initial Tumour
Volume (mm3) Doses (mg/kg) Dose Schedule N Comments

Vehicle (Adamed) ~135 - q1dx5/q7dx2 10 Adamed reference
Siremadlin ~137 25/50 q1dx5 10 Adamed reference
Siremadlin ~137 50/100 q7dx2 10 Adamed reference

Vehicle
(current study) ~162 - qdx6 11 Efficacy in current study

Siremadlin ~163–172 40/100 qdx3 6 Efficacy in current study
Trametinib ~167–180 0.3/1 qdx6 6 Efficacy in current study

Siremadlin +
Trametinib ~165–169 40 + 0.3/40 +

1/100 + 0.3/100 + 1 qdx3/qdx6 6 Efficacy in current study

Siremadlin ~300 100 qdx1 12 PK in current study
Trametinib ~300 1 qdx1 12 PK in current study

Siremadlin +
Trametinib ~300 100 + 1 qdx1 12 PK in current study

Tumour volume (V) was recorded with an electronic calliper twice or thrice a week
and was calculated based on its length and width using the prolate ellipsoid equation
(Equation (2)).

V = d2 × D/2, (2)

where d is tumour width (mm) and D is tumour length (mm). For tumour volume simula-
tion, it was assumed that 1 cm3 = 1 mL.

4.4. Physiologically Based Pharmacokinetic Models
4.4.1. General PBPK Modelling Strategy

The modelling strategy was based on “middle-out” approach combining advantages
of “bottom-up” and “top-down” approaches, whereby some parameters were fixed (such
as in vitro determined or literature-derived data for siremadlin and trametinib [37–40]) and
others were estimated. Parameter estimation (PE) was performed using the PE Module
of the Simcyp Animal V21 using the Nelder–Mead method, weighted least squares by
the reciprocal of the square of the maximum observed value as the objective function,
and the termination criterion defined as the improvement of less than 1% of the objective
function value. Optimisation was performed manually to fit the observed data. Due to
the limitations of the mouse model in the current V21 version of Simcyp Animal software,
estimation of inter-individual variability was not possible; therefore, models were fitted to
the averaged values of PK and PD data at particular timepoints. PBPK model performance
was evaluated based on the “2-fold” criterion for maximum concentration (Cmax) and area
under the concentration vs. time curve (AUC) and Tmax [41,42]. A graphical representation
of PBPK model development is presented in Figures S20–S22.
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4.4.2. Mouse Population

The physiological parameters of the Simcyp mouse population were modified to
reproduce the CD-1 nude mouse population used in the experimental procedure. With
regard to this, body weight, cardiac output [43], tissue volumes, blood flows, and tumour
properties (including tumour tissue volume, blood flow, composition, and pH) were
adapted to the studied population. Since no raw data for blood flow in the A375 xenograft
were available [44], blood flow was set as in human melanoma xenografts [22–24].

4.4.3. PBPK Model Verification

The final siremadlin and trametinib PBPK models were compared with external
PK data [13,14] through both visual check and numerical analysis. Experimental and
predicted longitudinal plasma concentration (Cp) and tissue concentration (Ct) profiles
were generated, including the mean predicted concentrations. Local sensitivity analysis
(parameter scanning) was performed to evaluate the relative impact of fa, HepCL, and
fu_inc in the plasma PK parameters (AUC0–24h and Cmax) for siremadlin and fa and CLiv for
trametinib in the ranges presented in Tables S7 and S8. The performance of the siremadlin
and trametinib PBPK models was assessed by the fold error for each tissue, which referred
to the ratio of the predicted AUC0–24h, Cmax, or Tmax to the observed AUC0–24h, Cmax, or
Tmax respectively (Equation (3)). AUC0–24h was calculated by the linear trapezoidal rule.
Both visual checks and numerical analyses were performed in Microsoft Excel 2016.

Fold Error PK parameter = Predicted PK parameter/Observed PK parameter, (3)

4.5. Pharmacodynamic Modelling
4.5.1. General PD Modelling Strategy

Optimal PD models used further in PBPK/PD modelling were established in Monolix
software. Due to the comprehensive library of Monolix PD (TGI) models [45], the first step
in proper PD selection was based on the screening of various PD models with the use of an
automatic model initialisation (auto-init) function. Auto-init allows finding the good initial
values of parameters before starting the population modelling approach. This custom
optimisation method is performed on the pooled data, without inter-individual variability,
and as result finds only a local minimum of the fitted PD model (the global minimum has
yet to be set). Model selections were based on visual inspection of individual observed vs.
predicted data and comparisons of resulting values of model score (Equation (4)).

Model score = −2 × log-likelihood (−2LL, called also objective function value—OFV) + corrected Bayesian
Information Criteria (BICc),

(4)

−2LL and BICc were estimated by linearisation method to accelerate calculations.
For TGI models further developed in Simcyp Animal, the goodness of TGI model fit
was evaluated based on the mean relative error (RE) value (Equation (5)) being < 20% as
proposed in [46]:

RE (%) = 100 × (Predicted Tumour Volume − Observed Tumour Volume)/Observed Tumour Volume, (5)

4.5.2. PD (TGI) Model Development and Verification

The first stage of TGI model development was focused on the selection of a mathemat-
ical model describing properly unperturbed tumour growth of A375 xenografts. Different
tumour growth models assuming growth saturation such as logistic, generalised logis-
tic, hybrid Simeoni–logistic, Gompertz, exponential Gompertz, and von Bertalanffy were
evaluated and fitted to the data from the vehicle group in the Monolix software. The
selected unperturbed logistic growth model assumes an exponential growth rate (kge)
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which decelerates linearly with respect to the initial tumour size (TS0) and is described by
the following Equation (6):

dTS/dt = kge × TS0 × (1 − (TotalTS/TSmax)), (6)

where kge is tumour growth (1/day), TS0 is initial tumour size (mL), TotalTS is total tumour
size (mL), and TSmax is maximal tumour size (mL).

After the characterisation of tumour growth, the tumour growth inhibition models
(perturbed models) were developed for siremadlin, trametinib, and their combination
separately based on observed tumour volume data. Several structural TGIs were compared
in terms of model score in order to select the best fit to the averaged tumour volume data.

A screen of multiple models incorporating introduction of the type of killing hypoth-
esis (Norton–Simon or Skipper–Schabel–Wilcox log-kill), dynamics of treatment effect
(linear, Emax, Emax–Hill, exponential kill), type of treatment effect delay (cell distribution
model [47] or signal distribution model with 3 or 4 transit compartments [48]), type of
resistance arising (claret exponential [49] or 2-population model [48,50–52]), and value of
gamma (PD interaction parameter) (Synergyfinder-derived δ score or β parameter calcu-
lated with synergy package [6]) was performed in Monolix software.

The most important features of the selected perturbed TGI model characterising single
siremadlin-, single trametinib-, and combination-treated groups are written in the following
equations and initial conditions:

TotalTS(t) = TS(t) + TSr(t), (7)

TS_0 = TS0, (8)

TSr_0 = TSr0, (9)

TSmax = crck × (TS0 + TSr0), (10)

kkill_Siremadlin = a × Siremadlin dose × number of doses, (11)

kkill_Trametinib = b × Trametinib dose × number of doses, (12)

kkill_combination = (kkill_Siremadlin × AUC_ratio_Siremadlin + kkill_
Trametinib × AUC_ratio_Trametinib) × gamma,

(13)

kkill = kkill_Siremadlin/kkill_Trametinib/kkill_combination, (14)

C(t) = C_Siremadlin/C_Trametinib/(C_Siremadlin + C_Trametinib), (15)

K(t) = kkill × (1 − eˆ(−s × C(t))), (16)

K1_0 = 0, (17)

K2_0 = 0, (18)

K3_0 = 0, (19)

K4_0 = 0, (20)

dK1/dt = (dK − K1)/tau, (21)

dK2/dt = (K1 − K2)/tau, (22)

dK3/dt = (K2 − K3)/tau, (23)

dK4/dt = (K3 − K4)/tau, (24)

dTS/dt = 0, (25)

dTSr/dt = 0, (26)

dTS/dt = (kge*TS*(1 − (TotalTS/TSmax))) − (K4 + ksr*K4)*TS, (27)
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dTSr/dt = (kge*TSr*(1 − (TotalTS/TSmax))) + (ksr*K4*TS) − (K4/lambda*TSr), (28)

where resistance is defined by the introduction of sensitive (TS—tumour size) and resistant
population (TSr—resistant tumour size) of cancer cells. It was assumed that at time 0, the
total tumour size (TotalTS) is represented by the sum of TS and TSr cells (Equation (7)). To-
talTS is assumed to be ~100% comprising TS cells because TSr0 = ~0 at t = 0. Initial volumes
of TS and TSr at time = 0 are denoted as TS0 and TSr0 (Equations (8) and (9)). Correlation be-
tween initial tumour size (for TS0 and TSr0, respectively) and maximal tumour size (TSmax)
was parametrised as the crck parameter as proposed in [28] (Equation (10)). The tumour-
cell-killing constant of siremadlin or trametinib was determined to be dependent on the
dose and number of doses, after introducing compound-specific killing constants—a and b
(Equations (11) and (12)). The killing constant for combination (kkill_combination) was
characterised as the sum of the siremadlin and trametinib killing constants adjusted with PK
interaction parameters (AUC ratio parameter which was calculated for siremadlin + trame-
tinib 100 + 1 mg/kg dose and estimated for the other doses) as well as gamma (PD interac-
tion parameter)—β parameter determined from analysis of in vitro data (Equation (13)).
Depending on the treated group, the killing constant could be assigned to the killing
constants of siremadlin, trametinib, or their combination (Equation (14)). Total plasma
concentration of siremadlin, trametinib, or their combination was used as the input for
the drug effect (Equation (15)). The tumour growth inhibition model uses a log-kill killing
hypothesis with the treatment dynamics following exponential kill kinetics: kkill is the
killing constant, and s is the killing constant coefficient (Equations (16), (27), and (28)). A
delay of killing effect (K) has been implemented by the introduction of 4 signal transit
compartments (K1, K2, K3, K4), as suggested by [48]. The duration of this delay is deter-
mined by the parameter tau (Equations (21–24)). It was assumed that transit compartments
equal 0 in time = 0 (Equations (17–20)). It was also assumed that initial change of tumour
volume for sensitive and resistant cells populations equal 0 (Equations (25) and (26)). The
tumour logistic growth model and growth rate (kge) were assumed to be the same for
the sensitive and treatment-resistant cell populations. Acquired resistance to the therapy
also assumes that part of sensitive cells will convert into resistant ones. The conversion
rate from sensitive to resistant population is regulated by a rate constant denoted as ksr as
previously proposed [28,53] (Equations (27) and (28)). It was assumed that studied drugs
are also inducing a killing effect on the resistant cell population but with a reduced potency
(Equation (28)). The parameter lambda denotes the fold-change loss in drug potency on
resistant cells relative to sensitive cells. Units for particular parameters are summarised in
Table S9.

In the next stage of TGI model development, models for single drug administration
were compared with external efficacy data: siremadlin efficacy from a previously performed
study on mice xenografted with A375 cells (unpublished data, courtesy of Adamed Pharma)
and trametinib efficacy data digitised from the literature [54,55] (studies carried out on
mice xenografted with A375 cells). The applied TGI models allow the tumour volume
data in external efficacy studies to be fitted properly, therefore validating those models
(Figures S5 and S6 and Tables S10 and S11). Due to differences in exposure (AUC0–24h) in
external data, the value of the killing-effect-related parameter (kkill) was adjusted with the
AUC ratio parameter which was calculated for siremadlin based on previously performed
PK studies (unpublished data, courtesy of Adamed Pharma as shown in Table S13) and
was estimated in particular studies for trametinib.

In the last step, unperturbed and perturbed tumour growth inhibition models for sire-
madlin, trametinib, and their combination previously developed in Monolix were translated
into Lua programming language and applied within the Simcyp Animal V21 for further de-
velopment to achieve a mean relative error (RE) value of < 20% (Equation (5)). A graphical
summary of TGI model development and verification is presented in Figures S20–S22.
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4.5.3. TGI Model Parameter Dependence Estimations (Universal Model Development)

After the construction of the final PD models, relationships between input parameters
were established in order to construct universal TGI models which allowed the proper
prediction of tumour volume even after using different doses and dosing frequencies of the
studied drugs.

Relationships between input parameters were developed for siremadlin, trametinib,
and combination TGI models separately and only for selected input parameters (crck, kge,
exposure ratio, kkill, and tau), while the other ones determined experimentally or estimated
through TGI model development (TS0, TSr0, s, lambda, ksr, and gamma) were fixed at
specific values (Table S12).

Development of the dependency of the parameters was based on the initial assump-
tion that values of input parameters scaled with the dose and were summed up in the
combination TGI model. Various mathematical equations were screened in the ZunZun3
standard 3D equations library (including over 300 equations from bioscience, enzyme
kinetics, exponential, logarithmic, polynomial, power, rational, sigmoidal, trigonometric,
and many more miscellaneous equations) in order to find the best fit describing dependen-
cies between input parameter data. Then, the best models (in terms of the lowest sum of
squared absolute error) were verified on the siremadlin and trametinib verification datasets.

4.5.4. Tumour Volume Simulation for Drug Combination at Human Equivalent Doses

Tumour volume for studied drugs and their combination was estimated using uni-
versal PBPK/PD model within a 0–960 h simulation timeframe at the human equivalent
doses and clinically examined dosing regimens for each drug (Table S14). For simulation
purposes, the initial tumour size (TS0) was assumed to be 170 mm3 (0.17 mL); therefore,
the cut-off for tumour stasis was set to be ≤ 170 mm3 at the end of the simulation (960 h).
Following complete eradication of the tumour, scarring often occurs at the site of tumour
implantation, leaving behind connective tissue that may be mistaken for a small tumour;
thus, tumour width or length below the limit of detection (4 mm) resulting in tumour vol-
ume of 32 mm3 was selected as the cut-off for complete tumour regression at the end of the
simulation (960 h). The chosen cut-off for complete response (tumour volume ≤ 32 mm3)
is in line with reported values [56–58]. TGI model parameters for simulations of tumour
volume at HEDs for studied compounds after 1 or 2 cycles of therapy are summarised in
Tables S15–S17.

Animal doses equivalent to human doses were calculated according to Equation (29) [59].

Animal equivalent dose (AED) [mg/kg] = Human equivalent dose (HED) [mg/kg]/(Weightanimal [kg]/
Weighthuman [kg])(1−0.67),

(29)

where the mean weight of mice was 0.02755 kg (mean mouse weight in current study) and
human weight selected as typical patient weight was 70 kg.
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