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Abstract: Raman spectra of oxacillin (OXN), carbenicillin (CBC), and azlocillin (AZL) are reported
for the first time together with their full assignment of the normal modes, as calculated using
Density Functional Theory (DFT) methods with the B3LYP exchange-correlation functional coupled
to the 6-31G(d) and 6-311+G(2d,p) basis sets. Molecular docking studies were performed on five
penicillins, including OXN, CBC, and AZL. Subsequently, their chemical reactivity and correlated
efficiency towards specific pathogenic strains were revealed by combining frontier molecular orbital
(FMO) data with molecular electrostatic potential (MEP) surfaces. Their bactericidal activity was
tested and confirmed on a couple of species, both Gram-positive and Gram-negative, by using the
disk diffusion method. Additionally, a surface-enhanced Raman spectroscopy (SERS)—principal
component analysis (PCA)-based resistogram of A. hydrophila is proposed as a clinically relevant
insight resulting from the synergistic cheminformatics and vibrational study on CBC and AZL.

Keywords: azlocillin; carbenicillin; oxacillin; molecular docking; antibiotic susceptibility testing;
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1. Introduction

Antibiotics are drugs with specific activity against bacteria, acting by either killing
the pathogen or inhibiting its growth. The inhibition takes place by interfering with the
process of cell-wall synthesis, a specific mechanism of action to the group of antibiotics
called β-lactams. Basically, β-lactams target the penicillin-binding protein (PBP) enzymes and
irreversibly inhibit them, hindering biosynthesis of the peptidoglycan layer of the bacterial
cell wall. By compromising the cell wall’s integrity, cell autolysis is caused. Of the several
classes of β-lactams, penicillins are the most diverse and most commonly used.

Penicillins are a group of natural antibacterials semisynthetized from Penicillium mold,
with a general molecular formula of R-C9H11N2O4S. A penicillin molecule is made up of
two main components: A penam core common for all penicillins—a 6-aminopenicillanic acid
(6-APA)—and a side-chain R, which varies from one penicillin to another. 6-APA (shown in
Table 1) is the starting block of the synthesis and is obtained naturally from the fermentation
medium of the mold. It consists of a thiazolidine ring (a five-membered saturated ring with a
thioether group in position 1 and an amine group in position 4) merged with 2-azetidinone
(a four-membered β-lactam). The various R side-chains from the 6-position of 6-APA are
the ones that make a difference in penicillin’s molecular structure. The final products are
the synthesis results of fermentation to which particular side-chains are added [1].
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Table 1. Chemical structure of penicillins, BPN, OXN, APN, CBC, and AZL together with the
pathogens presenting specific sensitivity or resistance to each of them.

Chemical structure of 6-APA and the position of the side chain R in penicillin’s structure; β-lactam
ring is marked in grey.

COMPOUND
FAMILY

(GENERATION)
CHEMICAL STRUCTURE SENSITIVITY RESISTANCE

BPN
β-lactamase sensitive

(1st generation)

C16H18N2O4S

narrow spectrum

Gram-positive (GP)
bacteria

Neisseria gonorrhoeae
Leptospira weilii

Escherichia coli
Salmonella

typhi

OXN
β-lactamase resistant

(2nd generation)
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Streptococcus spp.
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Benzylpenicillin (BPN), or penicillin G, is natural penicillin (Table 1) with the simplest
chemical structure of them all. Its particularity is the phenylacetamido side chain at the
6-position of 6-APA. With the aid of DFT calculations, the electronic and chemical structure
of BPN was intensively studied, including the full assignments of the normal modes, in
combination with vibrational spectroscopies [2,3]. Moreover, its adsorption on both Au
and Ag substrates was also elucidated by the SERS technique [2,4–6]. Oxacillin (OXN) is a
β-lactamase resistant penicillin (Table 1).

Ampicillin (APN) is a member of the aminopenicillin family (third generation). The
chemical structure differs from BPN only by having an extra amino group on its side chain
(a D(-)-α-aminophenylacetamido side-chain), which actually serves to penetrate the outer
membrane of Gram-negative (GN) bacteria (Table 1). Being the first penicillin with bacteri-
cidal activity against GN bacteria including Escherichia coli, Enterococcus spp, and several
Staphylococcus spp., numerous studies on APN’s electronic and chemical structure have
been reported to date, using vibrational spectroscopies (FT-IR, FT-Raman, Raman, SERS)
and DFT calculations. These studies reported various polymorphic forms of APN [7,8],
its monomer [9,10], dimer, or tetramer [11]. Computational techniques were employed
for characterizing, from the electronic structure and physicochemical properties points of
view, different penicillins, among which were BPN, APN, and CBC [12,13], as well as a
molecular docking scanning [10], in order to elucidate their biological action. Numerical
simulations on gold/ampicillin systems resulting in adsorption energies, electron densities,
and bond distances, as well as ampicillin’s orientation relative to the gold surface, are also
reported [14]. Another study using SERS reported the detection and quantification of APN,
BPN, and CBC in the presence of their degradation products [15].

Carbenicillin (CBC), fourth-generation penicillin, is a semi-synthetic precursor of BPN, simi-
lar to APN. It belongs to the carboxypenicillin subgroup, having an α-carboxyphenylacetamido
side-chain. Basically, the amido group from ampicillin’s side-chain is replaced by a carboxyl
group on the CBC’s side-chain (Table 1).

Azlocillin (AZL) is a member of the ureidopenicillins (fifth generation). They derive
from APN, in which different cyclic ureas are added to the amino group on the side-chain
of the molecule (Table 1). Its side-chain imitates a segment of the peptidoglycan chain
better than APN, thus AZL can bind more easily to the PBPs.

Penicillins are still in use, and newer strategies are employed for their boosted effi-
ciency: Synergy with peptides as adjuvants in the case of AMP and OXN (efficient upward
2 h testing timeline) [16] or by managing their resistance breakpoints, since there are al-
ready OXN-resistant superbugs (OR-MRSA) [17]. For OXN, the determined minimum
inhibitory concentration (MIC) is ≤2 µg/mL for the sensitivity case (S) and ≥4 µg/mL for
the resistance case (R) [16,17]. Another modern approach to boosted antibiotic therapy is
the design of positively charged cyclodextrin hosts with enhanced binding of penicillins as
carriers for their delivery [18]. In this case, by using a promising cyclodextrin-based vehicle
(γCys) for the protection and delivery of OXN, its specific β-lactamase hydrolysis rate was
considerably reduced. This is considered a suitable solution when antibiotic options in the
treatment of extended-spectrum β-lactamases (ESBL)-producing organisms are limited [19].

Current vibrational studies employ normal Raman spectroscopy and SERS to partially
characterize and detect benzylpenicillin sodium [6], carbenicillin disodium [13], or AZL [20]
with high sensitivity. A comprehensive vibrational and cheminformatics study regarding
the antimicrobial efficiency and the antibiotics’ mechanisms of action at the bacterial cell
wall is achieved by combining analytical techniques with computational tools. This way
we are able to calculate, for each penicillin candidate, their specific chemical reactivity and
estimate their practical bactericidal potential.

SERS combines the inherent molecular specificity of the Raman technique and its
obliviousness to water, providing a trace-level detection potential [13,20] enabled by the
plasmonic properties of nanostructured colloidal [13] or nanopatterned solid films sys-
tems [21]. In biological applications targeting cellular viability [22] or drug susceptibil-
ity [23], silver-based nanoparticles (AgNPs) render high sensitivity and reproducibility due
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to their particular optical properties [24] even when used in most simple approaches [25–27].
SERS is currently used as an alternative in obtaining fast antibiotic susceptibility testing (AST)
for common [28] or multi-resistant pathogens [29–31], in already numerous promising re-
search studies [32–34]. Real-time SERS measurements for in vitro monitoring of microbial
cultures undergoing susceptibility tests toward antibiotics are now possible with reliable
results. The ultrasensitivity of SERS-based detection and its suitability in monitoring viable,
biological samples are the key aspects explored in clinical applications [35].

Thus, herein, we explored the chemical reactivity and bactericidal properties of a
series of penicillins, one for each of the first five generations, primarily by shedding light
on the structural differences of their ground-state optimized structures. This was achieved
by providing a full assignment of the normal modes observed by Raman spectroscopy,
and computing the MEP surfaces, the energy gap between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and chemical reac-
tivity descriptors. This synergistic approach enables us to gain extensive insight into how
small molecules interact with their targets, especially when designing new drugs [36–38],
and, in our case, how their bactericidal activity varies from one generation to another,
particularly in how the antibiotics bind to macromolecular targets in the bacterial cell-wall.
An up-to-date molecular docking study was performed on several proteins found in the
bacterial cell wall to better understand the conformations adopted by the antibiotics within
the binding sites of these macromolecules and the nature of these chemical interactions.
The penicillins were also evaluated against three GP and three GN strains in support of
the in silico study. Additional insight regarding their practical efficiency was gained by
monitoring the specific SERS profiles of bacterial cells undergoing antibiotic stress, or
control conditions, respectively.

The novelty of this complex investigation is that both in silico and experimental
protocols were unified in one resistogram-like result concerning the mechanism of action
for five penicillins on widespread microbial pathogens with the final scope of selecting
the most promising candidate in practice. In addition, AZL is characterized for the first
time from a vibrational and computational point of view. Quantum chemical reactivity
descriptors and the key outcomes obtained from in silico calculations revealed AZL as a
suitable candidate in the case of OXN-resistant species, showing similar efficiency to OXN
against PBP responsible for widespread infections. This represents an important aspect in
practice, when a priori in silico studies on the most relevant pathogens and corresponding
recommended antibiotics could provide a fast drug susceptibility output without the actual
need for tedious cultivation of microbial species.

2. Results and Discussion
2.1. Chemical Structure (Dis)Similarities Observed in the Vibrational Spectra

Since all five considered antibiotics belong to the penicillin family, most of their
chemical structures are similar. As seen in Table 1, the main chemical groups common to all
five antibiotics examined in this study are the benzene ring, two methyl and two carbonyl
groups, a carboxyl and an amide group, and lastly, a thiazolidine and a β-lactam ring. As
for the dissimilarities, we list them by increasing the class they belong to: Two H atoms
in the CH2 group next to the benzene ring for BPN; an isoxazole ring for OXN; an amino
group for the APN; an additional carboxyl group for CBC, which replaces the amino group
of APN; and lastly, an amide group, two carboxyl groups, and an imidazolidine ring for
AZL, replacing the same amino group of APN. We assigned the normal modes based on
frequency calculations performed by DFT calculations. Full assignments of Raman spectra
for BPN, OXN, APN, CBC, and AZL are listed in Table S1 together with calculated Raman
bands at harmonic and anharmonic levels. The FT-Raman spectrum of each molecule is
also plotted in Figure 1. Further, we will discuss Raman marker bands of penicillins (i.e.,
common to all five antibiotics), and the specific vibrational modes of each antibiotic, listed
in Table 2.
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Figure 1. FT-Raman (laser line 1064 nm) spectrum of BPN, OXN, APN, AZL, and CBC.

Table 2. Experimental (1064 nm) Raman marker bands of penicillins (common to all five penicillins)
and specific Raman bands for BPN, OXN, APN, CBC, and AZL molecules classified by chemical
groups.

BPN OXN APN CBC AZL

benzene ring

621
839
983

1002
1029

1582; 1600

629
845
982

1002
1026

1578; 1606

615
830
993

1003
1027

1585; 1602

617
834
957

1004
1032

1582; 1600

617
-

988
1003
1030

1585; 1602

com
m

on
bands

CH3
methyl group

231
274
292

960
1436
1452;
1468

250
279
296

-
1433
1459

240
271
291

951; 961
1435
1456

246
280

-

948
1436
1457

241
-

294

948; 958
1437
1458

COOH
carboxyl group

360
-

807
-

873 +
895
919

1245

368
522

-
-

894;
910
920

-

360
522
802
847

873; 910
-

1249

361
525
803
847

876;891
920

-

360
-
-

850

870;899
-
-

NH
amide group

661
1178

656
-

670
1178

666
-

661
1175
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Table 2. Cont.

BPN OXN APN CBC AZL

C=O
carbonyl group

402
1638

406
1649

409
1693

405
1666

409
1660

thiazolidine ring

571
602
919

1292

579
616
920

-

-
601
926

-

577
602
920

1297

575
-

913
-

β-lactam ring

945
-

1775

944
-

1758

-
1156
1764

-
1156
1763

-
1158
1775

CH2
methylene group

468
1419 x x x x

specific
bands

isoxazole ring

x

250
336
492
648
734
793

908
1308
1444
1471
1516
1556

x x x

NH2
amino group x x

465
830

1119

1186
1512
1638

x x

COOH
carboxyl group x x x

666
746

1126

1180
1372
1666
1763

x

imidazolidine
ring

x x x x
465
714
958

1125
1239
1397

NH
amide group x x x x 641

1532

2.1.1. Common Bands

The band with the strongest intensity for all five molecules at 1002–1004 cm−1 cor-
responds to an in-plane deformation of the benzene ring. Other contributions from the
benzene ring can be observed as the weak band at 615–621 cm−1 due to the in-plane defor-
mation of the ring with an in-plane bending of its CH groups. Bending of CH groups is
assigned to the 830–845 cm−1, 957–993 cm−1, and 1026–1032 cm−1 bands as well. Further-
more, 1578–1585 cm−1 and 1600–1606 cm−1 correspond to CC stretching combined with
CH bending vibrations. This doublet has different intensity ratios from one antibiotic to
another—both weak for BPN, and very weak and medium for APN, CBC, and AZL. For
OXN, 1602 cm−1 is actually the strongest band in the whole spectrum. This is because, in
this case, the benzene ring forms a bond with another ring (isoxazole ring) rather than a
simple C atom as with the other antibiotics.

The two methyl groups common to all five considered penicillins are Raman active
and can be observed in all spectra at 231–250 cm−1 and 271–280 cm−1 as CH3 rocking
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normal mode; CH3 wagging is assigned to the bands at 291–296 cm−1 and 948–960 cm−1;
whereas 1433–1437 cm−1 and 1452–1459 cm−1 are due to the CH3 bending mode.

The most intense Raman bands assigned to OH bending from the carboxyl group
are the doublets observed at 870–876 cm−1 and 894–910 cm−1. OH bending comes as a
second contribution to these bands. We assigned OH bending to the bands at 522–525 cm−1,
802–807 cm−1, and 1245–1249 cm−1. While 1245–1249 cm−1 is actually a combination
of OH stretching and bending, OCO bending is assigned for 802–807 cm−1 as well. The
OCO chemical group presents another two Raman responses, as a rocking normal mode at
360–268 cm−1 and as a stretching normal mode at 919–920 cm−1.

The weak 656–670 cm−1 band is the Raman response for the out-of-plane bending
of the N9H amide group, as well as 1175–1178 cm−1, where the normal mode comes as a
second contribution.

The Raman response of the C8O23 carbonyl group consists of two bands: 402–409 cm−1

assigned to in-plane bending of the group and 1638–1693 cm−1 assigned to the stretching.
The bands at 571–579 cm−1 assigned to CCC and CCN bending, 601–616 cm−1 as-

signed to NCS bending, 919–926 cm−1 assigned to CNC bending, and 1292–1297 cm−1

assigned to out-of-plane bending of CH bonds are the Raman response of thiazolidine ring.
The 944–945 cm−1 band is assigned to CC stretching and CH bending, the one at

1156–1158 cm−1 is assigned to out-of-plane bending of CH groups, whereas the one at
1758–1775 cm−1 corresponds to C=O stretching and OH bending, with all chemical groups
belonging to the β-lactam ring.

2.1.2. Specific Bands

Normal modes assigned to methylene group CH2 specific to BPN can be observed at
468 cm−1 (bending of CH) and 1419 cm−1 (bending of CH2) in the spectrum with medium
to weak intensity, while in the other four cases, there is no observed signal.

OXN’s isoxazole ring provides the largest variances in its Raman spectrum. In addition
to the most intense band in the spectrum at 1602 cm−1, which for all the other antibiotics
is the in-plane deformation of the benzene ring at 1002–1004 cm−1, the isoxazole ring
contributes to another set of normal modes as follows: 250 cm−1 and 1444 cm−1 are
assigned to the twisting and bending of the C28H3 methyl group attached to the ring;
336 cm−1 is assigned to benzene-isoxazole ring bending; 492 cm−1 is due to N24H bending;
in-plane and out-of-plane deformation of the ring is present in the spectrum at 734 cm−1,
and 648 cm−1 and 793 cm−1, respectively; stretching vibrations are assigned to the N24O25
bond at 908 cm−1, to C7=N24 and C26O25, at 1308 cm−1, and to C7=N24 and C26C27, at
1471 cm−1; the band at 1516 cm−1 has a second contribution to the C6C7 stretching normal
mode, with a significantly increased intensity compared to its correspondents in the other
four spectra; and the C26C27 stretching, at 1556 cm−1. Most of these bands are of weak
and very weak intensity, except the medium 1444 cm−1 and 1471 cm−1 bands.

In APN’s Raman spectrum, the very weak 465 cm−1 and 1638 cm−1 are assigned to
the bending mode, while 830 cm−1 and 1186 cm−1 are assigned to the twisting of the NH2
amino group. The Raman signal at 1119 cm−1 and 1512 cm−1 is assigned to the C7N24
stretching combined with N24H and C7H bending. Except for 830 cm−1, all bands have a
very weak intensity.

The specific bands of CBC differ from carboxyl vibrational modes in the other four
spectra mainly in intensity since CBC has two carboxyl groups in its structure, as compared
to a single one for the rest. The OCO bending can be observed very weakly at 666 cm−1 and
746 cm−1, while the wagging is at 1126 cm−1. We assigned stretching of the carbonyl group
(C24=O) to the weak bands at 1763 cm−1 and 1666 cm−1. C7C24 stretching is very weakly
observed at 1362 cm−1 and 1372 cm−1, while the latter comes with an OH contribution as
well. OH bending can also be observed at 1180 cm−1.

Specific bands in AZL’s Raman spectrum are related to vibrations of the imidazolidine
ring and the N24H amide group. The normal modes of the imidazolidine ring are either
an in-plane deformation of the ring, at 1125 cm−1; in-plane and out-of-plane bending of
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N30H, observed at 465 cm−1, 714 cm−1, and 958 cm−1. We assigned the rocking of CH2
as a second contribution to 715 cm−1, and CH2 wagging to 1239 cm−1 and 1396 cm−1.
CC stretching is assigned as a second contribution to the 958 cm−1 band. Vibrations of
the N24H amide group are Raman active at 641 cm−1 and 1532 cm−1, and we assigned
them the out-of-plane and in-plane bending of the N42H group. All AZL-specific Raman
responses are of weak intensity.

Due to their common chemical structure—a benzene, a thiazolidine, and a β-lactam
ring, two methyl and two carbonyl groups, a carboxyl, and an amide group—in their
structure, penicillins come with a specific Raman response, with 1002–1004 cm−1 being
the most intense band in all spectra. The most intense of the methyl groups is the doublet
1433–1437/1452–1459 cm−1, whereas the doublet 870–876/894–895 cm−1 is the most intense
response of the carboxyl group. The deformation of the thiazolidine ring can be observed at
571–579 cm−1, while the response of theβ-lactam ring is the most intense at 1156–1158 cm−1

and 1158–1175 cm−1. Specific marker bands for each antibiotic—BPN, OXN, APN, CBC,
and AZL—are present in their spectra, as expected, but most of the Raman response is
subtle, having weak and very weak intensity. OXN’s Raman spectrum stands out the
most, due to the increased intensity of 1606 cm−1 (C6C7 stretching), as well as 1444 cm−1

(C28H3 bending) and 1471 cm−1 (C7=N24 and C26C27 stretching). APN’s Raman spectrum
comes with more visible differences as well—780 cm−1 (NH bending) and 830 cm−1

(NH2 twisting).

2.2. Molecular Electrostatic Potentials (MEPs)

MEPs are used as illustrative tools for determining the reactive sites of a ligand that
are responsive to surrounding nuclei or electrons in order to form hydrogen bonds or for
electrophilic and nucleophilic attacks. We obtained MEPs of BPN, OXN, APN, CBC, and
AZL (Figure 2A) after optimizing their geometry by using DFT methods at the B3LYP/6-
311+G(2d,p) level of theory, with an electron density isosurface of 0.02 a.u. The MEP values
were calculated as previously described by Polizer and Murray [39]. As seen in Figure 2A,
the colored illustration of a MEP varies from its most electronegative areas, pictured in
red, to its most electropositive areas, colored blue. The two extremes—the hydrophilic
areas—meet in neutral zones (green areas), also known as the hydrophobic regions. The
transition from the most negative to the most positive areas is more gradual, from red to
orange, yellow, green, cyan, and blue, as seen in Figure 2A, in the color scale of each MEP.

It is clear that for all compounds, the most electronegative sites are concentrated on
the O atoms in carbonyl groups, whereas the most electropositive sites are localized on
the N atoms. In addition, another electronegative area in OXN’s MEP is located on O and
N atoms in the isoxazole ring; for APN, electronegative sites are located on the O in the
second carboxyl’s hydroxyl as well as on the amide’s N atom. The negative regions scored
values between −0.05410 a.u. (AZL) and −0.05035 a.u. (OXN); these regions are the most
likely to be targeted for electrophilic attacks or to be involved in forming hydrogen bonds.
The electropositive areas’ location varies between the five antibiotics: On BPN and OXN,
the most electropositive sites are located on C atoms (from CH groups) in 6-APA, followed
by N in NH, and C atoms in the benzene ring and methyl groups; the most electropositive
area on APN is located on the N atom in NH, followed by the C of the CH group in the
β-lactam ring; the most electropositive area on CBC’s MEP is located on hydroxyl’s O atom,
scoring the maximum value in the class (+0.07007 a.u.); lastly, the most electropositive
area for the AZL molecule, scoring the second most electropositive value (+0.05968 a.u.),
is located on the N atom in NH from the imidazolidine ring. These sites are most likely
to be involved in nucleophilic attacks or to form hydrogen bonds. The values for all three
other penicillins are equal to or smaller than +0.04 a.u., with the difference between the
maximum (CBC) and minimum (BPN) values of the electropositive areas being more than
0.03 a.u.
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Figure 2. (A) Molecular electrostatic potential surfaces (MEPs) for optimized structures of BPN, OXN,
APN, CBC, and AZL, respectively. Surface color ranges from the most electropositive areas (blue) to
the most electronegative ones (red). The electron density isosurface is 0.02 a.u. (B) Frontier molecular
orbital (FMO) diagrams for BPN, OXN, APN, CBC, and AZL, calculated at B3LYP/6-311+G(2d,p)
level of theory.

2.3. Frontier Molecular Orbitals (FMO)

Frontier molecular orbitals (FMOs), comprising the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO), are key indicators for pro-
viding information on a molecule’s chemical reactivity and stability. When two molecules
interact with each other, the HOMO of one molecule will interact with the LUMO of the sec-
ond. Therefore, identifying the regions of the electron density and the energy of the frontier
orbitals in a molecule is essential when one wants to describe intermolecular interactions.
Figure 2B shows the distribution of the charges in the FMOs with the negative (red) and
positive (green) values of the orbitals, as well as their energy levels and the (HOMO-LUMO)
band gap (HLG). The HOMO energy of a molecule indicates its electron-donating capacity.
Electrons localized in the HOMO position are the most inclined to engage in reactions,
whereas the LUMO energy indicates the electron-accepting capacity of a molecule. The
regions of the electron density in LUMO indicate the most electrophilic side of a molecule.

The electron density of HOMO is localized on the same chemical groups in BPN, OXN,
CBC, and AZL, primarily on the S atom, followed by C atoms in methyl groups and C
atom bonded to them, as well as on the C atoms in the β-lactam ring and on the amide and
carbonyl groups. HOMO spreads on the benzene ring in BPN as well, on the O atom in the
β-lactam ring in CBC, and on the second amide group in AZL. The APN is an exception.
The electron density of HOMO spreads mainly on the benzene ring, the amino group, and
the C atoms bound to it, the same amide and carbonyl groups, and the S atom.

The electron density for LUMO in BPN, APN, CBC, and AZL molecules spreads mainly
over the β-lactam and thiazolidine rings, amide and carbonyl groups, and the carbonyl group
in the carboxyl. For CBC, LUMO is localized on the benzene ring and on its specific carboxyl
group, while the LUMO in OXN is localized only on the benzene and isoxazole rings.

Based on Koopmans’s theorem [40], which states that the first ionization energy of a
molecule is equal to the negative value of the HOMO’s energy, several parameters have
been described over time for better characterization of the reactivity of chemical compounds,
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such as ionization potential (I), electron affinity (A), (HOMO-LUMO) band gap (HLG),
global hardness (η) and softness (σ) [41], electronegativity (χ) [42] and its reverse, the
chemical potential (µ), and the global electrophilicity index (ω) [43,44]. We calculated all
these parameters for BPN, OXN, APN, CBC, and AZL. The results are listed in Table 3.

Table 3. Quantum chemical reactivity descriptors obtained on the optimized geometries of the
selected antibiotics by DFT calculations in gas phase at B3LYP/6-311+G(2d,p) level of theory. All
values are in eV.

BPN OXN APN CBC AZL

EHOMO −7.06380 −7.11904 −7.00911 −6.98598 −6.83060
ELUMO −1.34288 −1.56275 −1.39540 −1.37880 −1.18804

I 7.06380 7.11904 7.00911 6.98598 6.83060
A 1.34288 1.56275 1.39540 1.37880 1.18804

HLG 5.72092 5.55629 5.61371 5.60718 5.64256
η 2.86046 2.77815 2.80686 2.80359 2.82128
σ 0.34959 0.35995 0.35627 0.35669 0.35445
χ 4.20334 4.34090 4.20226 4.18239 4.00932
µ −4.20334 −4.34090 −4.20226 −4.18239 −4.00932
ω 3.08833 3.39136 3.14568 3.11964 2.84882

The charge transfer interactions between a molecule and its surroundings are described
by HLG. Its value represents the quantity of energy required to remove an electron from
HOMO. In general, the smaller the value of HLG, the faster the reaction will occur. HLG
is the most important stability descriptor of a molecule. More reactive molecules have
a smaller HLG value, which helps them to donate their electrons to an acceptor more
easily. As shown in Table 3, the difference between the lowest and the largest band gap is
not significant (slightly over 0.15 eV). With the lowest HGL of the five compounds, OXN
presents the highest chemical reactivity, followed by CBC, APN, and AZL, while BPN
presents the highest stability. On the other hand, HLG values of 5.5 eV and above indicate
that all five compounds are stable. The electrophilicity index, another measure of a system’s
ability to accept electrons, increases from AZL to OXN, indicating that AZL is the most
stable of the five, while OXN is the most willing to accept electrons from the environment.
A good nucleophile is characterized by low values of µ andω, thus making AZL the most
likely compound to be involved in a nucleophilic attack.

Thus, the ligands with the lowest value for HLG and the lowest global hardness as
well as the highest softness are the most likely to present bactericidal properties. From the
five penicillins, OXN scores the above-mentioned values. On the other hand, the ligand
showing the least electronegativity and electrophilicity while presenting the highest value
for the chemical potential is the most likely to be a good bactericide; in this case, this is AZL.

In conclusion, the ligands with less electronegativity (AZL), less hardness (OXN), less
global electrophilicity (AZL), a small value of HLG (OXN), more softness (OXN), and more
chemical potential (OXN) are more reactive and have better bactericidal properties.

2.4. Molecular Docking

Autodock Vina [45] is an automated routine employed to predict ligand–receptor
interactions. It combines an efficient scan for all available degrees of freedom, such as
torsion angles of the system, with a rapid grid-based energy evaluation. By using a search
algorithm and an empirical free energy scoring function, the code refines the multitude of
possible docking geometries to the most probable one—the one with the lowest binding
energy between the receptor and the ligand. This algorithm is non-deterministic, which
causes every search to generate random results. Thus, for each ligand–receptor pair of the
twenty systems (five ligands × four receptors), we set the number of binding modes to be
generated to 10 per code run, keeping the default = 8 value of the exhaustiveness. We run
the code one hundred times, resulting in 1000 docking conformations. The distribution
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of the conformers with the lowest values of the binding energy for each of the hundred
runs for all twenty ligand-receptor systems is pictured in Figure S2. Following the same
steps described in our previous work [46], we consider this number to be large enough to
allow us to characterize the antibiotics-PBPs systems from a combination of the predicted
binding energy and geometrical specificity point of view.

We predicted the binding affinity of BPN, OXN, APN, CBC, and AZL penicillins to
the PBPs from A. hydrophila, M. morganii, B. cereus, and E. faecalis by molecular docking.
The smallest binding energy, as well as the average value scored by each ligand, are listed
in Table 4. Hydrogen bonds (HB) are described by listing the specific atoms and residues
involved, as well as the type of bond and their lengths.

Table 4. Minimum (MIN) and average binding energy (AVE), which includes the standard deviation,
for the first conformer in each of the 100 runs of BPN, OXN, APN, CBC, and AZL molecules docked
to PBPs (PDB id’s in parenthesis) from A. hydrophila, M. morganii, B. cereus, and E. faecalis. The values
are expressed in kcal/mol. Hydrogen bonds formed between the most stable conformer of each
ligand and surrounding residues in PBPs are also listed.

Class Pathogen
(PDB id) Ligand Binding Energy

(kcal/mol)
Number of
Conformers

HB
(D . . . A) Type HB

(Å)

G
ra

m
-n

eg
at

iv
e

A. hydrophila
(1x8i)

BIAPENEM
(co-crystalized

ligand)
−9.4 (MIN) -

HIS196 . . . O3 NE2 . . . HE2 2.34

LYS224 . . . O4 NZ . . . HZ 2.38

LYS224 . . . O5 NZ . . . HZ 2.39

ASN233 . . . O4 N . . . HN 1.88

BPN

−8.0 (MIN)
−7.83 ± 0.21

(AVE)
2.68% (sd)

29

HIS118 . . . O19 ND1 . . . HD 1.94

HIS196 . . . O22 NE2 . . . HE2 2.03–2.16

LYS224 . . . O19 NZ . . . HZ 2.07–2.16

LYS224 . . . O18 NZ . . . HZ 2.28–2.40

ASN233 . . . O18 N . . . HN 1.84–1.94

O18 . . . ASN233 OH . . . O 2.53–2.66

O18 . . . THR119 OH . . . OG1 2.11

OXN

−8.8 (MIN)
−8.70 ± 0.02

(AVE)
0.23% (sd)

4

HIS196 . . . N24 NE2 . . . HE2 2.21–2.23

LYS224 . . . O25 NZ . . . HN 2.12–2.18

ASN233 . . . O25 N . . . HN 2.00–2.03

O18 . . . THR157 OH . . . O 2.48

O18 . . . PHE156 OH . . . O 2.25

APN

−7.7 (MIN)
−7.51 ± 0.08

(AVE)
1.07% (sd)

6

HIS118 . . . O19 ND1 . . . HD 1.89–1.93

LYS224 . . . O22 NZ . . . HZ 2.22

ASN233 . . . O22 N . . . HN 2.13

N24 . . . PHE156 NH . . . O 2.40–2.51

O18 . . . THR119 OH . . . OG1 2.06

CBC

−8.3 (MIN)
−8.20 ±0.10

(AVE)
1.22% (sd)

38

HIS118 . . . O26 ND1 . . . HD 2.21–2.29

HIS196 . . . O23 NE2 . . . HE2 2.22–2.29

LYS224 . . . O22 NZ . . . HZ 2.34–2.39

ASN233 . . . O22 N . . . HN 2.20–2.30

O26 . . . ASP120 OH . . . OD1 2.04–2.28

AZL

−8.3 (MIN)
−7.95 ± 0.19

(AVE)
2.39 (sd)

4

GLY160 . . . O18 N . . . HN 2.57–2.62

HIS196 . . . O32 NE2 . . . HE2 2.05–2.13

HIS263 . . . O26 NE2 . . . HE2 2.35–2.47

O18 . . . THR157 OH . . . O 2.33–2.46

O18 . . . PHE156 OH . . . O 2.07
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Table 4. Cont.

Class Pathogen
(PDB id) Ligand Binding Energy

(kcal/mol)
Number of
Conformers

HB
(D . . . A) Type HB

(Å)

M. morganii
(6l3s)

BPN

−7.4 (MIN)
−7.13 ± 0.13

(AVE)
1.82% (sd)

2

SER98 . . . O19 N . . . HN 2.15–2.17

ASN185 . . . O23 N . . . HN 2.28–2.32

O18 . . . SER98 OH . . . OG 2.33

OXN

−8.0 (MIN)
−7.81 ± 0.06

(AVE)
0.77% (sd)

4

SER98 . . . O19 N . . . HN 2.15–2.21

ASP98 . . . O18 N . . . HN 2.34–2.35

O18 . . . SER98 OH . . . OG 2.08

APN

−7.3 (MIN)
−7.16 ± 0.07

(AVE)
0.98% (sd)

10

SER98 . . . O19 N . . . HN 2.08–2.23

ASP99 . . . O18 N . . . HN 2.23–2.27

ASN185 . . . O23 N . . . HN 2.33–2.42

O18 . . . SER98 OH . . . OG 2.38–2.59

CBC

−7.6 (MIN)
−7.40 ± 0.16

(AVE)
2.16% (sd)

34

SER98 . . . O19 N . . . HN 1.90–1.96

ASP99 . . . O18 N . . . HN 2.33–2.38

LYS179 . . . O26 NZ . . . HZ 2.13–2.26

ASN185 . . . O25 N . . . HN 2.06–2.26

O18 . . . SER98 OH . . . OG 2.30–2.40

AZL

−8.0 (MIN)
−7.86 ± 0.08

(AVE)
1.02% (sd)

10

SER98 . . . O19 N . . . HN 2.11–2.21

ASP99 . . . O18 N . . . HN 2.17–2.26

LYS179 . . . O26 NZ . . . HZ 1.89–1.95

LYS179 . . . O32 NZ . . . HZ 2.11–2.18

ASN185 . . . O23 N . . . HN 2.19–2.32

N30 . . . GLY182 NH . . . O 2.36–2.41

G
ra

m
-p

os
it

iv
e

B. cereus
(6w33)

CLAVULANATE
(co-crystalized

ligand)
−4.5 (MIN) -

N2 . . . SER258
N2 . . . SER258
O1 . . . SER258

NH . . . O
NH . . . OG
O1H . . . H

2.41
2.13
2.19

BPN

−7.6 (MIN)
−7.26 ± 0.14

(AVE)
1.93% (sd)

2

SER153 . . . N12 OG . . . HG 2.37–2.38

SER153 . . . O18 OG . . . HG 2.16–2.20

ASN155 . . . O23 ND2 . . . HD 2.16–2.22

ALA260 . . . O22 N . . . HN 2.17–2.36

ARG266 . . . O19 NH1 . . . HH 2.22–2.38

O18 . . . SER258 OH . . . OG 2.13

OXN

−8.5 (MIN)
−8.06 ± 0.13

(AVE)
1.61% (sd)

5

ASN155 . . . N24 ND2 . . . HD 2.09–2.24

ASN193 . . . O25 ND2 . . . HD 2.17–2.22

SER258 . . . O18 OG . . . HG 2.20–2.27

ARG266 . . . O22 NH1 . . . HH 1.99–2.08

ARG266 . . . O18 NH1 . . . HH 2.38–2.44

O18 . . . THR239 OH . . . O 2.36

APN

−7.7 (MIN)
−7.51 ± 0.10

(AVE)
1.33% (sd)

1

SER258 . . . O18 OG . . . HG 2.03

ALA260 . . . O23 N . . . HN 2.11

ARG266 . . . O22 NH1 . . . HH 1.93

CBC

−8.2 (MIN)
−8.09 ± 0.06

(AVE)
0.74% (sd)

3

LYS98 . . . O23 NZ . . . HZ 2.71–2.72

ASN155 . . . O25 ND2 . . . HD 2.15–2.36

SER258 . . . O18 OG . . . HG 2.00

ARG266 . . . O22 NH1 . . . HH 2.00–2.01

ARG266 . . . O18 NH1 . . . HH 2.31

ARG266 . . . O18 NH2 . . . HH 2.05

O26 . . . ASN193 OH . . . OD1 2.53

O26 . . . ASN155 OH . . . DO1 2.41

O18 . . . SER258 OH . . . OG 1.99

O26 . . . GLU189 OH . . . OE1 2.23
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Table 4. Cont.

Class Pathogen
(PDB id) Ligand Binding Energy

(kcal/mol)
Number of
Conformers

HB
(D . . . A) Type HB

(Å)

AZL
−8.6 (MIN)
−8.32 ± 0.12

1.44% (sd)
5

ASN155 . . . O26 ND2 . . . HD 2.36–2.39

ASN155 . . . O32 ND2 . . . HD 2.22–2.26

ASN193 . . . O32 ND2 . . . HD 2.53–2.57

SER258 . . . O22 OG . . . HG 2.34–2.37

ARG266 . . . O22 NH1 . . . HH 2.34–2.39

ARG266 . . . O23 NH1 . . . HH 2.54

ARG266 . . . O18 NH2 . . . HH 2.52–2.56

ARG266 . . . O22 NH2 . . . HH 1.82

N30 . . . ASN193 NH . . . OD1 1.94–1.96

O18 . . . THR239 OH . . . O 1.87

E. faecalis
(6mkh)

IMIPENEM
(co-crystalized

ligand)
−5.5 (MIN) -

SER482 . . . O1
ASN484 . . . O3
N3 . . . THR620
O3 . . . SER424

OG . . . HG
ND2 . . . HD
NH . . . OG1
OH . . . OG

2.15
2.11
2.36
1.94

BPN

−7.9 (MIN)
−7.61 ± 0.20

(AVE)
1.93% (sd)

4

SER424 . . . O22 OG . . . HG 1.92–1.98

THR465 . . . O18 OG1 . . . HG 2.45–2.50

ASN484 . . . O19 ND2 . . . HD 2.12–2.21

THR620 . . . O23 OG1 . . . HG 2.18–2.25

OXN

−7.8 (MIN)
−7.70 ± 0.03

(AVE)
0.39% (sd)

6

SER658 . . . O22 OG . . . HG 1.87–1.90

O18 . . . SER658 OH . . . OG 2.20

O18 . . . GLU635 OH . . . OE1 1.93

APN

−7.5 (MIN)
−7.27 ± 0.09

(AVE)
1.24% (sd)

1

ASN484 . . . O22 ND2 . . . HD 2.28

N24 . . . SER482 NH . . . OG 2.32

O18 . . . THR465 OH . . . O 2.21

CBC

−7.7 (MIN)
−7.50 ± 0.10

(AVE)
1.33% (sd)

5

SER424 . . . O22 OG . . . HG 1.81–2.23

ASN484 . . . N12 OG . . . HG 1.99–2.06

THR620 . . . O25 ND2 . . . HD 2.40–2.46

THR622 . . . O18 N . . . HN 2.39–2.59

AZL

−8.6 (MIN)
−8.44 ± 0.18

(AVE)
2.13% (sd)

46

SER424 . . . O22 OG . . . HG 1.76–2.05

THR465 . . . O32 N . . . HN 1.91–2.00

SER482 . . . N12 OG . . . HG 2.06–2.22

ASN484 . . . O23 ND2 . . . HD 1.92–2.04

ASN484 . . . O32 ND2 . . . HD 1.83–1.92

GLN542 . . . O26 NE2 . . . HE 2.17–2.36

THR620 . . . O18 OG1 . . . HG 2.29–2.53

THR622 . . . O22 N . . . HN 2.39–2.56

N30 . . . PHE463 NH . . . O 2.17–2.34

N24 . . . THR465 NH . . . OG1 2.37–2.53

O18 . . . THR620 OH . . . OG1 2.08–2.27

The binding site of A. hydrophila is localized at the surface of the CphA and has a
crevice-like shape (see Figure 3). Both electropositive and electronegative areas can be
localized on its surface. The best binding energy for this receptor was scored by the classic
OXN molecule, with an average of −8.70 ± 0.02 kcal/mol and a minimum registered at
−8.8 kcal/mol, scored by 4 conformers out of 100 code runs. Biapenem, the co-crystalized
ligand, displayed binding energy of −9.4 kcal/mol, smaller than OXN by 0.6 kcal/mol.
Biapenem is a β-lactam as well, but it belongs to the carbapenem class, which is known to
have a broader spectrum of activity than most penicillins and cephalosporins, particularly
against Gram-negative bacteria [47]. Three of the O atoms in biapenem are involved in HB
with HIS196, LYS224, and ASN233 residues. The OXN molecule is involved in HB with the
same residues as biapenem—HIS196, LYS224, and ASN233, with N24 and O25 atoms as
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acceptors. According to Jeffrey’s rule [48], these hydrogen bonds are of moderate strength.
O18 from the hydroxyl group forms a weak HB, this time as a donor, with PHE156 and
THR157. The area on the MEP of the isoxazole ring around the two atoms is negatively
charged (see Figure 2A) and its position in the binding site of A. hydrophila is directed
towards an electropositive area (as seen in Figure 3). All three atoms involved in HBs
(N24, O25 and O18) were previously identified as being the most likely to be involved in
electrophilic attacks. With a difference of 0.5 kcal/mol for the minimum binding energy
scored, CBC and AZL come in as the second most effective against A. hydrophila. Generally,
the same residues of the receptor are involved in HB as for CBC, O atoms in carboxyl and
carbonyl groups, while for AZL, there are those from the carboxyl group and its particular
two carbonyl groups. In both cases, all atoms’ MEP values were the most negative on all
these atoms, thus an electrophilic attack on these atoms, or being involved in HB, is the
most probable outcome.

Figure 3. Position of the binding sites of CphAs from GN A. hydrophila (PDB id: 1x8i) in complex
with OXN, which scored the lowest binding energy (−8.8 kcal/mol). Zoomed-in pictures show the
Coulombic electrostatic surface of the binding sites and OXN–residues interactions, with emphasis
on the hydrogen bonds (dashed green lines).

The active site of M. morganii is slightly retracted within the protein’s structure, giv-
ing it a cave-like appearance. The active site’s shape might imply a better specificity for
ligand geometry. Two of the explored compounds in this study, OXN and AZL, scored
the minimum binding energy of −8.0 kcal/mol, with their average values being close
(−7.81 ± 0.06 kcal/mol vs. −7.86 ± 0.08 kcal/mol). However, AZL has a standard devia-
tion (sd) error of just over 1%. A comparison of our results with those from a co-crystalized
ligand was not possible for the case of M. morganii since its active site’s position is indicated
just by a Zn atom, and no information about inhibitors’ binding modes to PBP was found in
the literature. OXN is involved in a moderate HB with SER98 and a weak HB with ASP99
through O19 and O18, making them the most likely atoms from OXN to be involved in
electrophilic attacks. The carboxyl group is oriented toward the binding site electropositive
(blue) area (see Figure 4). Through O18, O19, O23, O26, and O32, the most likely atoms of
AZL to be involved in electrophilic attacks, the molecule forms moderate HB with ASP99,
SER98, ASN185, and LYS179, respectively. The N30 atom in the imidazolidine ring acts as a
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donor to GLY182 in a weak HB. CBC scored a 0.4 kcal/mol higher binding energy. Its O
atoms interact with the same residues.

Figure 4. Position of the binding sites of PBPs from GN M. morganii (PDB id: 6l3s) in complex with
the AZL conformer, which scored the lowest binding energy (−8.0 kcal/mol). Magnified pictures
show the Coulombic electrostatic surface of the binding sites and AZL–residues interactions, with
emphasis on the hydrogen bonds (dashed green lines).

In the competition for the best bactericide against two pathogens in the Gram-positive
class, AZL has notably detached itself from the rest of the compounds, scoring minimum
binding energy of −8.6 kcal/mol against B. cereus and E. faecalis. Clavulanate (clavulanic
acid), the co-crystalized ligand scored a binding energy of −4.5 kcal/mol. It is known that
clavulanate has little or no bactericidal activity when used alone, and that is most effective
when combined with another β-lactam [49]. It acts as a suicide inhibitor, binding to a serine
residue [50]. Our results indicated SER258 in B. cereus’s PBP to act as an acceptor in three
HB with the co-crystalized ligand. AZL is involved in multiple HB with ASN155, ASN193,
SER258, ARG266 through O18, O22, O23, O26, and O32 (Figure 5). Except for ARG266 . . .
O22, which is moderate in strength, the rest of the HBs are weak. The N30 and O18 act as
donors in two moderate HBs with ASN193 and THR239. The most electropositive spot on
AZL’s EPS, the imidazole ring, has its N30H oriented towards an electronegative spot in
the active site, confirming N30’s reactivity potential as being the most likely atom of AZL
to be involved in a nucleophilic attack. The other penicillins’ average binding energies are
approximately −8.0 kcal/mol (CBC and OXN), or significantly less (APN, BPN).



Int. J. Mol. Sci. 2022, 23, 12685 16 of 25

Figure 5. Position of the binding sites of PBPs from GP B. cereus (PDB id: 6w33) in complex with
AZL conformer, which scored the lowest binding energy (−8.6 kcal/mol). Magnified pictures show
the Coulombic electrostatic surface of the binding sites and AZL–residues interactions (left), with
emphasis on the hydrogen bonds (dashed green lines).

The average binding energy of AZL to E. faecali’s PBP was −8.44 ± 0.18 kcal/mol,
while all the other compounds had a lower affinity. SER424 . . . O22, THR465 . . . O32,
SER482 . . . N12, ASN484 . . . O23, ASN484 . . . O32, and GLN542 . . . O26, as well as two
weak HBs—THR620 . . . O18 and THR622 . . . O22—are formed between PBP’s residues
and atoms in imidazolidine and thiazolidine rings, carbonyl, carboxyl, and amino groups
(Figure 6). In three HBs, O18, N24, and N30 act as donors as well. When docked to E.
faecali’s PBP, AZL exhibits the highest specificity. From 100 docking experiments, 46 of the
best conformers in each run scored a binding energy of −8.6 kcal/mol, whereas imipenem,
the co-crystalized ligand, scored only −5.5 kcal/mol. In particular, imipenem is known
to present bactericidal activity against both Gram-positive and Gram-negative bacteria,
especially for Enterococcus species and Pseudomonas aeruginosa [51]. It is involved in four
HB, two with the donors SER482 and ASN484 and two with the acceptors THR620 and
SER424; all four residues interact with AZL as well.

The key outcomes of the docking studies show that, in terms of chemical reactivity,
both a newer-generation antibiotic (AZL) and an older-generation antibiotic (OXN) are
effective against various penicillin-binding proteins responsible for Gram-positive and
Gram-negative bacterial infections. The same two penicillins—OXN and AZL—were
identified as being the most reactive ligands from both the MEPs description and the
Frontier Molecular Orbital studies.
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Figure 6. Position of the binding sites of PBPs from GP E. faecalis (PDB id: 6mkh) in complex with
AZL conformer, which scored the lowest binding energy (−8.8 kcal/mol). Magnified pictures show
the Coulombic electrostatic surface of the binding sites and AZL–residues interactions (right), with
emphasis on the hydrogen bonds (dashed green lines).

2.5. Disk Diffusion Tests

The bactericidal activities of the selected antibiotics on both GN and GP groups are
summarized in Table 5 as inhibition zones expressed in mm, or R as resistant if there is no
inhibitory action. The susceptibility to the selected antibiotics varies both from the GN
to the GP group and also within the groups. The A. hydrophila PI-88 strain is sensitive to
APN, CBC, tetracycline (TRC), and AZL, being resistant to BPN and OXN, while the strain
PAI-45 is resistant to APN, CBC, BPN, and OXN, and sensitive to TRC and AZL (Figure S3).
M. morganii presents resistance to all six tested antibiotics (Figure S4).

Table 5. Inhibition zones to the selected antibiotics for pathogens belonging to both Gram-negative
(GN) and Gram-positive (GP) classes such as Aeromonas hydrophila PAI-45 and PI-88 (GN), Morganella
morganii PI-81(GN), Bacillus cereus ESN-09 (GP), and Enterococcus lactis CE-13 (GP) and Enterococcus
durans CI-28 (GP). Inhibition areas are in mm, while R means “resistant”.

BPN OXN APN CBC AZL TRC

G
N

A. hydrophila PAI-45 R R R R 14.3 19.9
A. hydrophila PI-88 R R 14.2 20.7 14.5 12.3
M. morganii PI-81 R R R R R R

G
P

B. cereus ESN-09 R R R R R -
E. lactis CE-13 14.7 R 22.7 14.2 18.7 -
E. durans CI-28 16.3 R 24.0 16.1 20.1 -

For the GP strains, B. cereus proved to be resistant to all antibiotics tested (Figure S5),
while Enterococcus species presented resistance only to OXN. Their sensitivity increases
from CBC, BPN, to AZL. APN presents the greatest bactericidal effect on E. lactis CE-13
and E. durans CI-28. The sensitivity to TRC of the pathogens from the GP group was not
tested (Figure S6).
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In general, in the GN class, OXN scored the lowest binding energies to both receptors,
whereas the disk diffusion tests indicated that all tested pathogens exhibited resistivity
to OXN. While they were ranked as the most second reactive antibiotics in the docking
study, disk diffusion tests indicated CBC and AZL were the most efficient against GN
A. hydrophila. However, in practice, the species shows resistance to OXN, despite OXN
scoring the lowest binding energy. Experimental validation of the docking results for the
GN M. morganii was not possible due to the pathogen’s antibiotic resistance. The lowest
binding energy scored for M. morganii’s PBP was −8.0 kcal/mol, being, at the same time,
the weakest binding energy of a conformer in the whole study. This might be an indication
of weak interaction, which might correlate the docking results with reality.

In the GP class, B. cereus showed the same predicament as M. morganii since the grown
strain showed resistance to all tested compounds. As compared to docking results, where
the fifth-generation penicillin AZL scored the lowest binding energy (−8.6 kcal/mol),
the disk diffusion test results for Enterococcus strains indicated that APN performed best,
followed by AZL and CBC.

In the end, we can state that the strongest binding energy of a conformer resulting
from a molecular docking study can provide some insight into the chemical structure
properties for antibiotics’ design and formulation, but this does not always imply that, in
reality, the compound is the most efficient option for bactericidal action against a pathogen.
The disparity between the obtained theoretical and experimental results is also due to the
discrepancy between the selected PBPs used in the docking studies and the pathogenic
strains that were available in our lab for disk diffusion tests. On the other hand, OXN might
have been good bactericidal penicillin at some point (the theoretical results indicated OXN
as being one of the most reactive compounds in our study), but the overuse and misuse of
antibiotics led to OXN resistivity for both GN and GP bacteria, even the common ones.

2.6. Bacterial Resistogram Based on SERS and PCA

We have monitored the SERS bacterial response of A. hydrophila species in three
scenarios: A control case (C)—pathogen culture in a liquid medium, without antibiotic
treatment; a sensitivity case (S)—a sensitive response to the antibiotic treatment; and a
resistance case (R)—pathogen showing resistance to antibiotic treatment. The three scenarios
were compared, taking into account the bacterial SERS profiles recorded at the single-cell
level, using a monitoring protocol developed by our research group, described in previous
reports [25,26,52]. The results are not collected in real time, but they still enable clinically
relevant insight into the antibiotic’s action in a turn-around time (TAT) of a working shift
(8–12 h).

Figure 7A shows the characteristic SERS signatures for the C, S, and R situations.
SERS bands specific to adenine (723 cm−1 and 1324 cm−1), generally considered pathogen
viability marker bands [22,23], are present for C and R scenarios, with significantly increased
intensity compared to S. In other words, efficient antibiotic therapy affects the pathogen’s
SERS profile when working primarily on the cell-wall synthesis, causing the adenine
derivatives present in its composition to be detected with lower intensities. The ratios
between the intensities I723 and I1324 of the SERS bands found in the specific microbial
fingerprint are considered quantifiable parameters for SERS-based AST [53].
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Figure 7. (A) SERS profiles and average (darker color) spectrum of A. hydrophila for the control case
(C) (without antibiotic treatment) and treated with antibiotic when the pathogen shows resistance (R)
or sensitivity (S). (B) 2D scores plots for PC-1 and PC-2 and the visibly formed C (green), R (red), and
S (blue) clusters. PCA was performed on the full spectral range (left plots) and on a specific range
(right plots). Samples were recorded on the same day (top row) or on separate days (bottom row).

The next step was to combine SERS spectroscopy and PCA to create a classification
model able to discriminate between A. hydrophila samples treated with an antibiotic for
which they show resistance (CBC) and sensitivity (AZL) in order to obtain a SERS-based
resistogram. The pretreatment and data analysis using PCA have been described in several
of our previous works [54–56].

First and foremost, we need to demonstrate the point-to-point reproducibility of our
data. To do so, we performed a PCA on a database of spectra recorded on the same
day. When running the PCA, the entire spectral range (550–1800 cm−1) was taken into
consideration. The first two PCs obtained added up to the total variance of 56%. R samples
were grouped into a wide cluster, while S and C clusters merged (Figure 7B). All the
analyzed SERS spectra are plotted in Figure 7A, together with the average spectrum of each
case, where narrow bands at 880 cm−1 and 1040 cm−1 and the wide band spreading over
600–750 cm−1 with variable intensities from R to S cases can be observed. On the other
hand, the intensities are reproducible for spectra belonging to the same group. 1040 cm−1

is the marker band with the biggest contribution for all first three PCs (see loadings plots in
Figure S7), together with the two marker bands specific to adenine. Taking this into account,
we performed a second PCA, where only the wavenumbers describing the aforementioned
bands were chosen as variables. Even though some S and R satellite samples drifted from
their group, C and S clusters separated visibly from the mix. In this case, the first three PCs
added up to an improved total variance of 84%, meaning that an unknown sample could
be assigned to the group to which it truly belongs with an 84% success rate.

Secondly, we performed a PCA on a database containing A. hydrophila treated with
antibiotics and SERS fingerprints recorded on separate days to demonstrate the day-to-day
reproducibility. When the whole spectral range was considered as variables, the data
were grouped into two clusters, R and S, while the C samples spread in a wider area,
also interfering with the other two clusters. The model has a total variance of 52% for
the first three PCs. The total variance improved to 77% for a second PCA when only the
wavenumbers in the previously defined specific spectral range were used as variables. The
three clusters were clearly separated from one another as well.
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3. Materials and Methods
3.1. Sample Preparation
3.1.1. Chemicals

Penicillin G sodium salt (CAS 69-57-8), ampicillin (CAS 69-53-4), and carbenicillin
disodium salt (CAS 4800-94-6) were purchased from Alfa Aesar GmbH & Co KG (Thermo
Fisher Scientific, Kandel, Germany). Oxacillin sodium salt (CAS 1173-88-2) and azlocillin
sodium salt (CAS 37091-65-9) were purchased from Sigma Aldrich Handels Gmbh (Wien,
Austria) at reagent grade.

3.1.2. Bacterial Strains

Aeromonas hydrophila PAI-45 and PI-88, and Morganella morganii PI-81 were chosen
as the GN microbial strains, while Bacillus cereus ESN-09, Enterococcus lactis CE-13, and
Enterococcus durans were the GP microbial strains in order to test their susceptibility to the
five antibiotics.

3.1.3. Disk Diffusion Tests

Each strain was first cultivated in an LB medium as a unique colony, with the inocula
concentration being further adjusted to 1.5 × 108 CFU/mL (0.5 McFarland). Then, 0.5 mL
of the resulting suspension of each strain was transferred to Petri dishes containing the
Muller–Hinton Agar Medium. Further, 6 mm sterile disks containing antibiotics were
placed in the Petri dishes and set for incubation for 24 h at 35–37 ◦C. After the incubation,
the circular growth zones were measured with a digital caliper. Antibiotics used on the
white disks were 10 µg of benzylpenicillin, 5 µg of oxacillin, 10 µg of ampicillin, 100 µg of
carbenicillin, 30 µg of azlocillin, and 30 µg of tetracycline per disk.

3.2. Vibrational Analysis
3.2.1. FT-Raman Analysis

FT-Raman spectra were recorded using a Raman Bruker FRA 106/S accessory attached
to an FT-IR Equinox 55 spectrometer (Bruker Optik GmbH, Ettlingen, Germany). The
excitation source was a 1064 nm laser of 250 mW power. The spectrometer was equipped
with a Ge detector, cooled with liquid nitrogen. The final FT-Raman spectrum contained
120 scans with a resolution of 2 cm−1.

3.2.2. In Situ Silver Nanoparticles (AgNPs) Synthesis

The SERS active colloidal system was synthesized in situ, as reported by Zhou
et al. [26], in the presence of bacteria. For a final volume of 1 mL, 10 µL of bacterial
biomass was immersed in the 100 µL silver nitrate solution (10−3 M) and then 900 µL of
the reducing agent (hydroxylamine hydrochloride, 10−3 M, and NaOH 1% mixture). This
procedure was used to generate in situ AgNPs at the bacterial cell wall structure. After
approximately 3 min of silver nanoparticles/biomass interaction, SERS measurements were
initiated on 3 µL sample spots immobilized onto microscopic slides.

3.2.3. SERS Spectra Measurements

SERS profiles were recorded using the NTEGRA Spectra platform (NT-MDT BV,
Apeldoorn, The Netherlands), equipped with a Raman confocal SOLAR TII spectrometer
and an Olympus IX71 microscope, by using the 100× objective (NA 0.7) and the 532 nm
laser line (<0.1 cm−1 spectral resolution) with a total power of 100 mW. The effective power
used on the sample was determined as 11 mW. Thirty accumulations with a 3s acquisition
time were recorded at the single-cell level.

3.3. Computational Details
3.3.1. Input Files for DFT Calculations

Before proceeding on the computational pathway, two-dimensional (2D) relaxed
potential energy surfaces (PES) were generated aiming to identify the global minimum
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for each molecule. The global minimum was found following the next steps: Starting
from the 2-azetidinone group (β-lactam ring), the first two dihedral angles, corresponding
to the first two bonds of the R chain (one of them being the amino group at position 6),
were each modified with a step of 15◦. During the geometry optimization process, these
dihedral angles were kept frozen, while the rest of the molecule was relaxed. Finally, the
2D scan counted 576 steps (24 × 24 steps). Each molecule received three such scans. The
second scan was performed by freezing the second and third dihedral angles. The initial
geometry used for this second scan was the resulting global minimum in the first scan. The
steps followed were the same for the third scan: The global minimum determined in the
second scan was used as an input geometry, while the third and fourth dihedral angles
were kept frozen.

DFT methods were used for all computations, which were carried out with the Gaus-
sian 09, Revision E.01 software package [57]. Both geometry optimization and frequency
calculations were performed using B3LYP hybrid exchange-correlation function [58–61]
coupled to the 6-31G(d) [62,63] (for anharmonic approximation) and 6-311+G(2d,p) basis
sets (for harmonic approximation). Wavefunction convergence and geometry optimization
were met using very tight criteria. The ultrafine grid option was chosen for the integration
of the electronic density. According to the results obtained from frequency calculations, all
of the optimized geometries correspond to true minima on the potential energy surface (no
imaginary frequency was obtained). The matching scaling factor of the used level of theory,
0.967 [64], was used for harmonic frequencies. We considered both the relative intensities
and peak positions of the calculated Raman spectra when assigning the normal modes at
harmonic and anharmonic levels.

3.3.2. Selecting the Ligands and Receptors

Before proceeding to molecular docking calculations, we started by preparing the
input files. For the ligands, we used the previously optimized geometries of BPN, OXN,
APN, AZL, and CBC. Next, we chose four PBPs belonging to four different bacteria as
receptors, two for each of the GN and GP classes. We selected the crystal structures of the
receptors from the Protein Data Bank (PDB) as follows: Chain A of the zinc carbapenemase
CphA from GN A. hydrophila (PDB id: 1x8i) [65], with a resolution of 1.90 Å, chain A of
metallo-beta-lactamase IMP-27 from GN M. morganii (PDB id: 6l3s) [66], with a resolution
of 1.70 Å, chain A of class A beta-lactamase from GP B. cereus (PDB id: 6w33) [67], with
a resolution 1.85 Å, and chain A of PBP4 from GP E. faecalis (PDB id: 6mkh) [68], with a
resolution of 2.62 Å. We removed all water molecules and all ligands or cofactors, if any,
from the original files before building the ligand–receptor systems. This step was performed
in Molegro Molecular Viewer 2.5 (Molexus Ivs, a CLC biocompany, Odder, Denmark).

3.3.3. Building the Ligand-Receptor Systems

We built the ligand–receptor systems in Autodock Tools 4 [69] by combining each
of the five antibiotics with each of the four receptors, resulting in a total of twenty such
systems. We added only polar hydrogens to the receptors’ structures and set them to be
kept rigid while running the docking algorithm against the ligands, for which we allowed
maximum flexibility. For the latter, we set the number of torsion angles to six for BPN and
OXN, seven for APN, nine for AZL, and eight for CBC.

3.3.4. Setting the Search Box

In order to be sure that the studied ligands bound exactly to the active site of the
considered receptors, we first proceeded to the confirmation of the binding site indicated
in the crystal complex by the original inhibitor. As a result, we removed the original
inhibitor from the crystallized ligand–receptor complexes and performed the docking to
their corresponding receptors by using a search box the size of the whole receptor. The
re-docked complex was overlaid onto the crystallized form and confirmed that the position
of the binding site (Figure S1). Further, for the actual docking of the twenty considered
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systems in this study, we chose the search boxes to enclose the binding sites of the original
ligands in the crystal structures of the macromolecules. The search box for A. hydrophila is
centered to (19, 47, 67) sized (24, 24, 24); M. morganii PBP is centered to (8, −1, 31) sized (25,
25, 25); B. cereus PBP is centered to (4, −4, 7) sized (25, 25, 25); and E. faecalis PBP is centered
to (36, 0, 8) sized (28, 28, 28). The grid spacing was set to 1 Å for all grid boxes.

3.3.5. PCA Analysis

The initial database used for multivariate analysis contains SERS spectra for the Gram-
negative A. hydrophila with and without antibiotic treatment. Baseline subtraction and
normalization relative to the highest peak were performed on the original SERS measure-
ment. These pretreatments were performed using SpectraGryph software (2001–2017). For
the multivariate analysis, seven principal components (PCs) were calculated using The
Unscrambler X 10.4 (developed by CAMO Software AS., Oslo, Norway).

4. Conclusions

With the aid of DFT frequency calculations, a complete assignment of the Raman
spectra of five penicillins—one for each generation—was described. We aimed to reveal
the (dis)similarities in their chemical structure by comparing their Raman responses. As a
result, we draw the conclusion that penicillins come with a specific Raman response, with
the band at 1002–1004 cm−1 being the most intense in all spectra. However, even if subtle,
each antibiotic presented specific Raman marker bands in its spectrum, which were absent
in all others. The enhanced intensity of 1606 cm−1 (C6C7 stretching), 1444 cm−1 (C28H3
bending), and 1471 cm−1 (C7=N24 and C26C27 stretching) makes OXN’s Raman spectrum
stand out the most. More visible changes may also be seen in the case of APN at 780 cm−1

(NH bending) and 830 cm−1 (NH2 twisting).
Based on the analysis of the frontier molecular orbitals (FMOs) and the molecular

electrostatic potential surfaces (MEPs), it was possible to determine the chemical reactivity
and correlated efficiency towards specific GN and GP pathogenic strains against OXN,
CBC, AZL, and two other classical penicillins. When the global reactivity descriptors were
taken into account, OXN has the strongest bactericidal activity, having the highest values
for I andω, and the lowest value for HLG. Regarding its HLG value, CBC was ranked as
the second-best bactericide compound.

The key outcomes of the docking studies demonstrated that both a newer-generation
antibiotic (AZL) and an older-generation antibiotic (OXN) are effective against various
penicillin-binding proteins responsible for Gram-positive and Gram-negative bacterial in-
fections. OXN scored the strongest binding energies to the CphA in GN A. hydrophila (pdb
id: 1x8i; −8.70 ± 0.02 kcal/mol) and GN M. morganii (pdb id: 6l3s; −7.86 ± 0.08 kcal/mol),
whereas AZL scored the strongest binding energies to the PBPs in GP pathogens B. cereus
(pdb id: 6w33; −8.32 ± 0.12 kcal/mol) and E. faecalis (pdb id: 1x8i; −8.44 ± 0.18 kcal/mol).
Their bactericidal activity was tested and confirmed on a couple of both Gram-positive
and Gram-negative species using the disk diffusion method. Aside from the novel re-
ported data, the methodology of our study, starting with the spectroscopic and reactivity
characterization of the active compounds and continuing with a molecular docking study
validated by disk diffusion testing, can be extended to any class of beta-lactams for a
broader understanding of the mechanism of action of such bactericides. One such example
is the cephalosporin class, from which a selection of compounds is to be the subject of
future work. Additionally, a SERS–PCA-based resistogram of A. hydrophila is proposed as a
clinically relevant insight resulting from the synergistic cheminformatic and vibrational
study on CBC and AZL.
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