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Abstract: Severe drought conditions and extreme weather events are increasing worldwide with
climate change, threatening the persistence of native plant communities and ecosystems. Many
studies have investigated the genomic basis of plant responses to drought. However, the extent of
this research throughout the plant kingdom is unclear, particularly among species critical for the
sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-
phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research.
Bioinformatics pipelines were developed to mine and link information from databases and abstracts
from 7730 publications. This approach identified 1634 genes involved in drought responses among
497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P
interactions have been described within model organisms or crop species. Our analysis identifies
several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked
to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential
G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding
G2P studies to include non-model plants, especially those that are adapted to drought stress, will
help advance our understanding of drought responsive G2P pathways.

Keywords: arid habitats; climate change; drought stress; green plants; genome-to-phenome; text mining

1. Introduction

Anthropogenically driven climate change is expected to exacerbate drought con-
ditions in landscapes around the world, currently affecting up to 85% of the world’s
population [1–3], reviewed in [4]. Climate change is causing an increase in mean annual
temperatures, which could potentially increase by 2 ◦C globally by 2050, and nearly 6 ◦C
by 2100 [5]. Changes to precipitation patterns are also expected, with some regions pre-
dicted to experience severe flooding or drought with greater frequency [6]. For example, a
recent study by Williams et al. [6] revealed that southwestern North America has recently
experienced the largest megadrought in the past 1500 years, which is largely attributable to
anthropogenic climate change magnifying natural climatic variability [7]. The expected
increases in drought due to higher temperatures and reduced precipitation are significant
threats to agriculture, and natural communities and ecosystems [8]. The capacity of crop
plants to adapt to new drought conditions is essential for providing food security as hu-
man population growth continues [9,10] (more text on this topic and literature review is
provided in the Supplemental Text S1 given in supplementary materials).

Beyond agricultural plant species, there is great interest in understanding how natural
plant species and communities respond to intensifying drought stressors to preserve stable
and functioning ecosystems in a changing world reviewed in [11]. For many plant species,
the ability to naturally disperse towards areas with optimal niche space is limited by
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factors such as short seed-dispersal distances and habitat loss and fragmentation. As a
result of these or other limitations, geographic shifts may not keep pace with new and
altered habitats produced by climate change [12,13]; reviewed in [11]. This is especially
true when other anthropogenic threats (e.g., habitat loss, fragmentation, and reductions
in population size) occur jointly with climate change [14,15]. Therefore, identifying the
mechanisms allowing plants to persist as climate change, and especially drought, proceeds
and intensifies is paramount for evaluating adaptive capacity of these populations and
designing and implementing best management practices for a sustainable future [16].

There is an urgent need to identify mechanisms of response to the stresses caused by
climate change, particularly drought. Reductions in the cost of high-throughput nucleotide
sequencing over the past two decades [17] have made it possible to investigate the genomic
underpinnings of these responses in non-model species at a much greater scale and rate.
While the genomic basis of drought adaptation has been explored in well-resourced crop
plants (e.g., corn, Zea mays; rice, Oryza spp.; wheat, Triticum spp.) [18–20], plant model
systems (e.g., Arabidopsis thaliana) [21,22], and forestry species reviewed in [23], fewer
non-model or natural plant systems have been explored to the same extent. This disparity
is reflected in the number of genomic resources that are readily available for plant species.
For example, of the 243 unique and chromosome-level plant reference genomes available
on NCBI (as of December 2020), only 20% are from species of non-human use, as classified
by the Kew Gardens [24]. We anticipate this disparity in genomic resources may be due
to several barriers to conducting conservation genomic research (i.e., the ‘conservation
genomics gap’) [25,26], including the cost of sequencing and assembling the large and
complex genomes that many plants possess [27,28]. Therefore, a cost-effective and targeted
approach to finding genes associated with drought response is required to fill this gap for
natural populations.

Reviewing the state of research focused on G2P pathways will allow for focused
hypothesis-testing research on non-model plant species for which little genomic data is
available. Mining genomic and phenomic data across a wide phylogenetic breadth will
allow for a better understanding of the diverse and complex plant responses to drought
and provide novel opportunities for crop improvement. While mining methods applied
to publicly available datasets and publications can advance our understanding of G2P
processes, there is a stark lack of infrastructure available to perform such searches and
analyses in a thorough fashion. While many genetics and genomics journals now require
that sequence data be publicly available in a repository (e.g., PLoS ONE enacted a “Data
Availability Statement” requirement in March of 2014 [29]), this has not always been the
case and many studies lack connectivity to an available dataset [30]. This creates an urgent
need to increase database connectivity to aid in increasing reproducibility and allowing for
meta-analyses.

To make efficient and rapid gains in understanding the genomic-basis of plant response
towards drought, we developed a literature and database search pipeline and performed
a meta-analysis to identify focal taxa of research on genes underpinning drought-stress
response across the primary literature. Abstracts from these articles were mined using the
R package ‘G2PMineR’ [31] to produce networks connecting genes to phenotypic traits
associated with drought-stress responses. Identifying key gene networks and drought-
adapted species for which genomic resources may be available for will provide potential
routes forward in drought G2P research. Databases containing genetic and taxonomic
data related to these publications were queried to identify patterns of genome-to-phenome
research and to assess connectivity of these publications and databases. This methodology
enables investigations into how genes are associated with physiological processes and
drought-stress response strategies across a broad range of taxa. This study gives a broader
understanding of drought G2P research in plants. It has generated a list of genes and
associated phenotypes to provide a foundation for studying the genomic and phenotypic
basis of drought tolerance of less-studied natural plant species worldwide.
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2. Results
2.1. Literature Mining

The PubMed search query used in this study resulted in the acquisition of 7730 abstracts from
papers published from January 1998–December 2020. Abstract mining using ‘G2PMineR’ [31]
produced a total of 2642 consensus abstracts having data for taxa, genes, and phenotypes
(Table S1).

2.2. Taxa

Within the ‘G2PMineR’ consensus abstracts, 497 species or subspecies, representing
296 genera and 98 families (91 angiosperm families, four gymnosperm families, two fern
families, and one lycophyte family; Table S2) were identified. The top reported species
is Arabidopsis thaliana L., with 641 mentions in the consensus abstracts (Figure 1A). Other
highly studied species include Oryza sativa L. (Poaceae; 259 mentions), Triticum aestivum
L. (Poaceae; 131 mentions), Zea mays L. (Poaceae; 87 mentions), and Glycine max (L.) Merr.
(Fabaceae; 77 consensus mentions). The most studied genes are reported in a wide breadth
of taxa, indicating that they play a role in drought response across diverse plant lineages
(Figure 1D). Poaceae had the highest representation, with 73 taxa mentioned in consensus
abstracts. Other highly represented families included Fabaceae (66 taxa) and Solanaceae
(29 taxa). Poaceae species were the most mentioned in consensus abstracts (828 mentions),
followed by Brassicaeae (800 mentions) and Fabaceae (417 mentions). Within the consensus
abstracts, 414 (83.30% of species mentioned) are classified for human use (Table S2). Of the
plants with human uses according to the Kew Gardens Checklist of Useful Plants [24], the
most common uses were medicinal (318 taxa), environmental (251 taxa), food (229 taxa),
materials (218 taxa), and gene sources (208 taxa), with these categories not being mutually
exclusive. Of the plants identified in consensus abstracts, 103 (20.7% of consensus abstract
taxa) were listed as having chromosome level assemblies per NCBI database (Table S2).

Figure 1. Most highly referenced (A) species, (B) genes, and (C) phenotype words within the
consensus abstracts. (D) Phylogeny of families represented in the consensus abstracts shows that
families with model or crop plants (e.g., Brassicaceae, Fabaceae, and Poaceae) were the most highly
represented, both in terms of species included in studies and number of abstracts in which they
were mentioned.

Locality data were successfully downloaded for 106 species mentioned in the total
abstracts lacking human use according to the Kew Gardens Checklist of Useful Plants [24].
Of these, 31% (33 of 106 species) were found to occur in hyper-arid environments based on
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aridity index values (AI < 0.05), though none of these species were included in the consensus
abstracts (Figure S1, Table S3). One occurrence for Tillandsia ionantha Planchon was found
in northern Africa and was excluded as it is native to Central America and Mexico and the
accuracy of this occurrence could not be confirmed [32]. The most mentioned plant species
lacking from hyper-arid environments lacking human use per Kew list were: Cleistogenes
songorica (Roshev.) Packer (Poaceae; eight abstracts), Caragana korshinskii Kom. (Fabaceae;
seven abstracts), Malus prunifolia (Willd.) Borkh. (Rosaceae; seven abstracts), Aeluropus
littoralis (Gouan) Parl. (Poaceae; six abstracts), Malus sieversii (Ledeb.) M.Roem. (Rosaceae;
six abstracts), Boea hygrometrica (Bunge) R. Brown (Gesneriaceae; five abstracts), Reaumuria
soongorica (Pall.) Maxim. (Tamaricaceae; five abstracts), Alhagi sparsifolia Shap. (Fabaceae;
four abstracts), Rosa hybrida (Rosaceae; four abstracts), and Chorispora bungeana Fisch. &
C.A. Mey (Brassicaceae; three abstracts).

2.3. Genes

A total of 1634 genes, including single-copy genes and gene groups (e.g., WRKY)
associated with drought response phenotypes were found in the ‘G2PMineR’ consensus
abstracts (Table S4). The top-10 cited genes included oasC (O-acetylserin (thiol) lyase
isoform C; 345 mentions), cysC (cysteine synthase C1; 203 mentions), NSY (chloroplastic
neoxanthin synthase; 183 mentions), CITRX (Cf-9-interacting thioredoxin; 181 mentions),
NAC (NAM, ATAF, and CUC transcription factors;128 mentions), WRKY (WRKY-domain
containing transcription factors; 127 mentions), SODCC.1 (superoxide dismutase [Cu-
Zn] 1; 118 mentions), MYB (MYB DNA-binding domain-containing transcription factors;
105 mentions), PLA3 (probable glutamate carboxypeptidase; 97 mentions), and LEA (late
embryogenesis abundant proteins; 87 mentions; Figure 1B).

2.4. Phenotypes

A total of 118 phenotypes from our curated drought phenotype lexicon were identified
in the consensus abstracts (Table S5). The top 10 phenotype words within the consen-
sus abstracts were “drought” (1307 mentions), “growth” (940 mentions), “development”
(845 mentions), “salt” (823), “abscisic acid” (726 mentions), “cold” (551 mentions), “salin-
ity” (439 mentions), “root” (430), “seed” (357 mentions), and “stomata” (329 mentions)
(Figure 1C). The top drought strategy for which phenotypes were mentioned was the
“avoidance” strategy, with 6383 mentions. For other drought strategies, the total mentions
for phenotypes of a given group was: 1751 for “detection”, 2945 for “recovery”, 3570 for
“general stress”, 3703 for “escape”, and 5765 for “tolerance”.

2.5. Gene to Phenotype Interactions

Of the top gene and phenotypes, oasC and general phenotype “drought” had the
greatest connectivity (Figure 2). oasC also had high connectivity with “abscisic acid”,
“development”, and “growth”. CITRX, WRKY, NAC, NSY, and cysC genes were also highly
connected to the phenotype “drought”. Most genes were associated with multiple drought-
response strategies: a total of 759 genes (~48% of genes identified in consensus abstracts)
were associated with phenotypes of all major drought-response strategies, 366 (21%) were
associated with “avoidance”, “escape”, “recovery”, and “tolerance”, and 120 (8%) of
consensus genes were associated with “avoidance”, “detection”, and “tolerance” (Figure 3).
These genes were associated with a variety of gene ontology (GO) categories, though
the most common GO categories were abscisic acid response (GO:0009737, 73 genes),
water deprivation response (GO:0009414, 66 genes), and abscisic acid activated signalling
pathways (GO:0009738, 62 genes).
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Figure 2. Bipartite plot showing the relationship between most referenced phenotypes (top row)
and the most referenced genes with which they are associated (bottom row). The width of the block
indicates the strength of the association for a given phenotype or gene and wider connections indicate
more abstracts demonstrating that connection. The most highly mentioned phenotype word in
the consensus abstracts was “drought”, which was highly associated with all top ten most highly
mentioned genes, as well as CAT2, RD29A, and DREB genes.

2.6. Assessing Connectivity of Sequence Data and Taxonomy Databases

In total, 1712 (22.15%) of the 7730 abstracts were associated with sequence data and
1865 (24.13%) were associated with taxonomic data on NCBI. Only 1624 (21.01%) abstracts
had connectivity to GenBank databases, for both taxonomy and gene data, for each publi-
cation, per assessment using ‘rentrez’ [33].

A total of 583 taxa were found to be associated with the PubMed IDs using ‘rentrez’.
Of these, five taxa were at the familial level, 25 taxa were at the generic level, and 15 taxa
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were identified as non-plants. The publications included one to 152 species/taxa, with all
but six focusing on less than 10 taxa. A total of 192 taxa were shared with the taxa identified
in the abstract mining search.

A total of 423 genes with the GenBank database were associated with the PubMed
IDs. Few studies were associated with many nucleotide sequences (e.g., 37 studies were
associated with greater than 1000 sequence accessions). The most common genes from
the studies with sequence accessions in GenBank included oasC (274 accessions), NAC
(37 accessions), and WRKY (35 accessions). A total of 234 genes identified from sequences
were shared with those identified in the abstract mining search.

Due to a lack of phenotypic data in NCBI accessions, phenotype data had to be mined
from abstracts. This produced a total of 114 phenotypes identified from abstracts that
had associated sequence and taxonomy data, all of which were included in the abstract
mining search.
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Figure 3. Venn diagram of the five major drought response strategies (avoidance, detection, escape,
tolerance, and recovery) showing the overlap of genes associated with each category.

3. Discussion
3.1. Trends and Gaps in Plant Drought Research

Only 21% of studies (1624 of 7730 abstracts) had connectivity to NCBI databases for
gene sequences or taxa. Of these, 1533 studies focused on one taxon, with the greatest
number of taxa studied in any one study being 152. Most studies also focused on only one
sequence, while some were associated with over 100,000 sequences. Presumably, the studies
with greater numbers of sequences but only one taxon associated with them in databases
represent expression characterization studies with many replicates of the taxon (e.g., [34,35]).
The most studied species from papers with both sequence and taxon database connectivity
was Arabidopsis thaliana, with 730 studies on this species being linked to both sequence and
taxon data. While these sequence data were associated with plant-oriented studies, several
taxa associated with these data were not plants. For example, a study on calcineurin B-like
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proteins in Arabidopsis is also associated with sequence data from Rattus norvegicus (brown
rat), which was used to test for interactions between calcineurin B-like proteins [36]. Some
bacteria species were identified, which were mostly used in gene transformation or cloning
experiments (e.g., [37]). While the ‘G2PMineR’ workflow is naïve to whether a given
gene mentioned in abstracts is characterized from an expression study or from genomic
sequence, this does not affect the interpretation of the workflow results. The ‘G2PMineR’
abstract mining workflow was more successful at making G2P connections, with 34%
of abstracts containing gene, taxa, and phenotype data. Consensus abstracts contained
all requisite information for making associations between taxa, genes, and phenotypes,
which is apparently not possible to any meaningful level using database associations.
Characterization of genes, species, and phenotypes involved in drought tolerance was
more successful using the G2PMineR pipeline, compared to simply using manual searches.
For example, 1634 genes were identified using ‘G2PMineR’ while only 423 genes associated
with the PubMed abstract set were found within GenBank. Interestingly, only 234 genes
were shared within the two datasets (Figure 4).
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The ‘G2PMineR’ workflow illustrates the current state of drought response research
among plant species regarding different plant species under investigation. Approximately
83% of plant species identified in plant drought abstracts represent either model species,
crop species, or species of human use. The top species identified was the model plant
species Arabidopsis thaliana L., which is not surprising because Arabidopsis is the primary
model plant for genetic research and has a well-assembled and annotated genome with
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vast genetic resources available for G2P research [38]. In addition to Arabidopsis thaliana,
crop species such as Oryza sativa L. (rice) or Zea mays L. (corn) have been the primary focus
of drought research, which is expected given that climate change, especially droughts,
poses a threat to agriculture [39]. A large phylogenetic breadth of species was found in our
search across the plant kingdom. The taxa identified in the consensus abstracts represented
98 green plant families, with 95 of the represented plant families being seed-plant families.
While species of many families were included in the consensus abstracts, these species were
generally biased towards families with model plant species and economically important
species, such as Poaceae, Fabaceae, and Solanaceae (Figure 3). Outside of seed plants, only
two fern (Hymenophyllaceae and Pteridaceae) and one lycophyte (Selaginellaceae) families
were represented. Because of this bias, researchers may have only a narrow understanding
of how plants adapt and respond to drought stress. The use of genetic model plants and
crop plants in any genomic or adaptive capacity research is of great importance and may
be broadly applicable across a wide taxonomic breadth (e.g., [40]). However, non-model
plants, plants of arid ecosystems, and plants native to threatened ecosystems need broader
inclusion in G2P drought research. Studying the G2P drought response pathways of plants
that are well-adapted to dry environments, such as the taxa highlighted in Figure S1, will
contribute to our understanding of the various metabolic and physiological pathways that
increase drought tolerance, and could potentially be used for crop improvement. While
a similar number of taxa were identified using ‘rentrez’ and ‘G2PMineR’ (391 versus 305,
respectively), there was little overlap, with only 192 (~28% of all taxa identified from both
abstract and database mining) being found in both abstract sets.

Relatively few plant species found in consensus abstracts (103 of 497; 20.7% of consen-
sus abstract taxa) had high quality genome assemblies (i.e., assembled to chromosome level)
available, with a bias towards model organisms. With decreasing costs, increasing quality,
and the ease of generating whole genome assemblies for non-model organisms [17], there
are more opportunities to include non-model and natural plant species in G2P research.
We anticipate that the efforts of individual research labs and genomic consortiums (e.g.,
10,000 Plant Genomes Project [41]) will help bridge this gap in the coming years.

Few of the species targeted in G2P research thus far occur in arid or drought-prone
areas. Only 16.70% of species and subspecies identified in the consensus abstracts lacked
human use per the Kew Gardens checklist. Of the non-model or non-frequently used plant
species identified across all abstracts, roughly 33% occur in arid regions (Figure S1). While
the study of model and crop plant species is important, as these species have the financial
resources and infrastructure available for in-depth genomic research, more effort needs to
be directed to study species in ecosystems in which drought-adapted species have evolved.
Among these, the species identified from all abstracts native to hyper-arid habitats and
well-adapted to severe droughts belong primarily to families for which genomic resources
are readily available (e.g., Brassicaceae, Fabaceae, Poaceae, and Rosaceae). Consequently,
these species are good candidates for G2P research, potentially revealing new mechanisms
to improve drought tolerance in con-familial crop species. Given that no species in the
consensus abstracts occur in areas where plants must be highly adapted to drought-stress,
this is an area that needs more attention by researchers.

3.2. Drought Response Strategies

In the consensus abstracts, the most-studied responses fell under the drought avoid-
ance strategy, which includes the ability of plants to reduce drought stress by minimizing
water loss and increasing water uptake [42]. This observation is consistent with the high
occurrence of keywords such as abscisic acid (ABA) and osmotic adjustment. ABA is
well known to induce stomatal closure and increase the root to shoot ratio, while osmotic
adjustment allows plants to extract more water from drying soil profiles [43–45]. Many of
the top genes mentioned in consensus abstracts comprise transcription factors (e.g., NAC,
MYB, WRKY) that affect stomatal activity [46,47], which agrees with the high occurrence
of avoidance strategy words in consensus abstracts. In addition to avoidance, strategies
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that reduce drought-induced cellular damage due to accumulation of toxic molecules,
particularly “synthesis of osmoprotectants” and “antioxidant production”, were also often
mentioned in consensus abstracts. Relatively fewer studies were associated with mecha-
nisms of drought detection or escape and recovery from drought, suggesting a need for
more research in these areas. While drought was the main focus of this G2P investigation,
other stressors like cold and salt were commonly mentioned. This result reflects the fact
that plants exhibit specific, as well as shared, responses to different abiotic stresses [44].
Some of the damage caused by various abiotic stresses (e.g., increased ROS production
and dehydration) can be similar [48,49]. With shared responses, plants can use many of
the same genes to minimize damage and cope with multiple stresses. We anticipate that
as plant G2P research continues, findings across stress types (e.g., temperature, light, salt,
heavy metals) will be applicable to one another and overall enhance our understanding of
stress response.

3.3. Candidate Genes for Future G2P Research

Highly reported genes signal broad function in stress response pathways, particularly
those in osmoprotectant and antioxidant pathways, and were associated with taxa of many
of the plant families represented in this study. Of the top ten most referenced genes, oasC,
cysC, LEA, NAC, and SODCC.1 have functions associated with, but not limited to, osmo-
protectant and oxidative pathways [50–52]. Other commonly referenced genes function in
carotenoid metabolic pathways involved in synthesizing ABA precursors or antioxidants
such as β-Carotene [53,54]. Many of the genes in the consensus abstracts include transcrip-
tion factors, such as WRKY, NAC, and MYB, which have widespread functions in stress
response pathways, including stomatal closures [46,47]. These transcription factors act like
‘switches’ to regulate expression of many genes and are predicted to be one of the most
important mechanisms for plant drought response and increase our capacity to engineer
more resilient plant species [55,56].

Most of the top occurring genes were found to be highly connected to the pheno-
type “drought” in the consensus abstract, which is to be expected given our initial search
query. However, our top reporting genes (e.g SODCC.1., oasC) showed high connectivity
with many phenotypes of different stresses (e.g., “salt”, “cold”), response strategies (e.g.,
“growth”, “development”), and phytochemical pathways (e.g., “abscisic acid”, “proline”,
“salicylic acid”). This indicates how genes with more targeted functions (e.g., osmopro-
tectants and antioxidants) can play general roles in stress response. Indeed, DroughtDB
by Alter et al. (2015) [57] shows how some genes can play multiple roles across drought
response. As G2P plant drought research continues to expand, we expect the functions of
genes will become better characterized. In the meantime, this meta-analysis provides a list
of candidate genes identified across taxa that can be broadly explored in species of interest
using various methods, such as the mining of draft genomes (e.g., [58]).

While there is a large focus on phenotypes associated with the drought-avoidance and
-tolerance strategies in the consensus abstracts, genes contributing to phenotypes associated
with all of the drought response strategies were highly referenced in the consensus ab-
stracts (Figure 3). These include all the most studied genes identified in this meta-analysis.
This indicates that while there are some gaps in focal phenotypes and drought response
strategies, many genes underpinning these phenotypes and response strategies have likely
been well characterized and could readily be transferred to and used in studies of many
other drought response strategies if they are not already in use.

3.4. Limitations of Literature and Database Mining

While we have been able to identify numerous genes and species used in the study
of drought stress response, there are limitations to the text mining methods employed
here. One primary limitation is that the text mining methods outlined here mine only
published abstracts. Given publisher constraints, such as word count, abstracts often
give broad summaries and may not list specific genes or species which were studied. For
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example, studies on expression patterns and functional pathways for gene families are
quite common and these publications may only provide the gene family or group being
studied (e.g., WRKY) and not specific members of these gene families. While measures
were taken to account for such studies (e.g., including the gene family/group name in
the searches, as well as limiting the final consensus abstract genes to and grouping by
SwissProt families), conclusions cannot be drawn on which specific genes within the gene
families confer improved drought-stress responses without a more in-depth reading of
Results and Discussions sections of published literature.

Furthermore, there is a disconnect between publications and the databases in which se-
quence data are stored: only 21% of abstracts were associated with sequence and taxonomy
data in NCBI databases. Some of this may be due to the timing of publication (e.g., older
publications are less likely to have sequence data deposited into GenBank (Figure S2)), but
as noted by searching GenBank, even recent publications are not always linked to the genes,
genomes, or proteins within databases. G2P research and meta-analyses/reviews such as
this one will benefit from greater connectivity between sequence databases and publications
(e.g., linking a sequence in GenBank to a publication by including an identification number
such as a PubMed ID).

4. Conclusions

Gaps have been identified in the plant taxa used for G2P drought research. Most
effort in this area has focused on model plants and not on plants naturally occurring in
drought-prone ecosystems. Several species of hyper-arid ecosystems, with close relatives
whose genomes have been sequenced, were identified providing species for future research
on drought response G2P pathways. Many commonly studied genes contribute to multiple
drought response strategies, even though the research focused on a subset of these strategies.
These genes provide excellent starting points for G2P research on non-model plants with
few genomic resources. Given the gaps in focal taxa and the availability of genomic and
genetic resources, especially for commonly studied genes and gene families, this presents a
clear path for rapidly advancing drought response research in the future.

5. Materials and Methods
5.1. PubMed Search

The PubMed (https://pubmed.ncbi.nlm.nih.gov/ (accessed on 3 January 2021)) database
was chosen for our literature search, as it includes all genetic and genomic studies hosted
through NCBI’s GenBank and is open source. We developed search query strings in
PubMed to find all publications relevant to literature pertaining to genes underpinning
plant drought. We manually evaluated results of several query strings for content and veri-
fied targeted searches using the AbstractClusterMakeR and MembershipInvestigateR functions
in the R package ‘G2PMineR’ (https://buerkilabteam.github.io/G2PMineR_Web/ [31]).
The results of the final query, completed in December 2020, included publications between
the years 1998 and 2020 with the terms “plant AND drought AND (resistance OR toler-
ance OR response OR avoidance OR resilience OR susceptibility OR escape) AND gene”.
Figure 5 shows the workflow for analyses performed on the downloaded abstract data.

5.2. Literature Mining and Analyses

All abstracts were mined for species studied, genes referenced, and phenotypes ex-
pressed using the R package ‘G2PMineR’ [31]. We used the function SpeciesLookeR to mine
abstracts for all species characterized as ‘green plants’ (Class Viridiplantae) within the
Global Biodiversity Information Facility (GBIF; GBIF.org) database. To ensure that our
assessment included up-to-date taxonomies, we used the ‘taxize’ R package [59] to identify
synonyms and the primary accepted scientific name for each taxon used in the abstracts.
We further determined how many plants are assigned as being useful to humans (i.e., plants
for foods, poisons, medicines, environmental uses, social uses, fuels, or materials) per a list
generated by the Kew Gardens [24], to assess bias towards non-model organisms. NCBI

https://pubmed.ncbi.nlm.nih.gov/
https://buerkilabteam.github.io/G2PMineR_Web/
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(https://www.ncbi.nlm.nih.gov/genome/ (accessed on 5 January 2021)) was queried for
species with chromosome level genome assemblies to determine how many of the species
mentioned in abstracts included here have high-level genome assemblies. To determine
how species of interest identified from these abstracts are geographically distributed, GBIF
(see [60] for the GBIF dataset) and iDigBio (https://www.idigbio.org/ (accessed on 7 April
2021)) were queried for all species lacking human use per the Kew Gardens Checklist of
Useful Plants [24]. This search was restricted to these non-model and/or crop plants, as
species of agriculture and horticulture are often logged in public databases through citizen
scientists, due to biases in observations being made in or near areas of human activity, and
many of these occurrences do not represent natural occurrence [61]. Occurrence data were
cleaned to remove data lacking complete coordinates, having unlikely coordinates (e.g.,
0,0), and lacking environmental data using the ‘scrubr’ R package [62] using aridity index
(AI) as a reference (https://cgiarcsi.community/data/global-aridity-and-pet-database/;
(accessed on 14 February 2021) [63]). Occurrence data were used to extract AI values, which
were then used to identify species that are adapted to low-water stress, particularly those
found in hyper-arid (AI < 0.05) environments (all occurrence data used to identify species
of hyper-arid environments are available at DOI:10.5281/zenodo.7153278).

To understand which genes are being described in each study, the ‘G2PMineR’ function
GenesLookeR was used to search abstracts for 40,435 genes, their putative gene families, and
ontologies as listed in SwissProt for Viridiplantae, as of July 2020. To capture genes and
broad family groups (e.g., WRKY as opposed to WRKY1) that were cited in abstracts, but not
always captured in SwissProt, we generated an additional lexicon of genes and gene family
names from the DroughtDB [57], the Plant Transcription Factor Database (http://planttfdb.
gao-lab.org/ (accessed on 31 August 2020)), and those reported in previously published
plant drought gene reviews (e.g., [9,64,65]). The ‘G2PMineR’ function SynonymReplaceR is
used to replace gene synonyms with accepted gene names from SwissProt. See Table S4 for
a complete list of gene and gene family names identified in extracted abstracts.

Finally, we used the ‘G2PMineR’ function PhenotypeLookeR to search abstracts for
phenotypic words of interest, as defined by a curated glossary from the Missouri Botanical
Garden [66]. To make a lexicon that is specific to drought, we curated a drought phe-
notypic lexicon using terminology from Farooq et al. (2012) [67], De Micco & Aronne
(2012) [68], and Vilagrosa et al. (2012) [69]. To test whether genes were associated with phe-
notypes that represented different drought response categories (Figure S3), all phenotypes
were manually categorized as being relevant to drought detection, resistance (i.e., escape,
avoidance, and tolerance), and/or recovery. See Table S6 for a full list of phenotypes and
categories used.

All downstream analyses for species, genes, and phenotypes were conducted for
abstracts that had all three search items represented using the ConsensusInferreR function
within ‘G2PmineR’. In order to elucidate the link between genotypes and phenotypes,
networks were developed using the ‘G2PMineR’ function PairwiseDistanceInferreR, which
generates a pairwise distance matrix between each gene and phenotype using the number
of shared abstract matches. To place taxa represented in the consensus abstracts into
a phylogenetic context, families of all represented taxa were placed into a family level
flowering plant phylogeny [70]. Family placement for each taxon was acquired from NCBI
using the ‘taxize’ R package [59]. Consensus abstract mentions, taxa, genes, and phenotypes
represented were then tabulated for each family.

5.3. Assessing Connectivity to Databases

The R package ‘rentrez’ [33] was used to mine gene and taxonomy information for
publications that have both GenBank sequence and taxonomy data linked to the respec-
tive PubMed ID. To ensure that taxonomy was standardized across comparisons, the R
package ‘taxize’ [59] was used to evaluate taxa and replace any synonyms with the ac-
cepted taxon name. Due to a lack of standardized formatting of data within fasta headers,
‘G2PMineR’ [31] was used to mine gene names from headers using ‘G2PMineR’ databases.

https://www.ncbi.nlm.nih.gov/genome/
https://www.idigbio.org/
https://cgiarcsi.community/data/global-aridity-and-pet-database/
http://planttfdb.gao-lab.org/
http://planttfdb.gao-lab.org/


Int. J. Mol. Sci. 2022, 23, 12297 12 of 16

Phenotype data for abstracts with both gene and taxonomy data database associations
were then subset from the consensus abstract phenotype data for comparisons to abstract
mining results.
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