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Abstract: The major challenges that agriculture is facing in the twenty-first century are increasing
droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change.
However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in
a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic
stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been
exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long
list of genes involved in abiotic stress tolerance have been identified and characterized by molecular
techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress
tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit
their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis
such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse
climate conditions and examine and discuss classic and new molecular tools to select and improve
abiotic stress tolerance in major crops.

Keywords: abiotic stress; osmoprotectants; drought tolerance; effective-microbes; genotyping-by-
sequencing; NPBT; plant transformation; QTLs; site-directed mutagenesis; CRISPR; ZFNs

1. Introduction

Anthropogenic climate change is remodeling our planet due to an increase in gas
emissions and deforestation, creating a greenhouse effect which is dangerously raising
the Earth’s temperature. A wide list of consequences includes devastating hurricanes,
scarce rainfall, migration, and extinction of different species of plants and animals due to
the destruction of their habitats, and the appearance of diseases that affect all species,
including humans. All this entails the depletion of natural resources, jeopardizing our
survival and that of many species and ecosystems [1,2]. In fact, global warming is reshaping
geographical species distribution, altering the composition of plant communities [3].

Agriculture and food security will suffer a significant impact due to climate change;
therefore, new agricultural practices must cope with severe droughts, extreme temperatures,
soil erosion and salinity, and devastating floods. In addition, there is an increasing freshwater
scarcity in a world where the human population is growing exponentially and is estimated to
account for almost 10 thousand million people in 2050. According to experts, food production
should be double the current amount for that decade [4–6]. Therefore, a major technological
effort, framed under a sustainable and ecologically sound world policy, is required to with-
stand such alarming, predicted conditions. Ultimately, there is a limit as to how far agriculture
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can adapt to the changing climate, and a political will to reduce the impact of the burning of
fossil fuels on the global climate is essential for long-term food security [7].

1.1. Abiotic Stress Adaptations

Plants often have to adapt to environments that are unfavorable for growth and de-
velopment. Some plants acquired adaptive traits during evolution to deal with extreme
environments, such as deserts, tundra, or swamps. To withstand these harsh environmental
conditions, plants developed morphological and physiological adaptations, as well as signal-
ing pathways that elicit biochemical and molecular mechanisms to survive different stress
conditions [8]. The stressful environmental factors can be either biotic or abiotic. Abiotic
stresses mainly include drought, salinity, extreme temperatures, flooding, oxidative stress,
nutrient deficiencies, and heavy metal stress [9]. Drought is the major cause of crop losses
around the world and water provision for agriculture was a key element for civilization’s
success [10,11]. Drought, salinity, cold, and freezing induce osmotic and oxidative stress and
increase intracellular ion concentration, thus leading to reactive oxygen species (ROS) accu-
mulation, protein denaturation, membrane disruption, and nucleic acid damage (Figure 1).

Figure 1. Plant response mechanisms to abiotic stress; Abbreviations: ROS—reactive oxygen species;
CAT—catalase; GR—glutathione reductase; SOD—superoxide dismutase; APX—ascorbate peroxidase.

At least three adaptive strategies have evolved in plants to live under drought condi-
tions [12]. Ephemeral plants are annual and have a short life cycle that allows them to grow
and develop during the rainy season before forming seeds to escape unfavorable conditions.
Another survival strategy is present in Cactaceae and Agavaceae plant families, which
due to the presence of spikes as modified leaves, a long root system to capture as much
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water as possible, their stem/leaves sheltered with a thick waxy cuticle that covers a water-
storage parenchyma, and adjusting their photosynthesis system with closed stomata and
a C4-carbon assimilation system, maintain the plant as a water reservoir to avoid water
loss. The last group is true desiccation-tolerant plants, better known as resurrection plants,
which can survive long periods of even decades without water to restart their metabolism
and growth in a few hours after being again in contact with water (Figure 1) [13].

Plant desiccation-tolerance was a key trait to conquering land environments, although
it is rare in vegetative tissues it is present in mature seeds but is lost during germination [14].
Some genetic and biochemical components for drought tolerance are shared between seeds
and resurrection plants and to some extent in non-tolerant plants displaying hardening or
acclimation phenotypes [15]. These latter plants require the expression of stress tolerance
genes for a gradual adaptation to harsh conditions. Cultivated plant varieties are usually
more sensitive to abiotic stress than their wild-type relatives because breeding selection for
yield and plant size traits are not necessarily linked to stress tolerance genes.

A water deficit reduces photosynthesis by inducing stomata closure and inhibiting
electron transport reactions and oxygen production, thus leading to ROS accumulation,
which causes damage to the photosynthetic reaction centers [16]. Plant adaptations to pho-
tosynthesis damage under drought stress are limited to a few plants containing C4 carbon
assimilation metabolism and crassulacean acid metabolism, which minimize photorespira-
tion and a more efficient CO2 harvest [17]. Gene transfer experiments using transcription
factors and Calvin-Cycle enzyme genes might soon improve photosynthesis and yield
under abiotic stress conditions [18,19].

Another important adaptation to water stress involves root architectural plasticity
(Figure 1). Plants with longer roots usually display increased yield since they have a higher
water use efficiency measured as biomass production to water use ratio [20]. During
drought, ABA signals the SNAC1 transcription factor, which induces stomata closure, shoot
growth arrest, and induces root growth, whereas lateral root growth is reduced due to the
expression of the MYB96 transcription factor and microRNA miRNA393 [21,22].

1.2. Physiological and Biochemical Responses

Protective mechanisms against abiotic stress include osmotic adjustment, antioxidant
metabolism, and maintenance of cell membrane stability (Figure 1) [23]. Plant cells actively
accumulate solutes when cellular dehydration occurs as part of osmotic adjustment [24].
Metabolic-compatible compounds can accumulate in large quantities and are major drivers of
osmotic adjustment under salt, drought, and cold stresses, helping with membrane stabiliza-
tion, protection of the quaternary structure of proteins, and neutralization of toxic compounds
under stressful conditions. It is the common strategy adopted by many organisms to com-
bat environmental stress [25]. These compatible compounds, known as osmoprotectants or
osmolytes, are low molecular weight water-soluble compounds. The most common but not
exclusive compatible solutes are sugars (sucrose and trehalose), polyols (mannitol and sorbitol),
polyamines (putrescine, spermine, and spermidine), amino acids (glutamine and proline), and
quaternary amines (glycine-betaine and choline-O-sufate) [26]. For instance, spinach, sugar
beet, and amaranth accumulate high levels of glycine-betaine, which is synthesized by two
enzymatic steps. First, choline monooxygenase converts choline into betaine aldehyde, and
then betaine aldehyde dehydrogenase synthesizes glycine-betaine [27]. These enzymes are
found in the chloroplast stroma. Proline is an osmolyte with an active role in plant growth
and development in many plants, such as maize, rice, and legumes, and is synthesized in
the cytoplasm through two major pathways. In the glutamate pathway, it is produced from
glutamate by ∆1-pyrroline-5-carboxylate synthetase and ∆1-pyrroline-5-carboxylate reductase
enzymes; in the ornithine pathway by ornithine-delta-aminotransferase, producing glutamic
semialdehyde and ∆1-pyrroline-5-carboxylate, which is converted to proline [28]. Another
important class of compatible solutes is sugar alcohols, also known as polyols, found in a wide
range of species such as grapevine, apple, coffee, berries, and olives. Sorbitol and mannitol are
synthesized by specific polyol dehydrogenases either from glucose-6-phosphate or mannose-
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6-phosphate, respectively, and protect cells against osmotic stress and metabolic imbalance
between source and sink plant organs [29].

A peculiar molecule is the disaccharide trehalose, which functions as an osmoprotectant
against heat, salt, and drought stresses and is found at high concentrations in certain archaea
and eubacteria species, some fungi and lower invertebrates, and desiccation-tolerant plants
such as the lycophyte Selaginella lepidophylla and in some rare Poaceae family members [30].
There are five biosynthetic pathways, and the most common in several organisms, including
plants, is a two-step process, where initially trehalose-6-phosphate synthase (TPS) condenses
glucose-6-phosphate and UDP-glucose into trehalose-6-phosphate, which is converted to
trehalose by trehalose-6-phosphate phosphatase (TPP). Interestingly, both TPS and TPP are
also present in most plants and are encoded by multi-gene families; however, trehalose is
almost undetectable [31]. The intermediate compound trehalose-6-phosphate also acts as
a signal molecule involved in growth, development, and crop yield [32,33].

The non-toxic nitrogenous polycationic molecules named polyamines, usually bound
to nucleic acids and proteins, accumulate in all organisms, and are involved in membrane
stability and ROS scavenging [34]. Some authors consider polyamines as phytohormones
since they participate in various plant functions, including regulating cell division, mem-
brane and cell wall stabilization, growth, flower and fruit development, and adaptation to
biotic and abiotic stresses [35].

Oligosaccharides such as fructans, staquiose, and raffinose are involved in cold ac-
climation and freezing tolerance in a wide range of plants [36]. For instance, in spite of
lacking epidermal tissues, Physcomirium patens moss displays freezing tolerance due to the
accumulation of the trisaccharide theanderose [37].

Major cultivated crops such as wheat, rice, and maize do not accumulate osmolytes
at significant concentrations [27]. However, it has been shown that the overexpression of
proline, glycine-betaine, fructans, and trehalose biosynthetic genes leads to abiotic stress-
tolerant phenotypes and plants with higher biomass and yield [38]. In addition to their role
as osmolytes, all these compounds are also involved in inhibiting ROS accumulation and
protecting the photosynthetic apparatus.

Similar to osmotic adjustment, antioxidant defense systems are also important to stress
tolerance mechanisms (Figure 1). Drought, cold, heat, and salt stress induce the formation of
reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2

−) [39].
These ROS are extremely toxic compounds, which can severely damage cell membranes,
proteins, and DNA, eventually provoking cell death. In order to combat oxidative damage,
plants utilize antioxidant defense mechanisms including enzymes such as superoxide
dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and
glutathione reductase (GR) [40] (Figure 1). In this regard, sugars also act as ROS quenchers
and exert protective roles and stress tolerance when specific sugar types are localized in
specific cellular compartments or in close vicinity membranes [41]. Crops with enhanced
ascorbate accumulation promote abiotic stress tolerance either by engineering increased
biosynthesis, enhanced recycling, or modulating regulatory factors [42].

Heat during summer days and at midday is a major stress that plants cope with by
accumulating heat-shock proteins (HSP) to alleviate cellular damage (Figure 1). HSPs are
a broad protein family of molecular chaperones that comprises HSP100, HSP90, HSP70,
HSP60, HSP40, and HSP20 that prevent and restore protein aggregation and misfolding
and are present in bacteria and animals as well [43]. Overexpression of different HSPs
can partially alleviate heat stress in plants; however, engineered expression of upstream
elements in the signaling pathway, as exemplified by the HSP transcription factor (HSF),
which confers a better response, also induces tolerance to multiple stresses [44].

As an additional tool to cope with abiotic stress, plants acquired a group of low molecular
weight (10–30 kDa) proteins to protect against subcellular damage caused by drought, salt,
or cold stress. These are named late embryogenesis abundant (LEA) proteins rich in glycine
and lysine and have a hydrophilic and disordered nature, which under stress conditions
reorders and forms repeated α-helixed stretches (Figure 1) [45]. LEAs were originally found in
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mature seed embryos but, later on, were also identified in stressed vegetative tissues of most
plants and even in some desiccation-tolerant invertebrates [14,46]. They are classified into
five families according to their protein similarity and are localized in the nuclei and cytoplasm,
interacting with cellular proteins to prevent unfolding or stabilize membranes during osmotic
stress [45]. Either an ABA-dependent or an ABA-independent pathway can induce LEA
genes. For instance, two well-studied cases in Arabidopsis are the RD29A and RD29B LEAs
protein genes. The RD29B gene promoter has an ABA-regulated element, the ABRE box
(CACGTG), whereas the RD29A promoter has an ABA-independent dehydration-responsive
element, the DRE box (TACCGACAT), induced by desiccation salt and cold stresses [47]. The
overexpression of the pepper CaLEA1 in Arabidopsis confers osmotic stress tolerance [48].

Water transport along the plant from the soil into the roots is a key element for plant
development and physiology (Figure 1). Aquaporins function by regulating water traffick-
ing through cell membranes in normal and stressful conditions but can also transport small
solutes such as monosaccharides, polyols, silicon, and boron or gases such as ammonia or
carbon dioxide [49]. There are between 25 and 30 kDa proteins forming transmembrane
tetramers and belonging to the major intrinsic protein (MIP) superfamily with members
in most organisms [50]. In plants, aquaporins are classified into seven subfamilies accord-
ing to their sequence similarity, most of them plasma membrane intrinsic proteins (PIPs),
tonoplast intrinsic proteins (TIPs), and nodulin 26-like intrinsic proteins (NIPs) [51].

Together with drought, soil salinity is severely threatening agriculture since around
20% of total cultivated land and 50% of irrigated fields worldwide are affected by salin-
ization [52]. Salt stress inhibits plant growth and yield, germination, photosynthesis, and
transpiration, and alters ion homeostasis (K+/Na+) caused by the combined effects of
osmotic stress and ion toxicity, mainly due to Na+ and Cl− accumulation in the plant
cytosol (Figure 1) [53]. Plant osmotic stress is dealt with the aid of osmoprotectants, and
antioxidant molecules previously discussed. According to their response to salt stress,
plants are classified as salt-tolerant or halophytes, and salt-sensitive or glycophytes [54].
When Na+ levels rise excessively in the plant, the K+ uptake is inhibited, the latter being
an essential ion for photosynthesis and metabolism as an enzyme cofactor. Hence, plant
cells need to either extrude Na+ from the cell, accumulate it on the vacuole, which also
maintains cell turgor, or transport Na+ to a specialized organ such as the trichome in some
halophytes [53]. Salt traffic requires transporters in plasma or vacuole membranes. Several
transporter genes have been characterized [55]. The plasma membrane symporters HKT1 in
leaves and ATK1 in roots are responsible for pumping K+ into the cell. Another significant
pump is the Salt Overly Sensitive (SOS1) antiporter, which extrudes Na+ and transports H+

into the cell [56]. SOS1 is regulated by phosphorylation of SOS2 protein kinase and Ca++

sensor SOS3. On the vacuole membrane, Ca+ regulates Na+ compartmentalization by the
NHX1 antiporter and helps H+ exit. The other key types of antiporters are V-ATPase and
V-PPase, which are responsible for introducing H+ into the vacuolar membrane [55].

1.3. Gene Regulation and Signal Transduction

Complex signaling cascades are induced in response to abiotic stress and are integrated
into multistep phosphorelay signaling that includes both hormonal and environmental cues
into a common pathway [57]. The different abiotic stresses can trigger common signaling
pathways [58]. Plant sensing to abiotic stress initiates with membrane or intracellular os-
mosensors that induce a shift in intracellular Ca2+ and production of secondary messengers
such as inositol phosphate (IP) and ROS, leading to activation of different protein kinases
such as calcium-dependent protein kinases (CDPKs), calcium/calmodulin-dependent pro-
tein kinases (CCaMKs), mitogen-activated protein kinases (MAPK), or phosphatases that
can phosphorylate/dephosphorylate specific transcription factors, which in turn regulate
stress-responsive genes [59]. There is an intricate crosstalk among various plant hormones,
namely, abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), cytokinins (CK), and
ethylene (ET), in coordination with transcription factors such as MYB, bLHL, WRKY, bZIP,
NAC, and DREB, to activate or repress stress responses [60] (Figure 1).
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ABA is a major player in coordinating plant stress responses. Several abiotic stresses,
such as drought and high salinity, trigger ABA biosynthesis, which is responsible for key
plant processes such as root growth, stomatal closure, and seed germination. The core
regulatory pathway of ABA signaling has been identified [58]. ABA interacts with the regu-
latory component of the ABA receptor, which in turn inhibits phosphatase type 2C (PP2C),
promoting the liberation of SNF1-related protein kinase 2 (SnRK2). The activated SnRK2s
phosphorylate downstream effectors to regulate multiple biological processes, such as
transcription, RNA processing, epigenetic modification, and flowering time regulation [61].

JA, a class of fatty acid-derived molecules, also plays an important role in promoting
plant response to abiotic stress. It participates in several signal transduction pathways
to induce cell protection from the toxic effects of salt stress, drought stress, heavy metal
toxicity, micronutrient toxicity, freezing stress, ozone stress, and light stress [62].

CK acts as a negative regulator of salt and drought tolerance and counteracts ABA and
Strigolactones (SLs), a carotenoid-derived phytohormone, which has roles in root develop-
ment, shoot branching, leaf senescence, plant communication with beneficial microbes, and
adaptation to cold, saline, and drought stresses [63].

Several other molecules are novel plant growth regulators, acting in signaling cascades
and cross-talk with regulatory machinery. The precursor of heterocyclic compounds such
as chlorophyll, 5-aminolevulinic acid (ALA), improves abiotic stress tolerance, growth,
and yield by inducing antioxidant synthesis, nutrient uptake, and photosynthesis [64].
Citric acid/citrate (CA) has similar effects and relieves heavy metal stress by inducing
chelation and precipitation of metal ions [65]. Nitric oxide (NO) is a redox-active gas
that at low concentrations can signal abiotic stress responses in plants by interacting with
calcium and hydrogen sulphide [66]. Melatonin works as an antioxidant against ROS to
promote photosynthesis, rooting, growth, and biotic and abiotic stress tolerance, and its
membrane receptor has been identified [67]. Recent studies have revealed the presence of
hormone-like peptides and their corresponding receptors, involved in signaling tolerance
to abiotic stress [68]. Interestingly, the SCREW-NUT peptide-receptor pair counteracts the
ABA- and pathogen-induced stomata closure [69].

High-throughput sequencing has revealed an extensive number of miRNAs in plant
genomes as key regulators in plant development and mediating biotic and abiotic stress
responses [70]. Outstandingly, another emerging area of stress tolerance is epigenetics,
which deals with genetic changes in chromatin functions that are not related to changes in
DNA sequence (Figure 1). Epigenetic modifications, such as DNA methylation and histone
acetylation or phosphorylation, prepare chromatin accessibility for transcription machinery,
inducing different chromatin conformations for stress-responsive gene expression [71]. In
addition to DNA and histone modifications, multiple long non-coding RNAs (lncRNAs) are
the top emerging participants in abiotic stress responses, regulating transcription factors,
numerous miRNAs, and stress-responsive mRNAs [72]. The active changes in epigenetic
modifications on stress-responsive genes open or close the chromatin accession to tran-
scriptional or posttranscriptional regulatory machinery. For instance, HDA6 deacetylase is
a negative regulator of the PDC1 and ALDH2B7 genes and thus represses acetate biosynthe-
sis. Under drought, the HDA6 enzyme dissociates from the PDC1 and ALDH2B7 genes to
activate the acetate pathway. Acetate connects the plant’s ability to adapt to drought stress
with metabolism, epigenetic regulation, and JA signaling [73].

1.4. Effective Microbes

Rhizosphere microorganisms such as bacteria and fungi promote plant growth and yield
but also have an important role in abiotic stress tolerance enhancement in plants (Figures 1 and
2c). Plant-microbe interactions signal molecular networks that modulate phytohormone status
and gene expression in plants, inducing osmolyte and nutrient accumulation, antioxidant and
proton transport machinery, and ion compartmentalization that elicits stress-responsive path-
ways [74–76]. Plant growth-promoting rhizobacteria (PGPR) can synthesize phytohormones
such as indole-3-acetic acid (IAA), an auxin that induces root and shoot growth, or cytokinins



Int. J. Mol. Sci. 2022, 23, 12053 7 of 50

that promote cell division and differentiation [77]. PGPR can also induce plant accumulation
of ABA, enhancing the expression of drought tolerance genes that render osmoprotectants and
K+ accumulation, decrease in electrolyte leakage, and increase ROS scavenging capacity [78].
Plant inoculation with PGPR that contains 1-Aminocycloprpane-1-Carboxylate (ACC) deami-
nase reduces ethylene and promotes plant growth and yield under salt stress conditions [79].
Siderophore produced by PGBR facilitates atmospheric nitrogen fixation, phosphate solubi-
lization, and helps nutrient mobilization [80]. Exopolysaccharides (EPS) from PGPR aid in
the formation of biofilms to keep soil moisture and protect plant roots under water scarcity
conditions [81]. Another important group of soil microorganisms that interact with plants
are Trichoderma and arbuscular mycorrhizal (AM) fungi that also mitigate abiotic stress by
promoting root growth, membrane stability, and water and nutrient uptake [82,83]. Through
triggering phytohormone signaling, these fungi activate plant aquaporins and membrane trans-
porters gene-expression, improve photosynthesis by scavenging ROS, and induce osmolyte
accumulation in plant cells to maintain water use efficiency under stress conditions [83].

Figure 2. Crop breeding classic techniques and molecular tools. (a) Conventional plant breeding.
Pollen from a plant with a desired trait is transferred to the flowers of another variety with other
desirable characteristic. Eventually, the desired trait(s) will appear in a new variety of plants through
selection. (b) Grafting and roostooks. Grafting is a special type of asexual plant propagation, where
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a section of a plant (scion) is joined to another plant (rootstock), allowing it to grow as a single plant
sharing a unified vascular system. To combine two groups of desired characteristics, usually, both
scion and rootstock sources become from different plant varieties. (c) Effective microbes. Plant and
microbe interactions involve highly sophisticated symbioses that confer stress tolerance. PGPRs can
produce antioxidants, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, cytokines, auxine
indoleacetic acid (IAA), exopolysaccharides, siderophores, that inhibit absicic acid (ABA), reactive
oxygen species (ROS), and ethylene negative effects. Some bacteria can also produce compounds
to increase the solubility and uptake of nutrients from soil or synthetize osmoprotectans that can
improve drought responses to plants. Additionally, some fungi help plants by increasing water and
nutrient uptake. (d) Plant mutation breeding. It is induced by physical stimulations (X-rays, α and
β particles, fast neutrons, and ultraviolet light), or chemical treatments (ethyl methanesulfonate)
that generate chromosomal changes that cause random mutations. (e) Agrobacterium tumefaciens and
biolistic mediated plant genetic modification breeding. P: promotor; T: teminator. (1) Transgenesis:
one or more components such as gene, P, and T that come from sexually incompatible organisms
(2) Cisgenesis: all components come from the same original gene (P, gene, and T) isolated from the
same species or a sexually compatible organism; (3) Intragenesis: uses one or more components
(such as gene, P or T) from different genes of the same species or a sexually compatible organism.
(f) Mitogenome transformation/edition. It is carried out through transcription activator-like editing
nucleases (TALEN) mediated nuclear transformation. (g) Plastome (plastid genome) transforma-
tion/edition. Chloroplast transformation has been used for: (1) Improvement of the catalytic activity
of the RUBISCO enzyme, (2) maximize carbon fixation (Calvin cycle) (3) insertion of cyanobacteria
transporters, (4) edition focused on different components related to the DNA damage response of the
genome, among other applications.

Trichoderma atroviride inoculation diminishes drought effects in maize seedlings by
inducing antioxidant machinery [84]. Moreover, combined inoculation with Trichoderma and
Pseudomonas minimized the impact of a low watering regime in rice and upregulated genes
linked with enzymatic and non-enzymatic antioxidant reactions that helped plant survival
under stress [85]. Recently, a collection of Trichoderma harzianum mutants obtained by
mutagenesis with ethyl methanesulfonate enhanced drought tolerance in Jalapeño pepper
plants, phosphorus assimilation, and antagonism against phytopathogenic fungi [86]. Thus,
all these results emphasize that the inoculation of growing plants with microorganism
formulations, also known as biofertilizers, has a strategic potential in cultivating crops
under abiotic stress conditions.

2. Molecular Tools
2.1. Classic Techniques
2.1.1. Plant Breeding

The need for more food production and the intrinsic curiosity of man culminated with
the domestication of important crops (about 1200 years ago) and the application of empiric
plant breeding processes by the selection of desired traits [87]. However, only 200 hundred
years ago, plant breeding started to be used in a systematic way to improve yields and
to select the presence of desired characteristics [88]. The Mendel laws provided the basic
rules for starting the breeding of crops, but it was only until the early twentieth century
that the first hybrids were developed that improved agriculture’s yield. An important
innovative process for plant breeding was the Green Revolution in the 1960s, developed
by Nobel laureate Norman Borlaug, which significantly increased agricultural production
by breeding new high-yielding cereals such as dwarf wheat and rice varieties used in
combination with chemical fertilizers, pesticides, mechanical irrigation, and machinery.

The generation of new varieties by conventional plant breeding requires either se-
lecting plants with desirable traits or combining qualities from two closely related plants
through selective breeding [89]. Pollen from a plant with a desired trait is transferred
to the flowers of other varieties with a new advantageous characteristic. Eventually, the
desired trait(s) will appear in a new variety of plants through offspring selection. However,
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this is not an easy task because DNA from the parents recombines randomly, and the de-
sired traits may be linked with undesirable traits. Traditional strategies to insert a desired
characteristic in a first-class cultivar involve the introgression of associated alleles across
at least six generations of consecutive selection. For instance, the insertion of an abiotic
stress-resistance trait into a high-yielding cultivar begins with their cross with an abiotic
stress-resistant cultivar. Then, recurrent backcrossing with the elite ancestor is required to
maintain the genetic potential of the elite cultivar besides preserving the recently imported
resistance allele (Figure 2a). Typically, the entire procedure requires several generations
to fix the resistance allele in the elite background [90]. Thus, the required time to release
a new crop variety takes on average 12–15 years [91], depending on the crop.

Plant breeding involves the following two key steps: the generation or expansion
of new variations and the selection and fixation of desirable genotypes [87]. Methods
such as hybridization, induced mutation, chromosome manipulation, F1 hybrids, and
the transgenic approach, among others, have been used to create variation. Initially, the
selection was supported essentially by the phenotypic appraisal of target traits, easily
distinguishable by the eye. More recently, with the advent of modern selection methods,
traceability of hidden traits has become possible. On the other hand, for selection and
generation advancement, methods such as simple phenotypic selection, recurrent selection,
marker-assisted selection (MAS), genomic selection, and heritability and genetic gain after
selection are used, among others.

Modern breeding for major crops requires the use of molecular markers, where DNA
markers such as RFLP, SSR, AFLP, RAPD, or SNP are the most frequently used [92]. How-
ever, to develop trait-linked markers, segregating populations for genotyping by sequenc-
ing the target traits and reliable phenotyping methods are indispensable [93]. Molecular
markers can be enforced to marker-assisted selection (MAS), which capitalizes on the
genetic correlation between target gene(s) and phenotypes. An important condition prior to
MAS is the construction of a molecular genetic map and also the detection of the target trait-
linked markers. It is calculated that plant breeders working with conventional phenotypic
selection should test from 1.0 to 16.7 times more breeding lines in comparison to breeders
adopting MAS. To test such a number of lines is important to ensure the introduction of
one or more superior genotypes, relying on genotypic superiority, selection pressure, and
heritability level of traits. Hence, MAS can significantly decrease the time and resources
required to accomplish a selection goal for heritability traits of low to moderate values
when the selection intensity is high [94].

Essential agronomic features, such as stress tolerance and crop yield, are governed
by polygenes, which exert refined effects and are regulated by the environment. Such
characteristics are known as quantitative traits, and the segregating loci as quantitative
trait loci (QTLs). In the case of quantitative traits, the fundamental procedure is to detect
markers linked to the quantitative trait via QTL [92,95–98]. Moreover, many important
QTLs from crop species have been cloned thanks to the increasing availability of whole
genome sequences. Therefore, QTL mapping surged as single-marker mapping but has
now become interval mapping thanks to the use of multiple marker-based approaches. The
accumulated information related to QTLs is available from several public databases, and
a robust compilation of available databases of genomic resources for plant breeding was
recently published [88].

Crop phenomics constitutes a new area of development for plant breeding, with con-
stant technical innovations arriving. These high-throughput phenotypic technologies are
crucial tools to accelerate the advancement of genetic gain in breeding programs. The
massive phenotypic data collection through diverse sensors (crop morphology, structure,
and physiological status from cell to the whole plant) is an important part of crop phenotyp-
ing, although the statistical integration of such data (phenomics analysis) is an important
challenge for the optimization of this strategy [99].
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2.1.2. Grafting and Rootstocks

Plant grafting is one of the most valuable tools against soil-borne diseases and biotic
or abiotic stress factors. Grafting allows for higher yields under stressful conditions,
an extension of the cultivation period, lower use of fertilizers and agrochemicals, broad use
of phytogenetic resources as rootstocks, and no need for crop rotation [99–103].

Grafting is a special type of asexual plant propagation where a section of a plant (scion)
is joined to another plant (rootstock), allowing it to grow as a single plant sharing a unified
vascular system [104]. In order to combine two groups of desired characteristics, usually
both scion and rootstock sources are from different plant varieties. The re-establishment
of the new plant entity starts with tissue connection between the rootstock and the scion
at the grafting points, it continues with a dynamic cell division phase that results in the
development of a callus and common cell wall, and it ends with the establishment of
a unique vasculature system [103,105] (Figure 2b).

Important fruit crops are frequently propagated by grafting methods, such as ap-
ples, avocados, peaches, citrus, apricots, cherries, plums, and almonds [104,106], and also
conifers [107], among others. Only a few decades ago, vegetable crops were incorpo-
rated into the grafting practice [101,103,108,109]. Depending on the required situation,
seed companies and breeders have used different rootstocks with the appropriate char-
acteristics [110,111]. The trans-grafting method mixes classical grafting protocols with
the genetic engineering of plants. The trans-grafting method comprises the grafting of
a non-genetically modified scion onto a genetically altered rootstock. The scion obtains
benefits and traits conferred by transgenes in the rootstock, but the end products, such
as fruits, do not contain the transgene and hence are not genetically modified [112,113].
Another innovation is micrografting, which involves the in vitro grafting of small shoot
apices or lateral buds onto decapitated rootstock seedlings [110,114,115].

The molecular basis of grafting signaling is not fully understood, but recent research
suggests that different plant hormones, proteins, epigenetic events, and several types of
RNA could be responsible for changes in scion [103,113,115–120].

2.1.3. Random Mutations

Random mutagenesis is an essential tool to enhance crop diversity. The use of random
mutagenesis has been widely accepted; besides that, it has no regulatory restrictions. In-
duced mutations can be generated by the use of physical mutagens such as X-rays, gamma
rays (cobalt-60 being the most common source of radiation), and neutrons [121–127]. More-
over, to induce mutagenesis, chemical mutagens, including alkylating agents such as ethyl
methanesulfonate (EMS), intercalating agents (such as ethidium bromide), and base analogs
(such as bromouracil), can be used [121,128,129]. Nevertheless, physical mutagens are used
more frequently as compared to chemical mutagens. Chemical agents, such as EMS, may
result in more frequent mutations, but an important advantage of radiation over chemical
mutagenesis is the fact that it induces a higher proportion of mutations that substantially
affect gene functions (e.g., the deletion of a complete gene), thus resulting in more loss-of-
function mutations related to target traits with fewer mutations per genome [125,130,131].
For both physical and chemical mutagenesis, the most utilized plant materials are their
propagules (such as seeds and meristematic cells), tissues, and organs (cuttings, pollen,
tissue-cultured calli), and in some cases, whole plants are also exposed [122] (Figure 2d).

Mutation induction is a powerful tool for creating new and novel plant germplasm [132].
Radiation-induced mutation, also known as plant mutation breeding, is the most widely
used method to improve direct mutant varieties in a faster way in comparison with the
laborious and time-consuming traditional plant breeding [125,127,133].

In vitro selection for plant mutation breeding can be used to obtain plant genotypes
with tolerance to adverse environmental biotic or abiotic factors such as drought, high
salinity, or even pathogens, in accordance with the selective media used [121,122,134].
Biological materials exposed to mutagens can be trustworthy and easily screened in a com-
paratively small space under in vitro conditions, in comparison to the use of a greenhouse
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and field. Purified lines of interest can be massively propagated or used for breeding
purposes (Figure 2d).

2.1.4. Plant Transformation: Biolistics and Agrobacterium

Plant genetic transformation refers to the generation of transgenic plants (transgenics),
which harbor extra, stably integrated, and expressed foreign gene(s) generally from trans
species (Figure 2e) [135,136]. These modified plants are generally named genetically modi-
fied organisms (GMOs). The complete process comprising the introduction, integration,
and expression of foreign gene(s) in the host is termed genetic transformation or transge-
nesis [137]. Together, the development and application of molecular genetic engineering,
gene transfer methods, and in vitro tissue culture techniques have allowed for the efficient
genetic transformation of a broad diversity of crop plants [138,139].

Introducing DNA into plant cells is a key point for the generation of stable trans-
genic plants as well as transient transformation. Various gene transfer methods, such
as the Agrobacterium system, physicochemical uptake of DNA, liposome encapsulation,
protoplast electroporation, microinjection, DNA injection into intact plants, incubation of
seeds with DNA, pollen tube pathway, the use of laser microbeam, electroporation into
tissues/embryos, silicon carbide fiber method, particle bombardment, and “in planta”
transformation, have been developed [139,140]. Among these, Agrobacterium and biolistic
methods have been widely used for plant genetic transformation due to their efficiency and
handiness [141–147] (Figure 2e). However, the transformation efficiency varies according
to the plant species and cultivar.

Biolistic transformation (also called particle bombardment) consists of forcing DNA
molecules into plant cells using high pressure as a physical medium. Contrasting with plant
transformation mediated by Agrobacterium tumefaciens, plant transformation mediated
by biolistic does not rely on host genotype or receptivity. The first successful particle bom-
bardment system for plant cells was established in onion [148] and was quickly followed in
multiple models and other recalcitrant crop species such as wheat, rice, and maize [149].
The integration of exogenous DNA into the genome arises by both non-homologous and
homologous recombination [150]. Particle bombardment-mediated transformation is the
most preferred method in experiments that demand rapid analysis and transient expres-
sions, such as promoter analysis, protein localization, transcription factor characterization,
pathway elucidation, hormonal regulation of genes, and promoter component identifica-
tion [146]. Particle bombardment can deliver the preferred DNA into both nuclear and
organellar genomes. For instance, chloroplasts in higher plants and chloroplasts as well as
mitochondria in algae were successfully transformed by the biolistic genetic transformation
approach [151–155]. Another difference between both methods for transformation is that
Agrobacterium-mediated transformation can integrate from one to three copies of donor
DNA, while the biolistic method can integrate multiple copies [156].

The biolistic machinery requires gene gun equipment attached to a helium tank filled
at high pressure. DNA coated onto the gold or tungsten carriers (microprojectile) is
shot into the recipient target tissue at high velocity by a gene gun. The microprojectile
passes through the cell, while the coated DNA stays within the cell [155]. In addition to
successfully delivering tungsten/gold particles coated with DNA, particle bombardment is
also used to deliver whole viral particles, RNA molecules, and even bacterial cells such as
A. tumefaciens.

In contrast with traditional breeding, plant transformation techniques introduce only
the isolated gene(s) of agricultural relevance, the 25 bp T-DNA borders (if Agrobacterium
is used), and a selectable marker, without co-transfer of unwanted genes from the donor.
However, if the selectable marker is co-transformed into a separate plasmid, both genes can
be segregated after back-crossing [157,158]. In addition, homologous sequences to T-DNA
are naturally present in many plant species without any altered phenotype, including
edible plants such as sweet potatoes [159,160]. As a consequence, transgenesis has arisen
as a supplementary tool to perform single-gene breeding or transgenic breeding of crops.
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The recipient genotype is minimally disturbed, only to the lowest degree, which eliminates
the need for repeated backcrosses [144]. GMOs have been created using foreign genes from
diverse sources, such as viruses, bacteria, fungi, insects, humans, and other animals, and
from unrelated plants. More recently, DNA obtained by chemical synthesis has also been
introduced to plant cells.

Among public opinion, there is a certain rejection of the use of transgenics, alluding
to the fact of using genes from distant species that normally could not carry out a sexual
cross. GMOs social debate, regulation, and risk assessment are out of the scope of the
present review ([161–165] for further reading). About this concern, there are alternatives
to traditional transgeneses, such as intragenesis and cisgenesis [166] (Figure 2e). Both
strategies use genetic material from the same species that is going to be transformed or
from very close genetic pools or varieties. In addition, plants modified by intragenesis or
cisgenesis must not contain sequences such as selectable marker genes or carrier vector
fragments. The difference between both strategies lies in the fact that cisgenesis respects
the genetic context of the gene to be introduced (promoter, exons, introns, and terminator),
while intragenesis allows the use of promoters, exons, introns, and terminators from
different genes of the same species.

Different molecular tools have been developed to facilitate the design and subsequent
construction of the desired transgene or synthetic gene. Starting from restriction enzymes
or the gateway system to newer protocols such as the one-step isothermal in vitro recom-
bination that allows the enzymatic assembly of DNA molecules of up to several hundred
kilobases [167]. Other toolkits have been built, such as the GoldenGate or the GoldenBraid
systems [168–170], which are strategies based on the use of IIS-type restriction enzymes
and on offering a wide variety of promoters, terminators, markers, or reporters made from
reusable pieces of standardized DNA. Synthetic genes constructed in this way can be used
to promote constitutive or inducible expression, gene silencing, protein-protein interactions,
or expression of multiple genes, among other applications.

The cellular totipotency in the plant kingdom and the ability of A. tumefaciens (a gram-
negative soilborne bacterium) to infect plant cells and to modify them at the genetic
level have been combined to open up a new field in plant biotechnology, transgenic
plant biology [143,171,172]. The identification of the bacterium A. tumefasciens as the
causal agent of the generation of tumors in the tissues of various plant species marked
the beginning of the study of the biology of Agrobacterium. Further studies identified
an A. tumefaciens plasmid (Ti plasmid) as responsible for the tumor-inducing process,
which contains all the necessary genes to infect and transfer the genetic information to
plant cells. Afterward, the transferred DNA (T-DNA) region was identified in a plasmid
(Ti plasmid). The T-DNA is not only directed and integrated into the recipient genome,
but its opines and cytokinin genes are also transcriptionally expressed at high levels in
the plant cells, these latter genes being responsible for the crown-gall phenotype. It was
also established that the T-DNA fragment harbors specific 25-bp long signals, known as
RB (right border) and LB (left border). Both RB and LB are the key elements for DNA
transfer and thus the genes within them are dispensable and can be removed to yield
a ‘disarmed’ vector leading to transformed plants without tumors. The development of
transgenic plants using A. tumefaciens was conducted in tobacco by several independent
research groups [173–175]. A valuable tool for plant transformation was the construction of
the pBIN19 binary vector, which has been widely used [176,177]. Since then, an increasing
number of important crops and a great variety of plant species have been genetically
transformed by using A. tumefaciens [178]. Depending on the plant species, different
explant sources may be used to be transformed [139,144,179].

2.2. New Plant Breeding Techniques (NPBT)
2.2.1. Genotyping-by-Sequencing (GBS) and “Omics”

Genotyping-by-sequencing (GBS) allows for simultaneous marker discovery and
genotyping approaches, and delivers many benefits, including the availability of flank-
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ing DNA sequence information, high-sample throughput, and high resolution, among
others [180]. Next-generation next-generation sequencing (NGS) technology has evolved
rapidly, which has allowed the cost of DNA sequencing to be significantly reduced, making
GBS increasingly accessible to a greater diversity of species with large genomes [181]. GBS
has significantly increased the availability and applicability of molecular markers for crop
improvement [182]. Candidate single nucleotide polymorphisms (SNPs) identified by GBS
may be linked with desired traits with the help of genome-wide association study (GWAS)
and/or QTL mapping [92]. The identified SNPs are used in marker-assisted breeding for
both to track gene introgression or even to validate trait-linked haplotypes in important
agricultural plants (Figure 3a).

Figure 3. New plant breeding techniques. (a) Genotyping by sequencing. This method allows
simultaneous analysis of large numbers of DNA samples using restriction enzymes to decrease
genome complexity and generate thousads of SNP-like markers (one-base polymorphisms) using
sequencing platforms. (b) Pangenome and super pangenome assembly. Describes the collection of all
genes in a species (pangenome) or genus (super pangenome). These have a nucleus genome that has
all the genes shared by a species and the variable genome that only some individuals have. (c) Zinc
finger and TALEN site direct mutagenesis. Zinc finger nucleases are constituted by the fusion of series
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of zinc finger domains with a non-specific domain of the FokI nuclease. Each zinc finger domain
recognizes three nucleotides while the FokI domain cuts DNA strands at different positions, intro-
ducing a sticky double strand break (DSB) (5–7 bp). Transcription activator-like effector nucleases
(TALENs) are TALE repeats with a non-specific FokI endonuclease domain. Each TALE repeat recog-
nizes a single nucleotide, while the FokI domain introduces sticky DSB within the spacer sequence
(12–21 bp). (d) CRISPR-Cas9 genome editing tools. The system consists of a single guide RNA and
Cas9 endonuclease. Guide RNA pairs with 20-nucleotide target sequences in genomic DNA, and
the Cas9 enzyme contains catalytic nuclease domains that allow for site-specific editing. (e) This
technique uses a specific oligonucleotide (20–100 bp) to generate a unique DNA base change in the
plant genome. The cell repair system recognizes the single base mismatch between its own DNA and
that of the repair template.

GBS provides a rapid and low-cost tool to genotype breeding populations, allowing
plant breeders to implement GWAS, genomic diversity studies, genetic linkage analysis,
molecular marker discovery, genomic selection (GS), and epigenetic variations under
large-scale plant breeding programs [92,182–202].

There are some variants of the original GBS protocol [180]. Essentially, to prepare GBS
libraries for NGS, genomic DNA obtained from tissues of parents and lines under study
is digested with the restriction enzyme ApeKI, which is an enzyme with frequent cutting
ability (although recent reports use other enzymes and even a combination of different
enzymes) [180,183,185,189,203]. The fragmented DNA is ligated with adaptors 1 (barcode
adaptor) and 2 (common adaptor), both containing the corresponding overhang ends for the
used restriction enzyme(s). A compatible set of 96 barcode adaptors (from 4 to 8 bp length)
were used in the original protocol. Sets of ligation products of digested DNA samples
(up to 96), each with a different barcode adapter, are pooled and cleaned up to eliminate
unincorporated adapters. To increase the fragment pool, a PCR was performed using
primers with compatible sites to the ligated adapters. After clean up and evaluation of the
resulting fragment sizes, the PCR products are used for single-end or pair-end sequencing
using NGS. Bioinformatic analysis of the resulting sequences allows for mapping and SNPs
validation. Although the use of the GBS strategy is growing in use, the intrinsic error rate of
the sequencing process and the low depth of sequencing are associated with the two major
drawbacks of this approach [204].

The recent high increase in new plant genomes sequenced allows for the comparative
analysis of numerous related individuals. There is a high degree of genomic variation,
ranging from SNPs to large polymorphisms known as structural variations (SV), which led
to the realization that unique reference genomes do not represent the species diversity, thus
leading to the pangenome concept. Pangenomes represent the genomic diversity of a given
species and include core genes (common genes within all the individuals of the species), as
well as variable genes (absent in some individuals) [205–207] (Figure 3b). Abiotic- and biotic-
responsive genes are frequently enriched within variable gene groups [208]. Moreover, the
use of accessions of all available species of a given genus for the development of a more
comprehensive and complete pangenome is now known as the super-pangenome [209]
(Figure 3b). Thus, the use of pangenomic and super-pangenome data can be used for
developing markers for GWAS and gene discovery to support robust plant breeding
programs to achieve abiotic stress tolerance or another desired trait [208,210–215].

On the other hand, a tremendous amount of transcriptomic data also continues to
accumulate, which could be used to identify genes with potential for plant breeding
applications. In pan-transcriptome analyses, a large number of different transcriptome
accessions made from varieties of a species or members of a genus of interest are compared.
A pan-transcriptome assembly strategy identified genes for the response to abiotic stress
and the synthesis of secondary metabolites among varieties of the Camellia sinensis tea
plant [216]. In rice, heat stress tolerance genes have been identified by combining data from
pan-genomes, pan-transcriptomes, and QTLs [217].
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Moreover, mixed strategies of “Omics” and “multi-omics” (including genomics, tran-
scriptomics, metabolomics, proteomics, and phenomics, among others) have been applied
to crops to improve abiotic stress tolerance [218–234].

However, understanding the flow of biological information underlying complex traits
requires a systems biology approach involving the integration of multiple Omics data,
modeling, and prediction of cellular functions [235]. It has been proposed that systems
biology with multi-omics data integration is important to allow for a holistic understanding
of the dynamic system with the different levels of biological organization interacting with
the external environment for a phenotypic expression to occur [235].

2.2.2. Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector
Nucleases (TALENs)

ZFNs are the predecessors of TALENs, and both are considered the first technologies
that started the genome editing revolution era (Figure 3c) [236,237]. Zinc finger nucleases
comprise the first generation of tools for genome editing by targeting double-strand breaks
(DSBs) using chimerically engineered nucleases. Zinc-finger technology was also the
first technology offering efficient and precise genome editing in plants [238–240]. The
historic record of performance, specificity, and intellectual property rights make ZFNs
an interesting genome-editing tool for plant biotechnology [241]. The development of
ZFNs technology was possible thanks to the discovery of the functional Cys2-His2 zinc
finger domain [242–244]. The ZF-binding domain is derived from a human transcription
factor and contains four–six Cys2-His2 arrays. Six ZF arrays identify and attach to three
nucleotides in the DNA. The α-helices of the ZF DNA-binding domain define which of
the three base pairs will be recognized. ZFNs are a combination of a ZF DNA binding
domain with an endonuclease, most frequently FokI. Typical ZFNs consist of a minimum of
three zinc finger domains, each recognizing three bp [245]. On average, a single functional
ZFN pair can be generated per 100-bp DMA sequence, meaning that ZFNs allow for
efficient genome editing [246,247]. ZFNs have some advantages when compared to CRISPR
technology. ZFNs are able to bind and induce DSBs with high fidelity, while CRISPR/Cas
system requires a protospacer adjacent motif (PAM) sequence at the target, which limits
the number of suitable targets [248,249]. However, despite the effectiveness of ZFNs,
the designing of ZFNs, which perfectly match a specific DNA sequence, is still a strong
labor-intensive and costly issue [250].

The TALEN strategy was the first genome-editing tool that saved a human life [251]
and also allowed the generation of the first genome-edited crop into the market [252].
TALENs are constituted by a specific DNA binding domain (which is freely designable)
and a nuclease [253]. TALENs work as molecular scissors, inducing DSBs to the DNA at
a specific site [245]. The binding domain attaches to a specific DNA sequence, and the
nuclease domain creates DSBs. The induced DSBs are further repaired by non-homologous
end joining (NHEJ) or homologous recombination (HR) [150]. When NHEJ participates in
the DSB reparation, this usually disrupts the gene function due to the generation of small
insertions or deletions at the DNA breakpoint [245,254]. In HR, the DNA region flanking
the DSB is replaced with a repair template or similar sequence [253,255].

TALEs were first identified in the plant pathogen Xanthomonas, where they are
delivered to host cells to reprogram the plant transcriptome, suppress immunity, support
pathogen growth, and promote the development of disease [256,257]. The Xanthomonas
TAL effectors bind to specific sites of the plant host DNA and activate the expression of
genes thought to be beneficial to the pathogen’s growth and dissemination [256,258,259]
TALEs contain a central DNA-binding repeat domain (CDR) that addresses the DNA
binding specificity through one repeat to one base pair correspondence [260,261]. The CDR
contains tandem repeats of 34 amino acid residues, and each CDR repeat binds to one
nucleotide in the target DNA site. The two amino acids that define the DNA specificity
of a TALE or TALEN are located at positions 12 and 13 of each repeat, named the repeat-
variable di-residue (RVD) [260,262]. The specificities of all possible RVD have been decoded,
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revealing very specific ones recognizing only a single nucleotide as well as more flexible
ones tolerating two, three, or all four nucleotides [256]. DNA binding specificities of TALEs
and TALEN can be changed at will, through a repeat re-arrangement. Using this feature,
TALEs can be engineered to bind any desired DNA sequence [263]. The TALE domain was
first used as a fusion protein to address the nuclease activity of the enzyme FokI [264–267].
The nuclease FokI works as a dimer, so TALENs are designed in pairs that bind opposing
DNA target sites separated by a 12–21 bp spacer [268]. This configuration allows the
FokI monomers to come together to generate a DSB. In addition to nucleases, TALEs have
been used to fuse repressors or activator domains in order to address, respectively, gene
knockdown or gene activation; to fuse transposases, recombinases, reporter proteins, or
histone modifiers such as methytransferases and DNA-cytosine demethylases to conduct
epigenetics research [255,268,269]. Moreover, TALENs have been used to achieve multiplex
genome-editing (MGE), for example, using a single TALEN pair to edit three homoeoalleles
encoding mildew resistance locus proteins in hexaploid bread wheat [270,271]. In addition
to nuclear genome editing mediated by TALENs, this technology has been successfully used
to target and edit mitochondrial and chloroplast sequences (mitoTALENs and cpTALEN,
respectively) [272–276] (Figure 2f,g).

The generation of plasmids for TALE expression can be a slightly complex issue due
to their repetitive nature, although the design is easier than for ZFNs [277] However, the
development of high-throughput cloning methods such as the Golden Gate, GoldenBraid,
Gibson assembly, Gateway assembly, or chaining cloning, has accelerated the way in which
the mass editing of genomes is carried out [278]. Several toolkits for the construction of
tailor-made TALEs with custom DNA specificity are available [279–284].

2.2.3. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)

The discovery that prokaryotes also possess mechanisms that confer adaptive and her-
itable immunity constitutes one of the greatest advances in biology in the last two decades.
The history of CRISPR began with the description of a series of short direct repeats inter-
spaced with short sequences in the genome of Escherichia coli [285]. The prokaryotic CRISPR
adaptive immune system (existing in 50% of bacterial genomes and 90% of archaeal) is
able to store memories of past phage infections and, when suffering a new infection, utilize
RNA-guided nucleases, CRISPR-associated (Cas enzyme). This mechanism induces the
silencing of phages and other mobile genetic elements, such as plasmids and transposons,
in a sequence-specific manner. Twenty-five years later, the tool for genome editing was
developed using the Cas9 endonuclease [248]. Almost simultaneously, the first examples of
the CRISPR-Cas 9 system were reported in humans and other eukaryotes [286–289]. The
first successful applications of CRISPR/Cas technology in plants were reported in tobacco,
wheat, rice, sorghum, and Arabidopsis, as well as the first discussions about its application
in crops [290–297]. The importance of CRISPR-Cas technology was recently recognized
with the Nobel Prize in Chemistry in 2020 to Emmanuelle Charpentier and Jennifer Doudna
for their groundbreaking work on the CRISPR system [248].

To understand the applications and limits of the CRISPR-Cas technology, it is im-
portant to know the composition and role of prokaryotes. The CRISPR/Cas immunity
process can be divided into the following three stages: adaptation, crRNA maturation,
and interference [298–300]. During adaptation, a complex formed by the nucleases Cas1
and Cas2 recognizes and selects a fragment of the foreign DNA and integrates it into the
host’s CRISPR array. The crRNA maturation involves the generation of a long pre-crRNA
as a result of the transcription of the CRISPR array, which is further fragmented by Cas
proteins (or cellular endogenous RNases) releasing several individual mature crRNAs.
Then, the mature crRNAs guide Cas nucleases to their target foreign DNA (the interference
stage). The Cas proteins cleave the foreign nucleic acid after crRNA recognizes the target
sequence by sequence complementation and binding (Figure 3d). Regarding the structural
genomic composition of the CRISPR-Cas locus, this is constituted by the cas operon (ex-
pressing several Cas nucleases) and the CRISPR repeat-spacer-array (which contains all the
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spacers that store the memory of previous phage-mediated infections); in the interference
mediated by the nuclease Cas9, the transcription of the tracrRNA (trans-acting CRISPR
RNA) from a neighbor locus is also required [301]. Taking into account the variety of
cas genes and the biology of the interference complex, CRISPR-Cas systems have been
assigned to two classes, which are subdivided into six types and various subtypes that
each possess signature cas genes. Class 1 CRISPR-Cas systems (types I, III, and IV) employ
multi-Cas protein complexes for interference (Cas5, Cas7, Cas8, Cas11, among others). In
contrast, in class 2 systems (types II, V, and VI), interference is achieved by a single effector
protein, such as Cas9, Cas12a, or Cas13 (Rnase) [300,302–308]. However, more weapons
have evolved in this molecular war. Bacteriophages also harbor a battery of anti-CRISPR
(Acr) proteins that tend to suppress the CRISPR-Cas immunity of the infected bacteria. The
Acr proteins act at different levels, inhibiting the crRNA-guided DNA binding and priming
adaptation or blocking the cleavage of phage DNA [309,310].

The CRISPR-Cas9 system is the most widely adopted tool by the scientific community
for genetic engineering. It is constituted by Cas9 nuclease, tracrRNA, and crRNA. The Cas9
protein is a crRNA-dependent endonuclease, which is analogous in shape to a bilobed jaw
and contains one nuclease (NUC) lobe, and one recognition (REC) lobe. The Cas9 NUC
lobe contains two unrelated nuclease domains (RuvC and HNH), which are responsible for
the cleavage of the displaced (non-target) and the target DNA strands, respectively, in the
crRNA-target DNA complex [248,304,311]. The NUC lobe of Cas9 also contains a PI domain,
which can recognize the PAM sequence on the non-complementary strand. The PAM is
a short sequence motif (usually 2–6 base pairs in length) adjacent to the crRNA-targeted
sequence on the invading DNA and plays an essential role in the stages of interference and
adaptation [312]. To be able to cut, Cas nuclease requires a PAM, which is usually located
3–4 nucleotides downstream from the cut site. For sequence-specific silencing, crRNA
and tracrRNA participate in target recognition [298,299]. The 5’-terminal sequence of each
crRNA is complementary to the sequence of the target site, while the crRNA 3´-terminal
sequence can create complexes with tracrRNA and Cas9. The Cas9-tracrRNA-crRNA
complex is essential for the identification and binding of Cas9 on the proper target sites and
specific cleavage, resulting in a DSB on the processed DNA. Repair of these DSBs can lead
to gene disruption if the break is repaired by a deleterious event resulting from a classical
nonhomologous end-joining reaction (C-NHEJ), an alternative end-joining reaction (alt-EJ,
also called microhomology-mediated end-joining, MMEJ), or a single-strand annealing
reaction (SSA) [313]. Alternatively, in the presence of a homologous donor DNA template,
these DSBs can be repaired via a homology-directed repair (HDR) pathway, leading to
accurate gene replacement [313,314].

For its practical use in different organisms, the CRISPR-Cas9 systems have been
adjusted. The artificial CRISPR-Cas9 system includes a synthetic RNA chimera created
by fusing crRNA with tracrRNA (single guide RNA, or sgRNA), which is functional and
comparable in efficiency to the crRNA and tracrRNA complex (Figure 3). Consequently, the
number of components was brought down to only two, Cas9 and sgRNA [248]. The 5’end
sequence of the sgRNA guide provides DNA target specificity. Consequently, it is possible
to design sgRNAs with different target selectivity by changing the 5’end sequence of the
sgRNA guide. The length of a canonical guide sequence is 20 bp. Accordingly, the length
of a DNA target is also 20 bp, followed by a PAM sequence that contains the consensus
NGG sequence. Another innovation to implement the CRISPR-Cas9 systems in plants
was the use of a plant codon-optimized version of Cas9 from Streptococcus pyogenes,
although a previously reported human codon-optimized version of Cas9 has also been
used successfully [290,315–317].

In summary, the use of CRISPR-Cas9 in plants involves a four-step process. First,
design the gRNA sequence for the selected target genome region, including a sequence
of 20 bp followed by PAM (NGG). Next, assemble a codon-optimized Cas9/sgRNA con-
struct (s) with a plant RNA polymerase III promoter (AtU6 or TaU6 or OsU6 or OsU3,
or a species-specific RNA polymerase III promoter). Third, the stable or transient trans-
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formation of sgRNA and Cas9 into plant tissues (via Agrobacterium, biolistic, or proto-
plast) [140,318,319]. Recently, virus-based vectors were also proposed for plant delivery
of CRISPR-Cas9 [320]. The last step, screening for mutant or transformed plants by PCR
genotyping and confirmation by sequencing. Several tools for the design of CRISPR-Cas9
components are available online [321,322].

Remarkably, close to twenty CRISPR-Cas system variants have been developed to edit
the genomes at different levels, which represents a promising battery of CRISPR tools for
plant genome editing, allowing not only for DSBs but also for base editing, gene repression
or activation, chromatin topology or imaging, and epigenome editing, among other appli-
cations (Table 1 and Figure 3d) [300,323]. First, CRISPR-Cas12a; the system CRISPR-Cas12a
produces DBSs with sticky ends (4–5 nucleotide overhangs), which can be used for DNA
precise repair with the use of a donor repair template (DRT), which is inserted by the action
of the HDR pathway [324,325]. Second, DNA and RNA base editing; base editing uses
CRISPR-Cas machinery to convert one single base to another in a programmable manner,
without the generation of DSBs or DRT participation [326,327]. At least the following
three classes of base editor systems are known: adenine base editors (ABEs), cytidine base
editors (CBEs), and RNA editing (REPAIR) systems. CBEs contain the mutant variant nCas9
(D10A mutation) or SpCAs9-NG variant fused with cytidine deaminase (which mediates
G-C to A-T conversion in the targeted DNA strand) [326,328,329]. The nCas9 mutant has
nickase activity while still being capable of binding sgRNA [330,331]. ABEs are composed
of an adenine deaminase fused to nCas9 for A-T to G-C base conversion [327,332,333].
In both cases, CBE and ABE, the further DNA mismatch repair mechanism and DNA
replication allow for the base change fixation. In addition to DNA editors, RNA base
editors enable single base substitutions at the RNA level. As an example, the REPAIR
system uses a deaminase or an adenosine deaminase (acting on RNA) fused to catalyt-
ically dead dCas13b [334–337]. This allows for programmable RNA editing, changing
A to I, which is treated as guanine during translation. Moreover, the RESCUE systems
use a dCas13b catalytically dead endonuclease domain fused to engineered ADR2DD for
C to U base replacement on RNA [337,338]. Third, Prime editing; the prime editors are
bipartite systems, containing a prime editing guide (pegRNA) and a fusion protein (M-MLV
reverse transcriptase fused to nickase nCas9 (H840A) [339,340]. The pegRNA is a modified
version of a sgRNA, additionally containing a primer binding site (PBS) sequence harboring
a template sequence for reverse transcriptase (RT); this PBS contains new or edited genetic
information. The pegRNA guides the protein fusion to the target, and the PBS region binds
to the induced nicked DNA strand and initiates the reverse transcription of the template
sequence that contains the desired edit or new genetic information [330]. The DNA repair
mechanisms allow for the fixation of the edition. Fourth, Epigenome editing; there have
been developed epigenome editing systems, which alter the methylation profile of DNA
(CRISPR-SunTag system) or RNA (m6A editing system), as desired. The CRISPR-SunTag
system (dCAs9-SunTag-TETcd demethylase or dCas9-SunTag-DRM methyltransferase)
enables target DNA demethylation and methylation, respectively, to repress or activate
gene expression [341–343]. Fifth, tissue culture-free genome editing; this method generates
genome-edited plants by removing the meristems and inoculating the injured cut portion of
the plant with Agrobacterium harboring developmental regulators (DRs) and CRISPR con-
structs, inducing the production of new meristems. Eventually, new genome-edited shoots
form and the changes are transmitted to the next generation [344]. Among the DRs used
are WUSCHEL (WUS), SHOOT MERISTEMLESS (STM), and MONOPTEROS (MP), whose
action dictates, in part, the meristems’ identity. Sixth, CRISPR-IGE (inducible genome edit-
ing); at least the following two inducible systems have been used to manage the expression
of Cas9: the XVE-inducible for 17-β-estradiol [345] and the HS-CRISPR inducible by heat
shock [346]. In addition, a successful combination of CRISPR-TSKO with CRISPR-IGE has
been reported [345]. Seventh, CRISPR-TSKO (CRISPR-based tissue-specific knockout); this
system allows for efficient mutagenesis in a cell-, tissue-, or organ-specific manner by ad-
dressing Cas9 expression under the control of a specified cell or tissue type promoter [347].
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This allows for temporal and spatial regulation of edited genes in plants. Eighth, CRISPR-
SKIP; this strategy of base editing uses CBEs to mutate G at the end of introns, just in the
boundaries of exon-intron, altering the resulting RNA splicing. Thus, altering a single
base can lead to exon skipping into mature transcripts, removing exons permanently [348].
Ninth, CRISPR Start-Loss (CRISPR-SL); this method can abolish targeted gene expression
by disturbing the start codon (ATG), using both CBEs and ABEs to convert ATG into ATA,
ACG, or GTG [332,333,349]. Tenth, DNA-free genome editing; this innovation uses the
delivery of pre-assembled gRNA/Cas9 ribonucleoproteins (RNPs), which facilitates gene
editing without the use of transgenes, avoiding their integration in the genome [350–355].

Table 1. Cas enzymes and CRISPR-Cas tools for plant genome editing.

Cas Enzyme Tools Uses References

Cas9
and Cas9

engineered
versions

CRISPR-Cas9

Generates DBS on DNA (blunt end). DNA repair mechanisms
provoke frameshift mutations resulting in gene knock-out. Use

of more than one sgRNA can induce longer deletions or
multiplex gene targeting

[290,314,315]

DNA-free Requires delivery of gRNA/Cas9 ribonucleoproteins (RNPs) to
editing without transgene integration to the genome [320,350]

IGE-XVE Cas9 expression system inducible by estrogens (17-β-estradiol). [345]
IGE-HS Cas9 expression system inducible by heat shock [346]

TSKO
Tissue-specific knockout system. A cell or tissue specific

promoter controls the expression of Cas9, provoking spatial
regulation of gene editing

[347]

TSKO + IGE This combination provides spatial- and temporal-regulated
genome editing [345]

CBE Mediates G-C to A-T base conversion in target DNA strand [328]
ABE Induce A-T to G-C base changeover in target DNA strand [332]

STEME Used in a high-throughput manner to modify cis regulatory
elements and genome wide screening [333]

STOP Facilitates gene silencing by creating stop codon without the
need of DBS [356]

SMART Based in the rescue of lethal mutations to quickly assess the
efficiency of base editing. [331]

SL Provokes alterations in start codon (ATG to ATA, ACG, or GTG) [349]

SKIP Mutates G at the end of an intron, which can lead to exon
skipping into mature transcripts [348]

PASS Convert the three possible PTCs (TAA, TAG, and TGA) into
TGG (tryptophan) [357]

dCas9-SunTag-TET1cd Epigenome editing through TET1-cd demethylase, allowing for
specific gene up-regulation [341]

dCas9-SunTag-DRMcd Epigenome editing through DRM methyltransferase, enabling
specific gene down-regulation [342]

Prime editing Creates new genetic changes (or repairing) at the target DNA
without DSB or DRT [339,340]

Cas12a
(former Cpf1) CRISPR-Cas12a

Cas12a targets T-rich regions of the genome where Cas9 is not
suitable to use, facilitates multiplexing, assists for precise DNA

repair by exogenous DRT. Cas12a generates staggered ends
with 4–5 nucleotide overhangs, which is advantageous for

genetic insertions or specificity during NHEJ or HDR.
Moreover, Cas12a offers future modifications at the same target
site, because it cuts DNA strands distal to the PAM sequence

[324,325]

Cas13
and Cas13
engineered

versions

CRISPR-Cas13
Cas13 has ribonuclease activity capable of targeting and

cleaving ssRNA. Potential applications in plant virus
interference or repression of eukaryotic gene expression

[306,308]

m6A RNA epigenome editing. Edits the methylation stage of
target transcripts [343]

REPAIR RNA editing. For A to I (G) base substitution at RNA level [334,337]
RESCUE RNA editing. For C to U base replacement at RNA level [337,338]
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Recently, also a plant negative-strand RNA virus-based vector was designed for in
planta delivery of the entire CRISPR-Cas9 cassette to achieve single, multiplex mutagenesis
and chromosomal deletions in tobacco; the vector can be readily eliminated from mu-
tated plants during regeneration, allowing for DNA-free genome editing [319]. Eleventh,
CRISPR-STOP is a method that creates stop codons using base editors (without DSB events),
consequently provoking gene silencing. The CBEs utilized generate UAA (ochre), UAG
(amber), and UGA (opal) stop codons by targeting the cytosine in the coding strand of the
target harboring CAA (glutamine), CAG (glutamine), and CGA (arginine) [356]. Twelfth,
CRISPR-PASS; this method eliminates premature stop codons (PTCs) by disrupting stop
codons such as TAA, TAG, or TGA. For this, CRISPR-PASS uses ABEs to convert such
codons into TGG (tryptophan) [357]. Interestingly, the strategy of inactivating PTCs in key
gene transcripts is a promising way to improve desired characteristics for plant crops.

MGE supported by CRISPR-Cas confers to scientists the capacity to decode complex
biological problems by editing several genes simultaneously. This allows the knockout
of multiple genes at once to engineering-efficient plant metabolic pathways, to manipu-
late the transcriptional regulation of a group of genes, to achieve chromosomal segment
restructuring, or multiplex base alterations, among other applications [271].

As mentioned, the engineering of Cas proteins provides new variants with the poten-
tial to generate novel applications for genome editing. Nature is also an excellent source
of new forms of Cas proteins. A recent report showed the isolation of a large number of
new phages from a wide range of ecosystems’ sampling collections [358], achieving the
identification of ubiquitous huge bacteriophages with a surprising prevalence of CRISPR-
Cas systems encoded in their genomes. The clade Biggiephage harbors a member of the
Cas family with about half the size of Cas9 or Cas12 (140 kD), which is known as CasΦ
(Cas12j). The 70 kD CasΦ harbors an individual active site for the following steps: crRNA
processing and the cutting of target nucleic acids guided by a crRNA. This hypercompact
system contains expanded target recognition capabilities in comparison with other Cas
proteins and is active in vitro and in human and plant cells [359]. Such compact Cas pro-
teins could be engineered to search for new functionalities, thus expanding the toolbox for
genome editing. The small size of CasΦ, coupled with their minimal PAM requirement
will be particularly advantageous for both vector-based delivery into cells and a wider
range of targetable genomic sequences, providing a new component to the CRISPR-Cas
toolbox [359].

Finally, the use of the CRISPR-Cas system for gene editing in chloroplasts expands the
alternatives for genetic improvement (Figure 2g). Delivery of the plasmids in a targeted man-
ner to the chloroplast can be accomplished using biolistics and carbon nanotubes [360,361].

2.2.4. Oligonucleotide-Directed Mutagenesis (ODM)

The ODM is now being revisited as a suitable technique to make directed genome
editing in plants. ODM allows the generation of custom-made SNPs in the target genome,
which represents a “game-changing” in the plant breeding area. One interesting advantage
of ODM is that the resulting genome-edited plants are considered non-transgenic [362,363],
opening the possibility to apply this technique in plant crops without costly and long
GMO regulatory procedures. Initially, ODM was successfully used for genome editing in
bacterial, yeast, and mammalian systems [364–366]. In plants, ODM started to be used at
the end of the nineties [367–371].

The mode of action for ODM in eukaryotic systems has been determined in mam-
malian and plant models. An oligonucleotide with homology to the target sequence but
containing a mismatch is delivered across the cell membrane, travels through the cyto-
plasm, and finally passes the nuclear membrane where it anneals to the nuclear DNA
target sequence [372]. In addition, chimeric RNA/DNA can also be used in plants for
ODM [369]. ODM requires the use of oligonucleotides (between 20 and 100 nucleotides in
length) designed to be identical to the target except for one or a few altered nucleotides cor-
responding to the intended mutations [371,373]. The endogenous mismatch repair system



Int. J. Mol. Sci. 2022, 23, 12053 21 of 50

is involved in the incorporation of the (oligo-directed) nucleotide mismatch [365,367,374]
(Figure 3e). Importantly, it is critical to have high transfection efficiencies to ensure the
oligonucleotide is delivered into as many cells as possible to maximize DNA conversion
efficiencies; otherwise, the oligonucleotide-mediated conversion rate could be as low as
that reached by the spontaneous mutation rate [375]. ODM involves the following two-step
process to insert the mutation: first the oligonucleotide annealing to the sequence target,
and second, the reparation of the mismatch by the cell´s repair machinery. Although in
plants, the oligonucleotide does not integrate into their genome, it serves to guide the
cellular repair system to the target site. Its inability to integrate is due to the following
two reasons: the activity of endogenous nucleases and other oligonucleotide degrading
enzymes, and the 5’ and 3’end modifications in oligos, which prevent DNA ligation [362].
On the other hand, in prokaryotes, the ODM system requires the action of mustS and recA
to incorporate the ODM-induced mismatch into the genome [362].

The molecular basis of many important agronomical traits relies on small genetic
differences, or SNPs, present in critical genes. A classic example of the ability of ODM
to incorporate SNPs into the plant genome is the manipulation of the acetohydroxyacid
synthase (AHAS) genes of tobacco and maize [367,369,376]. ODM-induced editing on
AHAS confers resistance to the herbicide chlorsulfuron, which is a specific AHAS-inhibitor
herbicide by blocking the synthesis of the branching amino acids valine, leucine, and
isoleucine [377]. A sulfonylurea herbicide-tolerant canola variety (SU CanolaTM) was the
first commercialized ODM genome-edited (Ged) crop, which was obtained by pit mutation
in AHAS (also known as ALS, acetolactate synthase gene) [362,378,379]. The SU CanolaTM

was considered non-genetically modified (non-GM), classified as “non-regulated”, and
launched in the USA in 2015 [380] and in Canada in 2017 [135,372,381].

Finally, oligos have also been used to generate mutagenesis in Arabidopsis chloroplast
lysates [382]. It would be interesting to explore the possibility of using ODM for the
modification of chloroplast genes (Figure 2g) using carbon nanotubes [360] or other types
of nanoparticles for the delivery of oligos in this organelle.

3. Crops
3.1. Model and Non-Model Plants

The use of model plants such as Arabidopsis, maize [383], bryophytes such as Physcomitrium
patens (formerly Physcomitrella patens) [384], halophytes such as Mesembryanthemum
cristallinum [385], Thellungiella halophila, Aeluropus littoralis [386], resurrection plants such as
Craterostigma plantagineum [387], Selaginella lepidophylla [388], and Pseudocrossidium replica-
tum [389], as well as important crops including barley, potato, soybean, common bean [390],
tomato [391], among others, have established the bases of plant abiotic stress biochemical,
genetic, molecular, and physiological responses. Genome sequencing, gene annotation,
functional Omics, and validation of stress tolerance identified genes from model plants
as well as from major crops have been vital. Although multiple important successful
efforts to improve abiotic stress tolerance through conventional breeding (induced muta-
tion, inter-generic and inter-specific crosses), molecular and biotechnological approaches
(QTL, marker-assisted selection, haplotype analysis, genome-wide association studies–
GWAS, genetic engineering, and genome and epigenome editing technology), as well as
the use of effective microbes, have been reported, the search for stress tolerance can only
be reached considering the physiology, ecology, and breeding of individual plant species
under realistic field conditions. Although not described in this review, improvement of
abiotic stress tolerance in several important crops such as barley [392–395], sorghum [396],
potato [397–401], leguminous [400,402–407], and horticultural [400,408–410] plant species
has been described.

In the following sections, selected recent reports that describe efforts to obtain abi-
otic stress-tolerant plants, though mentioned techniques are briefly described, focusing
on the three main cereal crops, rice, wheat, and corn, comprising around 75% of grain
production worldwide.
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3.2. Rice (Oryza sativa L.)

Rice is one of the major abiotic stress-sensitive sources of food. Backcrossing and
induced mutation methods have led to the development of rice drought-tolerant varieties
that include important traits such as root architectural plasticity [411–416]. Gamma rays
irradiated rice varieties or landraces have rendered at least 16 drought-tolerant lines, for
example, MK-D-2, MK-D-3, MR219-9, and MR219-4 [411–414]. Moreover, QTLs and marker-
assisted selection (MAS) strategy have been conducted to the identification of hundreds
of abiotic stress tolerance QTLs (extensively reviewed by Choudhary, et al., 2019 [417]),
including drought tolerance (i.e., deep rooting DRO1 QTL) [94,418–422], tolerance to
salinity (i.e., Saltol QTL) [423–428], heat (i.e., QTLs thermotolerance TT1, spikelet fertility
and pollen shedding qPSLht4.1, spikelet sterility qSTIPSS9.1) [428–432], cold [433] (Table 2),
and flooding or submergence tolerance (such as SUB1, qTIL1, qTIL12, qNEI12, qLEI12
QTLs) [425,428,434–439]. Moreover, the combination of multiple stress tolerance (IR64-
Sub1 with drought-tolerant lines, UKM5 and UKM91 that contain the qDTYs, viz. qDTY12.1
and qDTY3.1 drought yield QTL loci) [440] and resistance to biotic and abiotic stress [441]
has been identified in this crop. It is worth noting that root architectural plasticity QTLs are
closely linked to drought and submergence adaptation in rice [416]. Haplotype analysis
combined with GWAS led to the identification of the SEMIDWARF1 gene involved in rice
adaptation to flooding [442] (Table 2). Recently, GWAS identified eight cold-tolerance-
related genetic loci in this crop, including one locus (LOC_Os10g34840) whose cold-tolerant
allele is present in most temperate japonica accessions (80%) [443] (Table 2). GWAS in rice
has also found numerous markers for tolerance to salinity (OSMADS31, OSHAK11, AGO,
OsPINis, Germin family proteins SAP, ZIFL), and flooding, among other traits [444,445].

Table 2. Recent examples of genes used to improve abiotic stress tolerance in the three main cereal
crops, rice, wheat, and maize.

Crop Molecular Strategy Gene Improved Stress Tolerance References

Rice

Haplotype analysis with GWAS SEMIDWARF1 flooding [442]

GWAS LOC_Os10g34840 cold [443]

QTLs and MAS TT1 heat [430]

Overexpression PcCFR salinity, drought, and cold stress [446]

CRISPR OsMYB30 cold [447]

CRISPR OsPYL9 drought [448]

CRISPR OsERA1 drought [449]

CRISPR OsRR22 salinity and osmotic stress [450]

CRISPR OsDST drought, salinity, and osmotic
stress [451]

CRISPR OsMPK5 various abiotic (and biotic) stresses [297]

Wheat

Overexpression TaFER-5B heat, cold, and drought [452]

Overexpression TaPYL4 drought [453]

Overexpression TdPIP2 salinity and drought [454]

Overexpression ZmPEPC drought and high temperature [455,456]

Overexpression TaWRKY2 drought [457]

Overexpression TaBZR2 drought [458]

Overexpression TaPEPKR2 drought, osmotic, and heat stress [459]

Overexpression AtOTS1 drought [460]

CRISPR TaERF3 drought [461]

CRISPR TaDREB2 drought [461]
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Table 2. Cont.

Crop Molecular Strategy Gene Improved Stress Tolerance References

Maize

Overexpression betA drought [462]

Overexpression TsVP drought [462]

Overexpression CSPS drought [463]

Overexpression TPP drought [33]

Overexpression VHb waterlogging [464]

Overexpression SDD1 drought [465]

Overexpression OsMYB55 drought and high temperature [466]

Overexpression ZmERB180 waterlogging [467]

CRISPR ARGOS8 drought [468]

CRISPR ZmHKT1 salinity [469]

Omics approaches have led to the identification of hundreds of abiotic stress-responsive
genes, and many of them have led to improved stress-tolerant phenotypes when over-
expressed (or suppressed). Molecular approaches to improve rice tolerance to several
abiotic stresses have been comprehensively reviewed [94,422,470–476]. Genes encoding
enzymes involved in the synthesis of osmolytes and other protectants that improve tol-
erance to one or several abiotic stresses (drought, oxidative, cold, salinity) in rice plants
include functions for arginine decarboxylase (ADC), polyamine synthesis (ADC), abscisic
acid metabolism (DSM2), amino acid metabolism (OsOAT), reactive oxygen species (ROS)
scavenging (OsSRO1c), protoporphyrinogen oxidase (PPO), trehalose synthesis (OsTPS1,
TPSP), and proline synthesis (P5CS). Moreover, proteins encoding for late embryogene-
sis abundant (LEA) proteins (HVA1, OsLEA3-1, OsLEA3-2), regulatory genes coding for
transcription factors (ABF3, AP37, OsbZIP23, OsbZIP72, OsbZIP73, OsbZIP42, OsbZIP46,
OsbZIP66, SAPK6, OsFTL10, OsMYB6, OsMYB48-1, ZAT6, SNAC1, ONAC045, ONAC5/6/9,
ONAC10, ONAC14, EcNAC67, IDS1, OsPIL1, OsERF115/AP2EREB110, DREB1A, OsDREB1,
DREB2, HvCBF4, EDT1, OsWRKY11, TaWRKY32, OsTZF5), harpin protein (Hrf1), jasmonate
and ethylene-responsive factor 1 (JERF1), ethylene-responsive factor 1 (TSRF1), RING finger
protein (OsCOIN), stress/zinc finger protein (OsiSAP8), protein degradation (E3 ubiquitin
ligase OsSDIR1, OsPUB67), nucleolin (OsNUC1-S), among others, have lead to increased
stress tolerance [94,473,475,477–482]. In addition, photosynthetic-related genes, such as
the PcCFR gene, coding for a salt-tolerant chloroplastic fructose 1,6-bisphosphatase, trans-
genic overexpressing rice performed better under salinity, drought, and cold stress [446]
(Table 2), as well as over-expression of C4 photosynthetic genes (phosphoenolpyruvate
carboxylase enzyme encoding PEPC gene, pyruvate phosphate dikinase enzyme encoding
PPDK gene, NADP-dependent malic enzyme encoding NADP-ME gene [401]. Moreover,
overexpression of glycine maxω-3 fatty acid desaturase (GmFAD3A) enhances rice cold tol-
erance [483]. Regarding rice heat-tolerant lines, overexpression and knockout approaches
have been used with promising results using genes encoding for heat shock proteins
(hsp101, mtHsp70, sHSP17.7), regulatory proteins or transcription factors (ZFP, OsWRKY11,
OsGSK1, OsHsfA2e, Sp17), and other proteins (FAD7, SBPase) [428]). Wild and cultivated
rice pan-genome analysis [484], enhances the identification of benefic alleles as targets for
abiotic stress tolerance for rice improvement.

GWAS has also identified rice genotype-dependent differential methylation, indicating
a role of epigenetic DNA methylation modifications involved in drought stress [485,486].
The exploitation of RNAi technology has been used in rice to increase drought tolerance
by silencing C-kinase1 receptor, RING finger E3 ligase OsDSG1, miR170, miR171, miR172;
PCF5/PCF8 for cold tolerance [486]. Heterologous expression of salt-tolerance genes from
halophytes such as Suaeda salsa (SsNHX1), Spartina anglica (SaNHX1), Puccinellia tenuiflora
(PtNHA1 and PutNHX), Spartina alterniflora (SaVHAc1, SaSRP3-1), Atriplex hortensis, Suaeda
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maritime and Suaeda liaotungensis (Badh), Porteresia coarctata (PcINO1), and Avicennia marina
(Sod1) improved salt tolerance in transgenic rice [386].

Genome editing tools such as CRISPR systems have revolutionized rice breeding.
CRISPR/Cas9 gene editing has been shown to improve rice tolerance to cold (OsPIN5b, GS3,
OsAnn3, and OsMYB30) [447], drought (OsPYL9, OsERA1, OsSRL1, OsSRL2, DST, OsmiR535),
salinity and osmotic stress (OsSAPK2, OsRR22, OsDST, OsmiR535) [448–451,476,487], or var-
ious abiotic and biotic stresses (OsMPK5) [297], among other multi-targeted rice genes [488]
(Table 2).

Finally, an effective and promising strategy to increase tolerance to several abiotic
stresses is the use of effective microbes applied as inoculants individually or in consortia,
which have been shown to improve rice growth and development under drought, salinity,
or flooding conditions (reviewed in [77,79,85,489–495]) (Table 3).

Table 3. Examples of effective microbes used to combat abiotic stress in the three main cereal crops,
rice, wheat, and maize.

Crop Rice Wheat Maize

Growth
promoting

rhizobacteria or
fungi

species/strain

Acinetobacter lwoffii Acinetobacter sp. Alcaligenes faecalis (AF3)
Arthrobacter defluvii Arthrobacter protophormiae (SA3) Arthrobacter pascens

Azospirillum brasilense AZ39 Azospirillum brasilense Sp245 A. brasilense
Azotobacter vinellandii (SRI Az 3) A. brasilense NO40 Azospirillum lipoferum

Arthrobacter nitroguajacolicus (YB3 and YB5) Azotobacter chrocoocum (E1) Azotobacter sp.
Bacillus haynesii Bacillus amyloliquefaciens 5113 Bacillus amyloliquefaciens

Bacillus megaterium (NBRI 20M) Bacillus aquimaris B. licheniformis
Bacillus paralicheniformis B. insolitus Bacillus megaterium
Glutamicibacter sp. YD01 Bacillus licheniformis B. subtilis

Jeotgalicoccus huakuii Bacillus pumilus B. thuringiensis
Lysinibacillus fusiformis Bacillus subtilis (LDR2) Bukholderia phytofirmans (psJN)
Oceanobacillus picturae Bacillus thuringiensis AZP2 Enterobacter sp. (FD17)

Pantoea sp. Dietzia natronolimnaea (STR1) Herbaspirillum sp.
Phyllobacterium brassicacearum Enterobacter ludwigii Klebsiella variicola F2

Pseudomonas jessenii R62 Enterobacter sp. Massilia sp. RK4
Pseudomonas pseudoalcaligenes Exiguobacterium aurantiacum Paenibacillus favisporus

Pseudomonas putida Flavobacterium sp. Pantoea sp.
Pseudomonas synxantha R81 Klebsiella sp. Pseudomonas aeruginosa (Pa2)

Staphylococcus cohnii Marinobacterium sp. Pseudomonas entomophila

Glomus intraradices Mesorhizobium ciceri (CR-30 and
CR-39) P. fluorescens N3

Glomus coronatum Microbacterium spp. P. fluorescens YX2
Glomus constrictum Paenibacillus polymyxa Pseudomonas monteilii
Glomus claroideum Pantoea sp. P. putida (Q7, GAP-P45, UW4)

Streptomyces sp. strains Pseudomonas aeruginosa Pseudomonas stutzeri
Trichoderma harzianum Pseudomonas fluorescence P. syringae

P. syringae Proteus penneri (Pp1)
Pseudomonas sp. (E2) Raoultella planticola YL2

Rhizobium leguminosarum (LR-30) Rhizobium sp.
Rhizobium phaseoli (MR-2) Rhizoglomus intraradices

Serratia sp. Streptomyces sp.
Sinorhizobium sp. Trichoderma atroviride

Stenotrophomonas sp. strains

References [77,79,85,489–495] [77,79,489,490,494–499] [77,79,84,489,490,494,495,500–503]

3.3. Wheat (Triticum aestivum L.)

Several abiotic stresses severely affect wheat growth and yield, especially considering
that this crop is mainly cultivated in semiarid and arid regions worldwide where land
degradation, water scarcity, and soil salinity cause serious yield losses. Challenging partic-
ular complexity is presented by the hexaploid large genome (17 Gb and 80% of repetitive
sequences) in this crop [504].
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Wheat has a history of systematic breeding over 100 years; accordingly, huge wheat
germplasm has been developed that includes more than 800,000 local landraces, domesti-
cated wheat species, breeding derived, and synthetic accessions (obtained by interspecific
hybridization techniques) that contain drought-, heat-, cold-, salinity-, and waterlogging-
tolerant genetic resources [505]. Among the landraces, varieties, and breeding-derived
lines that exhibit drought tolerance are Aka Komugi (source of the dwarfing Rht8c allele),
Creole, Triticum boeoticum, Kauz, Ningchun 47, Nesser, NI-5439, WH-1021 and HD-2733,
Alvd//Aldan/Ias58*2/3/Gaspard, Pavon 76, Chakwal-86, drought-tolerant 1B/1R chro-
mosome translocation wheat genotypes, among others [505–508]. Wheat drought and
salt stress tolerance improvements have been obtained by the introgression of traits
from the wild relatives Agropyron elongatum and Aegilops umbellulata [509,510]. Muta-
tion breeding (gamma radiation) has led to the obtaining of multiple drought-tolerant
wheat lines [511,512]. Induced mutation has also been used to improve wheat salinity
tolerance (Binagom-1 mutant from L-880 parent cultivar) [513].

Although abiotic stress tolerance is complex and governed by multiple QTLs, im-
proved lines were developed for drought, heat, and salinity tolerance in wheat through
molecular breeding [417,514]. Synthetic hexaploid, as well as double haploid (DH) de-
rived wheat lines, have demonstrated improved drought tolerance. Linkage mapping,
GWAS, GBS, and QTL meta-analysis have potentiated the identification of wheat QTLs
and markers associated with drought tolerance in DH and synthetic hexaploid lines [505].
Traits related to abiotic stress tolerance QTLs include coleoptile length, stomatal movement
and density, yield, quality, cell and thylakoid membrane stability, relative water content,
flag leaf, ABA, days to anthesis, senescence, root architecture and length, seedling and
plant height, the maximum quantum efficiency of photosystem II, and shoot and root Na
exclusion (reviewed by Choudhary et al., 2019 and Goel et al., 2020) [417,508]. The use
of favorable allele identification by allele-specific markers identified drought adaptation-
associated genes encoding functions related to a transcription factor (Dreb1), a cell wall
invertase (TaCwi-A1), and lignin promotion (COMT-3B) [515]. Additionally, waterlogging
tolerance-associated QTLs have also been identified in wheat [439,516].

Improving wheat drought tolerance through genetic engineering has been reported [517].
Transgenic wheat expressing osmolyte-related genes with improved tolerance to drought
(pyrroline carboxylate synthase P5CS), salt and drought (mannitol-1-phosphate dehydroge-
nase mtlD), heat, salt, and drought (betaine aldehyde dehydrogenase BADH, betaA) has
been successful [396,518–523]. In addition, overexpression of transporter proteins (TaFER-
5B Ferritin) leads to heat, cold, and drought tolerance in transgenic wheat [452]. Moreover,
the expression of chaperons such as Cold shock protein SeCspA, and HVA1 (LEA), en-
hanced water deficit tolerance in wheat [524,525]. Expression of other stress-associated
proteins such as AISAP, TdPIP2, and TaPYL4 enhances drought, osmotic, and salinity stress
tolerance (Table 2) [453,454,526].

Overexpression of C4 photosynthetic genes like PEPC and PPDK improved drought
and high-temperature tolerance in wheat transgenic lines and also increased grain yield, root
system as well as higher osmolytes and photosynthetic capability [401,455,456,527] (Table 2).
Another carbon metabolism-associated gene encoding a fructan exohydrolase (1-FEH w3)
when overexpressed increases wheat grain yield under drought conditions [528].

Recent reports on transcription factors gene modulation/overexpression in wheat have
shown to improve tolerance to several abiotic stresses, mainly drought, salinity, and low
temperature; accordingly, successful results have been obtained by overexpression of SNAC1,
TaNAC69, TaBZR2, TaWRKY2, AtWRKY30, TaERF3, AtDREB1A, GmDREB1, TaDREB3, TaCBF5L,
HaHB4, AtHDG11, TaSHN1, TabZIP2, TaNF-YB4 (Table 2) [457,458,473,529,529–535].

Other regulatory proteins that belong to poorly attended areas of abiotic stress toler-
ance are the roles of post-transcriptional and post-translational regulation, which include
alternative polyadenylation, alternative splicing, riboswitches, differential RNA stabil-
ity/decay, specific RNA transport/localization, RNA modification, differential translation,
post-translation modifications, protein subcellular localization, stability, and activity [536].
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In wheat, an outstanding example of the role of post-translational modification of small
ubiquitin-like modifiers (SUMOylation) in abiotic responses has been reported. Overexpres-
sion of cysteine protease OVERLY TOLERANT TO SALT-1 (AtOTS1) improved drought
tolerance and better growth and physiological traits (increasing photosynthesis and chloro-
phyll content, and delayed senescence) in wheat [460]. In addition, overexpression of phos-
phoenolpyruvate carboxylase kinase-related kinase gene (TaPEPKR2) enhanced drought,
osmotic, and heat stress tolerance in transgenic wheat tolerance phenotype is linked with
better root system development (Table 2) [459]. Moreover, transgenic wheat over-expressing
the Calcineurin B-like protein-interacting protein kinase TaCIPK23 gene showed tolerance to
drought stress [537]. Identification of wheat stress-tolerant gene alleles/variants for use as
targets for manipulation is widened by wheat pan-genome studies [538].

Genome editing tools open new possibilities to make targeted modifications in the
wheat genome; in fact, improved drought tolerance has been obtained by the CRISPR-
Cas9 system editing TaDREB2 and TaERF3 multi-targeted wheat genes [461] (Table 2). In
addition, the beneficial effects of effective microbes in mitigating moderate and severe
abiotic stress in wheat have been reported (Table 3) [77,79,489,490,494–499].

3.4. Corn (Zea mays L.)

As it occurs in most crops, maize growth and productivity are also severely affected
by most abiotic stresses. This cereal crop is the most important in terms of global produc-
tion. Enhancing maize stress resilience through adaptive strategies is crucial to achieving
this goal.

Considerable breeding efforts have identified and utilized allelic variance that con-
fers abiotic stress tolerance in maize. QTLs identification/introgression and marker-
assisted selection molecular breeding (QTLian breeding) has also been used to improve
drought, waterlogging, heat, cold, and salinity tolerance in maize (extensively reviewed
in [201,417,439,539–541]). Selected traits for such purposes include cell membrane thermo-
stability, germination index, emergence rate, seedling height, leaf firing and temperature,
chlorophyll content, low anthesis-silking interval, brace roots, root length, root cortical
aerenchyma, shoot and root fresh and dry weight, grain weight, grain yield per plant,
kernels per ear, ear length, and reduced kernel abortion, among others [417,541]. Double
haploid (DH) technology has been widely and successfully used in maize, where more than
200,000 DH lines have been developed to obtain elite climate-resilient maize cultivars [542].

GWAS has identified gene variants and markers for maize abiotic stress-tolerance
improvement [543]. Importantly, root architecture plasticity QTLs as well as genes identified
by transcriptomic approaches under water-deficit conditions are closely related, as most
of them are specific and most regulated in the cortex of the mature root zone and the
elongation zone changes in the root tip, comprising functions associated with cell wall
reorganization, allowing continued root growth in water-deficit conditions [416]. These
pieces of evidence show clear root-plasticity and stress-tolerance productivity relationships
with multiple identified QTLs and promising candidate genes to increase stress tolerance
in crops. These findings are in agreement with maize hybrids that show higher root density,
have better water use, biomass accumulation, and higher yield potential, associated with
heterosis [544]. Attention should be considered on stress-responsive alternative splicing
variants, which have been identified in maize to affect root function and structure and cell
wall properties; in addition, changes in alternative splicing occur in a tissue-dependent and
developmental stage-dependent manner in response to stress [416].

Genomic selection studies identified 77 abiotic stress tolerance SNPs related to ten tran-
scription factors involved in phytohormonal signaling, stomatal closure, photosynthesis, and
root development [545]. Abiotic stress tolerance-related genes from local landraces and wild
relatives have enormous potential as genetic resources to enhance abiotic stress tolerance in
maize. That is the case of Zea parviglumis (teosinte) and Tripsacum, or waterlogging-tolerant
wild maize Zea nicaraguensis [201,546,547]. These genetic resources can be significantly
broadened by maize pan-genome and pan-transcriptome approaches [548–550].
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Numerous differentially expressed genes have been identified in water-stressed maize
plants, which provide candidate genes for stress tolerance [551,552]. Expressing genes for
compatible osmolytes or osmoprotectants such as amino acids and sugars, which assist
osmotic adjustment, has been successfully used to improve water use efficiency under
stressing and non-stressing conditions, as stated above. Yield improvement was observed
when trehalose-6-phosphate phosphatase is expressed in maize ears under both drought
and well-watered conditions [33]. On the other hand, bacterial cold shock proteins (CSPS)
are important bacterial RNA chaperones that maintain RNA stability for bacterial acclima-
tization to low temperature and drought stress, whose expression in transgenic maize
conferred tolerance to drought stress and improved grain yield under water-deficient con-
ditions [463]. Moreover, the expression of CspB protein leads to drought-tolerant transgenic
maize (Genuity® DroughtGuard™, MON 87460 event) and other drought-tolerant with
herbicide-resistance and/or insect-resistance were developed and successfully used under
field conditions (reviewed in [135]). In addition, pyramid heterologous co-overexpression
of betA (encoding choline dehydrogenase from Escherichia coli) and TsVP (encoding V-H+
-PPase from Thellungiella halophila) resulted in increased glycinebetaine content and H+
-PPase activity, solute accumulation, relative water content (RWC), decreased cell damage,
and higher yields under drought stress in transgenic maize plants [462] (Table 2). Het-
erologous expression of bacterial Vitreoscilla hemoglobin (VHb) increases waterlogging
tolerance in transgenic maize due to improvements in root and shoot traits [464]. Another
important trait is stomatal density and morphology, which impact CO2 uptake and tran-
spiration. These aspects are promising targets to improve water-use efficiency; in this
respect, it should be noted that the heterologous overexpression of AtSDD1 (encoding
subtilisin-like protease STOMATAL DENSITY AND DISTRIBUTION1) in maize leads to
enhanced drought tolerance by reducing stomatal density [465].

Notably, signaling components involved in abiotic stress response are also key targets
for crop improvement, which is the case of mitogen-activated protein kinases (MAPK).
Heterologous constitutive expression of NPK1 in maize increased leaf number, photo-
synthesis rates, and kernel weights under drought stress, leading to improved drought
tolerance [553].

Controlling transcription factors has emerged as a promising tool for controlling
the expression of multiple stress-responsive genes under multiple stressing actual field
conditions. Transcription factor overexpression has been successfully used in maize to
enhance abiotic stress tolerance, mainly drought, salinity, and high/low temperature.
A common finding is that overexpression of transcription factors confers tolerance to more
than one abiotic stress and sometimes also modifies disease resistance [473]. Improved
growth and corn yields were reported in transgenic maize-overexpressing ZmNF-YB2,
under field relatively severe drought conditions [554]. In addition, transgenic maize
overexpressing OsMYB55 increased drought and high-temperature tolerance by reducing
lipidperoxidation and ROS levels [466]. Waterlogging tolerance has also been improved in
maize plants overexpressing ZmERB180 [467] (Table 2).

Top biological regulators such as long non-coding RNA (lncRNAs) have been identi-
fied in response to combined abiotic stress (boron and salinity) in a deep RNAseq analysis
in the hyper-arid Lluteno maize landrace from the Atacama Desert, where 1710 lncRNAs
turned out to be responsive to both stresses’ combination [555]. This set of lncRNAs
could represent biomarkers and key targets acting at epigenomic, transcriptional, and
post-transcriptional levels in maize.

Epigenetic DNA methylation modification-related genes have been involved in cold-
stress tolerant maize, for example, root-specific hypomethylation of the ZmMI1 gene as
well as genome-wide global methylation shift [486]. Moreover, RNAi technology on PDH,
POK, MAPK, PLD proteins, and 11 miRNAs has been successfully used to improve drought
tolerance in this crop [486].

Improved grain yield under field drought stress has been obtained by the CRISPR-
Cas9 system editing the ARGOS8 maize gene [468]. Maize salinity tolerance has also been
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obtained by editing ZmHKT1 using the CRISPR-Cas9 system [469] (Table 2). Multiplexed
CRISPR/Cas9-based high-throughput targeted mutagenesis [556], multigene insertion,
and chromosomal engineering [557], as well as other CRISPR/Cas applications (heterosis,
haploid induction), will boost multi-stress-resilient smart maize and other crops [487].

Effective microbes have also been shown to alleviate salt and drought stress in maize
when used as inoculants [77,79,489,490,494,495,500–503] (Table 3).

4. Conclusions and Future Perspectives

The development of climate-resilient cultivars (climate-smart crops) is pivotal to
a sustainable way to provide sufficient food and energy supplies in a climate-changing
world. Since yield and abiotic stress tolerance traits are usually unlinked, it is hard to
select both characters by classic breeding. Thus, omics and site-directed mutagenesis
approaches could achieve improving stress tolerance on already high-yield selected lines
or simultaneously using these novel techniques.

Some considerations:

• Genome/Epigenome (nuclear and organellar) editing and manipulation of key multi-
stress-responsive genes or transcription factors have been shown to confer increased
tolerance to multiple stressors;

• Altering expression of organellar DNA damage repair system involved genes can
lead to more efficient mutagenesis, genetic diversity enhancement, and tolerance
improvement to ROS/oxidative stress;

• Emphasis must be considered on post-transcriptional and post-translational regulators
(including the huge diversity of types of lncRNAs and recently discovered glycoRNAs)
through the use of multiple omics (PlantOmics) integrating genome-wide associations
studies and pan-genomic/pan-transcriptomic strategies;

• Plant phenomics will accelerate plant breeding targeted and successful stress-resilient
cultivars and their wild relatives under real field conditions;

• It should be taken advantage of multiple cross-talk signaling among diverse challeng-
ing atmospheric and soil abiotic (and biotic) factors such as drought, salinity, nutrient
deficiency, soil properties, pollution, metal, submergence, anoxia, heat, low/high
temperature, wind, light, UV, CO2, methane, N2O, O3, osmotic, oxidative stress, in
energy-(sugars), organ-(aerial, roots), tissue-, and phenology-dependent manner;

• CRISPR/Cas9 multiple gene editing for simultaneous expression of structural and
regulatory genes represents a promising strategy in order to develop multi-stress-
resilient crops;

• Given the evident role of sugar sensing and signaling in abiotic stress responses (sugar-
insensitive Arabidopsis mutants are tolerant to abiotic and salt stress), we believe
that sugar signaling pathways are key targets to reducing sugar’s negative feedback
effect on photosynthesis, which could lead to abiotic stress tolerant phenotypes and
increased yields in crops;

• Undoubtedly, much remains to be discovered and learned from the study of resurrec-
tion plants and their associated microbiomes, particularly those tolerant to extreme
abiotic stress, i.e., Bryum argenteum, Craterostigma plantagineum, Pseudocrossidium repli-
catum, Selaginella lepidophylla, Syntrichia (Tortula) ruralis, the Arctic and Antarctic moss
Sanionia uncinata, desert moss Syntrichia caninervis;

• Sustainable management of agricultural water and soil resources;
• Diversification of food supply (nutritional diversity) with local plant species;
• Multi-stress experimentation in the laboratory considering variable intensity and

timing and recovery capacities related to photosynthesis and growth parameters;
• The enrichment of the seed and soil microbiomes through the use of microbe-effective-

based inoculants undoubtedly contributes to the integrated management of crops to
mitigate the effects of the multiple stressors that challenge them.

• The integration of all available molecular tools to develop smart climate crops without
yield penalty and with no increase in cultivated land area is absolutely necessary.
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