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Abstract: Early detection of tumor cells by identifying universal Tumor Associated Antigens (TAA)
can drastically change our diagnostic, theranostic and therapeutic possibilities to cure cancer. Human
Telomerase Reverse Transcriptase (hTERT), a hallmark of cancer, could act as an optimal TAA
candidate. Here we report about the development of a monoclonal antibody against hTERT peptide
(α-hTERT mAb) presented on the surface of cancer cells and its possible applications as a pan-
cancer marker. Liquid biopsies, an innovative tool in precision oncology, comprising the noninvasive
analysis of circulating tumor-derived material to counteract limitations associated with tissue biopsies.
Within the tumor circulome, the US Food and Drug Administration already approved the use of
circulating tumor cells (CTCs) as valid liquid biopsies. However, currently CTCs are being trapped
using antibodies against specific cancer types, with anti EpCAM as the most common antibody,
directed mainly against solid tumors. Moreover, the precision medicine approach is based on specific
cancer type directed antibodies. Our novel mAb against the hTERT 16-mer peptide, corresponding to
amino acids 611–626, is capable of detecting various types of cancer cells both in vitro and ex vivo
from tumors of patients with either hematological or solid tumors. This antibody does not bind
to normal lymphocytes cells. Cleavage of our antibody to F(ab’)2 fragments increased its binding
specificity to the tested cancer cells. Future studies may point to the use of this antibody in the
procedure of capturing CTCs.

Keywords: telomerase; circulating tumor cells; pan cancer marker

1. Introduction

We are in the midst of major advances in understanding cancer biology and in devel-
opment of rationalized biological drugs against specific targets in cancer cells [1]. However,
the area of early diagnosis still lags behind. Although the ability to study solid cancers
by noninvasive sampling of blood (or other body fluids), namely liquid biopsies, sounds
promising in cancer diagnostics, there are still significant limitations hindering their clinical
usage. Liquid biopsies are manifested by two major strategies: cell-free circulating tumor
DNA (ctDNA) and circulating tumor cells (CTC) [2]. Derived from tumor deposits or lysed
CTCs, the relatively simple isolation of ctDNA has been shown to exhibit clinical potential
for diagnostic purposes. However, despite relative simplicity in its isolation, the small
amount of ctDNA is highly diluted within the larger amount of ctDNA originating from
normal cells (comprising 0.7% of the total DNA), thus restricting its potential use. The
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development of Next Generation Sequencing techniques may serve as a possible solution
for this problem. In addition, an optimal analysis and follow up of ctDNA requires a prior
elucidation of the tumor DNA sequence [3]. Utilization of CTCs as liquid biopsies, on the
other hand, does not require any statistical manipulations and calculations. However, this
method has its unique intrinsic limitations. CTCs comprise about 10–1000 cells among 109

Red Blood Cells (RBCs) and 5000–10,000 leukocytes. Therefore, their isolation should be
very specific [4].

The most common strategy for capturing CTCs is based on the expression of specific
markers on their membrane. By using the EpCAM and CK markers, the commercial
technology of CellSearch enables the isolation of epithelial derived tumor cells by magnetic
based antibodies [5–7]. Although reproducible, this technique suffers from a relatively low
recovery yield. Other EpCAM based isolation technologies (“CTC Chip” platforms) are not
suitable for high throughput assays [8,9]. The use of the EpCAM marker, however, restricts
the ability to detect CTCs to epithelial cells only.

In order to overcome these drawbacks, new isolation strategies were being developed
based on differences in their properties such as size, adherence, density, electric charge
of tumor versus normal cells [10–17]. The disadvantage of the size-based approach stems
from the variation in cell size and the necessity to use large volumes of cells. A recent
technology is based on the depletion of normal leukocytes from the blood sample [2]. This
approach requires a massive depletion of leukocytes and is currently based on sophisticated
microfluidic technologies, which are not routinely available [10]. Another novel and
efficient technique-CTC-iChip-uses size separation followed by a flow through microfluidic
channel and separation according to their inertial focusing. This technique also requires
specific equipment that is not commonly used [8].

Currently, there is no validated universal marker that enables a successful identi-
fication of large variety of CTCs as an early diagnosis strategy. Here we describe our
approach using telomerase peptide presented on the membrane of all cancer cells for the
development of an anti-telomerase antibody-based tool for pan cancer cells CTC isolation.
Telomerase is the hallmark of the cancer cell. It is highly expressed in almost all types
of cancer cells and is repressed in most somatic cells [18]. A panel of hTERT peptides
expressed at the outer membrane of cancer cells capable to induce cytotoxic T-lymphocytes
(CTLs) have been identified [19,20]. Previously, hTERT peptides were used to construct
a vaccine against cancer cells of various types, such as non-small cell lung cancer [21].
Studies using telomerase peptides as a vaccination approach showed that it may be used as
an attractive target for novel immunotherapies against cancer, by CTLs that can recognize
peptides derived from TERT and eliminate TERT-positive tumor cells in murine and hu-
mans [22]. Herein we used one of these peptides termed GV1001, a 16 amino acid peptide
(EARPALLTSRLRFIPK) [23] to generate an antibody that identifies cancer cells expressing
telomerase. Our antibody is specific to telomerase positive cells, both in vitro and ex vivo.
It efficiently identifies CTCs derived from the peripheral blood samples of patients with
various malignancies, thus establishing the use of anti-telomerase-based technology as a
tool for pan-cancer CTCs isolation.

2. Results
2.1. The α-hTERT Monoclonal Antibody Binds to Various Cancer Cells but Not to Fibroblasts

The specificity of the newly synthesized α-hTERT mAb (designed as α-hTERT) was
tested by assessing its ability to bind specifically the 16-amino acid telomerase peptide
of which it was designed against (not shown). The binding of the newly synthesized
α-hTERT mAb to various cancer cell lines and fibroblasts (non-cancer cells) was tested
using a flow cytometry. The following cells were assayed: Jurkat (T cell leukemia), MCF-7
(breast adenocarcinoma), U266 (multiple myeloma), MEL (melanoma), JeKo-1 (mantle cell
lymphoma), A549 (lung carcinoma). Fibroblast cells served as a negative control. The ability
of the antibody to bind these cells is presented in Figure 1A, as percentage of a-hTERT
positive cells. α-hTERT mAb binds to various cancer cell lines at different percentages
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depending on affinity and expression of the target. Fibroblasts, which do not express
hTERT, did not bind the antibody. Similarly, immunostaining of two carcinomas of the
colon, SW480 and HCT116 were successfully labelled with the α-hTERT mAb while PBMCs
from a healthy donor did not (Figure 1B).
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Figure 1. (A). flow cytometry analysis. Cells were grown in standard conditions according to
the ATCC recommendations. The binding of the α-hTERT mAb to the cells was detected by flow
cytometry using a secondary labeled antibody as described in the Materials and Methods section.
(The number of repeats for each cell line is: Jurkat—8; human Fibroblasts—3; MSF7 and JeKo1-2;
U266, MEL, A549-1). (B). Immunofluorescence analysis. Adenocarcinoma of the colon, SW480 cells
(a); PBMC from a healthy donor (b) and colorectal carcinoma cells, HCT116 (c) were labeled with the
α-hTERT mAb and CD45. Anti-mouse AF594 (Red) and anti-rabbit AF488 (Green) were used as a
secondary antibody and DAPI (blue) was used as a nuclear counterstain.

2.2. The α-hTERT mAb Binds to Cancer Cells Isolated from CLL Patients

The binding of α-hTERT mAb to cancer cells isolated from the peripheral blood of
patients with CLL (ex vivo) was tested as described in Materials and Methods. A total
of 57 blood samples at different stages of the disease (4–96% CLL cells according to their
clinical data), including primary diagnosed and treated, were tested. The binding to 4
representative blood samples of CLL and 4 solid tumors samples of different origin are
shown in Figure 2 (graphs) and Figure 3 (dot plots+graphs), using the isotype IgG1 as
a control. Representative dot plots are shown in Figure 3: Figure 3A depicts that most
of the α-hTERT positive PBMCs (72%) are CD19+/CD5+. Figure 3B demonstrates that
the α-hTERT mAb binds CLL cells gated as CD5+/CD19+. Figure 3C,D depict that the
α-hTERT mAb binds ex vivo to CD19+/CD5+ cells from the newly diagnosed patient
and similarly diagnosed patient after treatment against CLL, respectively. Figure 4 shows
that the percentage of the α-hTERT mAb positive cells detected by the flow cytometry in
Tel-Aviv university laboratory is very similar to the percentage of CLL (CD19+/CD5+) cells
identified by the flow cytometry unit at the Beilinson hospital.
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Figure 2. Ex vivo binding of the α-hTERT mAb to cancer cells obtained from patients with CLL (A)
and from patients with solid tumors (B). (A). Binding to PBMCs from patients with CLL: 2A— a
CLL patient with low amount of CLL cells (<50%), 2B—a CLL patient with high amount of CLL cells
(>80%); 2C—a newly diagnosed CLL patient; 2D—a CLL patient after treatment. (B). Binding to
circulating neoplastic cells and tumor cells suspension from patients with solid tumors as depicted
in the X axis. The relevant dot plots are provided in the corresponding Supplementary Materials
Figures (Figures S1–S4).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 15 
 

 

that the percentage of the α-hTERT mAb positive cells detected by the flow cytometry in 
Tel-Aviv university laboratory is very similar to the percentage of CLL (CD19+/CD5+) 
cells identified by the flow cytometry unit at the Beilinson hospital. 

 

Figure 2. Ex vivo binding of the α−hTERT mAb to cancer cells obtained from patients with CLL 
(A) and from patients with solid tumors (B). (A). Binding to PBMCs from patients with CLL: 2A— 
a CLL patient with low amount of CLL cells (<50%), 2B—a CLL patient with high amount of CLL 
cells (>80%); 2C—a newly diagnosed CLL patient; 2D—a CLL patient after treatment. (B). Binding 
to circulating neoplastic cells and tumor cells suspension from patients with solid tumors as de-
picted in the X axis. The relevant dot plots are provided in the corresponding Supplementary Ma-
terials Figures (Figures S1–S4). 

 
(A) 

 
(B) 

A

0.17

5.7 4.05 2.13 0.791.99

43.7

11.4
7.66 5.8

0
5

10
15
20
25
30
35
40
45
50

Fig 4 Fig 5 Fig 6 A Fig 6 B Fig 7

ovarian Merkel Breast Breast Lung

isotype a-hTERT mAb

α-
hT

ER
T 

po
sit

iv
e 

po
pu

la
tio

n;
  %

Solid tumors

B

3.28 3.43 1.73 0.84

32.7

83.9

37.1 36.3

0

10

20

30

40

50

60

70

80

90

2 A 2B 2 C 2 D

isotype a-hTERT mAb

α-
hT

ER
T 

po
sit

iv
e

po
pu

la
tio

n;
%

CLL patients

Figure 3. Cont.



Int. J. Mol. Sci. 2022, 23, 12872 5 of 14Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 15 
 

 

 
(C) 

 
(D) 

Figure 3. The binding of the α-hTERT mAb to PBMCs of CLL patients. The extent of the binding is 
shown on the right in each panel. (A). Most of α-hTERT positive cells are also CLL positive 
(CD19+/CD5+). PBMCs of CLL patient first were incubated with α-hTERT mAb or its isotype, then 
washed and stained with FITC-α-mouse secondary antibody followed by CLL markers PE-
CD19/PerCP-CD5 staining. All α hTERT positive cells were gated and analyzed for CD19/CD5. 
Overlay flow cytometry dot plot: the isotype is marked with green, the α-hTERT positive cells—in 
red. (B). CLL (CD19+/CD5+) Cells obtained from Patients with CLL are α-hTERT Positive. CLL 
cells from patient were gated according to the phenotype markers CD19/CD5, incubated with the 
α-hTERT mAb or its isotype IgG and stained with FITC-a-mouse secondary Ab. Flow cytometry 
dot plots show the binding α-hTERT mAb to CD19+/CD5+ cells and almost no binding of the iso-
type IgG. (C). Ex vivo binding of the α-hTERT mAb to CD19+/CD5+ cells from a newly diagnosed 
patient with CLL. Flow cytometry analysis: incubation with α-hTERT mAb or its isotype, staining 
with FITC-α-mouse secondary antibody followed by CLL markers PE-CD19/PerCP-CD5. (D). Ex 
vivo binding of the α−hTERT mAb to CD19+/CD5+ Cells from Patient with CLL during treatment. 
Flow cytometry analysis was conducted as above. 

Figure 3. The binding of the α-hTERT mAb to PBMCs of CLL patients. The extent of the binding
is shown on the right in each panel. (A). Most of α-hTERT positive cells are also CLL positive
(CD19+/CD5+). PBMCs of CLL patient first were incubated with α-hTERT mAb or its isotype,
then washed and stained with FITC-α-mouse secondary antibody followed by CLL markers PE-
CD19/PerCP-CD5 staining. All α-hTERT positive cells were gated and analyzed for CD19/CD5.
Overlay flow cytometry dot plot: the isotype is marked with green, the α-hTERT positive cells—in
red. (B). CLL (CD19+/CD5+) Cells obtained from Patients with CLL are α-hTERT Positive. CLL
cells from patient were gated according to the phenotype markers CD19/CD5, incubated with the
α-hTERT mAb or its isotype IgG and stained with FITC-a-mouse secondary Ab. Flow cytometry dot
plots show the binding α-hTERT mAb to CD19+/CD5+ cells and almost no binding of the isotype
IgG. (C). ex vivo binding of the α-hTERT mAb to CD19+/CD5+ cells from a newly diagnosed patient
with CLL. Flow cytometry analysis: incubation with α-hTERT mAb or its isotype, staining with
FITC-α-mouse secondary antibody followed by CLL markers PE-CD19/PerCP-CD5. (D). ex vivo
binding of the α-hTERT mAb to CD19+/CD5+ Cells from Patient with CLL during treatment. Flow
cytometry analysis was conducted as above.
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Figure 4. The percentage of the α-hTERT mAb positive cells corresponds to the percentage of the
ex vivo obtained neoplastic (CLL: CD19+/CD5+) cells. A similar analysis as described in Figure 3
was conducted.

The lack of α-hTERT mAb’s binding to normal lymphocytes is depicted in Figure 5
representing a negative (control) population. As shown, there was no binding of α-hTERT
mAb to the lymphocytes obtained from healthy volunteers. These results demonstrate the
specificity of the binding of the α-hTERT mAb to malignant lymphocytes.

2.3. Ex-Vivo Binding of α-hTERT mAb to Cancer Cells Isolated from Patients with Solid Tumors

5 ovarian tumors and 9 ascites samples from ovary cancer patients were analyzed.
Supplementary Materials Figure S1A demonstrates the binding of the α-hTERT mAb to
cells from patients with ovarian carcinoma. The main population was incubated with
α-hTERT mAb or the isotype control, the population of interest named FL1+ representing
4% of the main population is surrounded by a rectangle. A notable shift of this popula-
tion is obtained following staining with α-hTERT mAb. Importantly, when stained with
an additional marker, CCR5, α-hTERT positive cells were also CCR5 positive as shown
in Supplementary Materials Figure S1B. Isotype IgG1 and control AF647 IgG served as
nonspecific binding control.

The binding of α-hTERT mAb to PBMCs of a patient with Merkel carcinoma is pre-
sented in Supplementary Materials Figure S2. Although with no specific markers for
Merkel carcinoma we are unable to confirm that the α-hTERT mAb specifically binds to
cancer cells, a clear shift of cells subpopulation is detected following the incubation with
α-hTERT mAb and not with isotype IgG.

The ex vivo binding of the α-hTERT mAb to cells obtained from three patients with
breast cancer is shown in Supplementary Materials Figure S3. A subset of cells is clearly
positive to FITC-α-hTERT compared to that of the isotype control.

In addition, we were able to detect the binding of the α-hTERT mAb to a small subset
of cells from two patients with lung carcinomas as presented by dot plots on Supplementary
Materials Figure S4.
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Figure 5. No binding of the α-hTERT mAb to lymphocytes of healthy volunteers. The α-hTERT mAb
was added to PBMCs of healthy donors, stained with FITC-α-mouse secondary antibody as described
in the Materials & Methods and analyzed by flow cytometry.

2.4. F(ab’)2 Fragment of the α-hTERT mAb: Purification and Ex-Vivo Binding to CLL Cells

In order to optimize the binding specificity of the α-hTERT mAb to the TERT antigen,
the F(ab’)2 fragment was cleaved off using ficin. The F(ab’)2 fragment was detected
by gel electrophoresis (SDS-PAGE), and its binding to CLL cells was analyzed by flow
cytometry. The results of the binding assays of the F(ab’)2 fragment obtained from two
different preparations are demonstrated in Figure 6. As clearly shown, the F(ab’)2 fragment
presented a high ex-vivo binding affinity to the PBMCs of patients with CLL as compared
to that of the intact mAb or to that of the isotype IgG1 control.
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Representative dot plot is shown. PBMCs of CLL patient were incubated with the α-hTERT whole
mAb, or it’s F(ab’)2 fragment, or the appropriate isotype control. The binding was visualized by
AF647-a-mouse secondary Ab.

2.5. Sequencing of the Anti-hTERT Monoclonal Antibody

The amino acid sequences of the proteins comprising the light chain of the anti-hTERT
mAb was assessed by Edman degradation, and the sequencing of the heavy chain was
performed using an in-gel protein digestion followed by liquid chromatography-mass
spectrophotometry (LC-MS) procedures, as described in Materials and Methods. The light
chain (Supplementary Materials Figure S5) and heavy chain (Supplementary Materials
Figure S6) amino acids sequences of α-hTERT, designated herein as SEQ ID #1 and SEQ ID
NO#2, respectively, are:

SEQ ID #1
5’-DVVMTQTPLTLSVTIGQPASISCKSSQNLLYSDGKTYLNWLLQRPGQSPKRLIYLVS
KVDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYFCWQGTHLPYTFGGGTKLEIK-3’
SEQ ID #2
5’VQLQQSGAELVRPGASVTLSCKASGYIFTDYEKHWVKQTPVHGLEWIGAIDPESG
STVYNQRFKGKATLTADKSSGTAYMELRSLTSEDSAVYFCFLLRLFAYWGQGTLVTVSA -3’

The nucleic acid sequencing was performed using the degenerate primer-based se-
quencing technique described in Materials and Methods. The light chain and heavy chain
nucleic acids sequences of α-hTERT designated herein as SEQ ID #3 and SEQ ID #4, respec-
tively, are:

SEQ ID #3
5’-GATGTTGTGATGACCCAGACTCCACTCACTTTGTCGGTGACCATTGGACAACCA
GCCTCCATCTCTTGCAAGTCAAGTCAGAACCTCTTATATAGTGATGGAAAGACATAT
TTGAATTGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTATCTGGT-
GTCTAAAGTGGACTCTGGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGGACA-
GATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTTTTGC-
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TGGCAAGGTACTCATCTTCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAA-
AACGGGCTGATGCTGCACCAACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTA-
ACATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTCTACCCCAGAGACAT-
CAATGTC
AAGTGGAAGATTGATGGCAGTGAACGACAAAATGGTGTCCTGAACAGTTGGACTG-
ATCAGGACAGCAAAGACAGCACCTACAGCATGAGCAGCACCCTCACATTGACCAA-
GGACGAGTATGAACGACATAACAGCTATACCTGTGAGGCCACTCACAAGACATCA-
ACTTCACCCATCGTCAAGAGCTTCAACAGGAATGAGTGTTAA-3’
SEQ ID #4
5’-caggtgCAGCTGCAGCAGTCTGGGGCTGAACTGGTGAGGCCTGGGGCTTCAGTGACG
CTGTCCTGCAAGGCTTCGGGCTACATATTTACTGATTATGAAAAGCACTGGGTGAAG-
CAGACACCTGTGCATGGCCTGGAGTGGATTGGAGCTATTGATCCTGAAAGTGGTAG-
TACTGTCTACAATCAGAGATTCAAGGGCAAGGCCACACTGACTGCAGACAAATCTT-
CCGGCACAGCCTACATGGAACTCCGCAGCCTGACATCTGAGGATTCTGCCGTCTAT-
TTCTGCTTTTTACTACGGCTATTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCT-
CTGCAGCC-3’

The variable region of the light (VL) chain comprises the nucleotide sequence of SEQ
ID #6:

SEQ ID #6
5’-GATGTTGTGATGACCCAGACTCCACTCACTTTGTCGGTGACCATTGGACAACCA-
GCCTCCATCTCTTGCAAGTCAAGTCAGAACCTCTTATATAGTGATGGAAAGACATAT-
TTGAATTGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTATCTGGT-
GTCTAAAGTGGACTCTGGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGGACA-
GATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTTTTG-
CTGGCAAGGTACTCATCTTCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATA-
AAACGGGCTGATGCTGCACCAACTGTATCCATCTTCCCACCATCCAGTGAGCAGTT-
AACATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTC-3’

3. Discussion

Many signal transduction pathways which mediate malignant transformation have
been deciphered. Accordingly, new efficient anti-cancer rationalized drugs were devel-
oped [1]. However, the diagnosis area still lags behind the therapeutic one and as such
presents an unmet need [24].

Recently, a novel technology has been developed for this purpose which is based on
liquid biopsies [25]. Liquid biopsies are meant to replace the existing biopsies obtained from
the tumor mass itself, biopsies that are penetrate, with high cost, cause pain and clinical
complications and contain a heterogeneous population of tumor as well as other non-cancer
cells, thereby may be miss-interpreted [5]. Of the main two approaches: circulating tumor
cells (CTCs) and circulating DNA, we focused on the former.

The isolation of CTCs is evolving as a promising approach for genetic analysis and
therapeutic decisions in cancer and as a possible tool for detection of tumors. The available
methods for isolation of CTCs are specific for various types of cancer and therefore the
hunting of these CTCs is done by binding to a specific antibody which serves as a cancer
marker, which varies among the different malignant cells as well as lacks in others. Herein
we describe a somewhat novel approach in which we use the peptide of telomerase, the
hallmark of cancer cells, as a bait to trap all cancer cell types based on the definition of the
hTERT as a pan-cancer marker [26]. This definition stems from the uniqueness of telom-
erase reverse transcriptase—its presence in nearly all types of cancer cells (>90%) and its
absence from most somatic cells. The approach of “anti-personalized medicine” has many
advantages as it may overcome the above-mentioned pitfalls of the current methodology.

Telomerase containing cells present on their membrane telomerase driven peptides.
Our strategy is based on one of them, termed GV1001, a 16 amino acid peptide (EARPALLT-
SRLRFIPK) which was used to construct an antibody for the identification of cancer cells
expressing telomerase [21]. Our constructed antibody can specifically bind numerous
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cancer cell lines but not normal fibroblasts (Figure 1), albeit with different affinities. These
differences may stem from the differential dependencies of the cells in telomerase activity.
Along these lines, we have previously shown that T-cell leukemia (Jurkat) cells presented
the highest telomerase activity compared to other cancer cell lines as well [27]. We have also
analyzed the in vitro binding of our α-hTERT mAB by immunofluorescence and similarly,
our antibody specifically bound to colon cancer cell lines but not to peripheral mononuclear
cells obtained from a healthy donor (Figure 1B).

Since the α-hTERT antibody is present specifically on cancer cells membrane, it was
shown to be successfully used as a cancer related antigen for developing anti-cancer
vaccination in several studies to treat advanced pancreatic cancer, non-small cell lung
cancer, melanoma, and other cancers [28–32].

Next, we showed that CLL cells obtained from patients differing in their CLL cells con-
centrations, bound our antibody. When we labelled the cells firstly with our antibody and
only then with αCD19 and αCD5 as CLL markers, we got similar results, thus emphasizing
the capability of the antibody to recognize and bind CLL cells (Figures 2–4 and Figure 6).
More importantly, this α-hTERT mAB bound also to cell suspension obtained from patients
with ovarian tumor and breast cancer, PBMCs from Merkel carcinoma and Lung cancers,
pointing to its potential usage in capturing CTCs (Figure 2 and Figures S1–S4). Specifically,
our antibody did not bind to healthy lymphocytes (Figure 5).

Our study has several limitations. First, hTERT is also expressed in actively dividing
normal somatic cells, including small intestine, colon, lymph nodes and also hematopoietic
stem cells, although to a much lesser extent compared to malignant cells [33,34]. In the
current study we did not test our antibody against these specific cells. Hopefully in future
studies the difference between the hTERT expression in these somatic versus neoplastic
cells will be reflected by the differential binding of the antibody to these cells.

Second, the specificity of our mAb was evaluated by a parallel assessment of the
binding of our mAB to ex vivo samples obtained from oncological patients and from healthy
volunteers. To calculate the specificity and sensitivity of our antibody, we currently collect
more samples in order to analyze these parameters by a Receiver Operating Characteristic
(ROC) curve in the coming future. Third, we did not report the efficacy of our antibody,
since only in CLL cells and not in the cells originated from the solid tumors we could
compare the extent of the hTERT antibody binding to the presence of CLL markers on the
neoplastic cells. All in all, we have characterized an anti-telomerase specific mAb which
was shown to be specific to telomerase positive cells, both in vitro and ex vivo (Figure 7).
The fact that the extent of the antibody binding differed in various cell lines may stem
from the different expression of the enzyme in these cancer cells. We have subsequently
sequenced our specific antibody and provide herein the full sequence of both heavy and
light chains of it.
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Finally, to improve the specificity of the α-hTERT mAb we have cleaved it to F(ab’)2
fragment. As expected, the cleaved F(ab’)2 fragment bound cancer cells specifically ex vivo
(Figure 6), in line with other studies reporting a similar improvement [35,36].
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These results show that our anti-hTERT antibody-based system is able to identify and
isolate circulating tumor cells of various origin.

One major pitfall in our study might have been that the antibody would not identify
all cancer cells expressing telomerase and therefore the number of isolated CTCs will not be
maximal; This point already proven not to be a problem, as our antibody is highly sensitive
and specific for cancer cells. However, the advantages in the development of this “CTC
trapping” anti “personalized medicine” based approach are clear: it is an easy cheap and
noninvasive one.

Hopefully the approach that we developed will be thoroughly explored in future
studies which may result in the development of a more beneficial method to trap CTCs for
the benefit of patients with cancer.

4. Materials and Methods
4.1. Cell Culture

Cells were grown under standard growth conditions. The following cells were used:
Jurkat (T cell leukemia), MCF-7 (breast adenocarcinoma), U266 (multiple myeloma), MEL
(melanoma), JeKo-1 (mantle cell lymphoma), A549 (lung carcinoma). Human mononuclear
cells (MNCs) from healthy volunteers and human fibroblasts served as a negative control.
All cell lines were originated from the American Type Culture Collection (ATCC). U-
266, Jurkat, JeKo-1 and MEL were cultured in RPMI-1640, A549 and MCF-7 in DMEM
supplemented with 10–20% fetal bovine serum (FBS), 100 units/mL L-glutamine and 1%
penicillin/streptomycin/nystatin (Biological Industries Beit Haemek, Israel) at 37 ◦C with
5% CO2. Jurkat and MEL cell media were supplemented with 10% FBS, U-266 was grown in
the presence of 15% FBS and JeKo-1 with 20% FBS. Fibroblasts were propagated in DMEM
with 20% FBS supplemented with L-glutamine and penicillin/streptomycin/nystatin.

Patients’ samples were obtained upon consent via protocol # 0038-12 approved by the
IRB of Rabin Medical Center.

4.2. Isolation of Mononuclear Cells

Peripheral blood samples were collected and stored at room temperature and pro-
cessed within 24 h of the collection. All participants signed an informed consent. Peripheral
blood mononuclear cells (PBMCs) were isolated from the blood samples using standard
protocol with Lymphoprep (Stem Cell Technologies, Cambridge, MA, USA).

4.3. Antibody Production

The hTERT peptide GV1001, EARPALLTSRLRFIPK, was synthesized by Genemed Syn-
thesis (San Antonio, TX, USA). Hybridomas were produced by ProteoGenix (Schiltigheim,
France). The Screening of the various antibodies containing supernatants was performed
by ELISA and Flow Cytometry. The antibodies and isotype controls for flow cytometry
were purchased from BioXCell Company (West Lebanon, NH, USA).

4.4. F(ab’)2 Production

F(ab’)2 fragments of α-hTERT mAb were prepared according to the protocol provided
by Pierce mouse IgG1 Fab and F(ab’)2 preparation kit (ThermoScientific, MA, USA). The
fragments were generated by using ficin in the presence of cysteine and analyzed by
polyacrylamide gel electrophoresis (PAGE).

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The specificity of monoclonal antibodies (mAbs) to the hTERT peptide was assessed by
sandwich ELISA, using a standard protocol, wherein the tested mAbs binds to the hTERT
peptide and not to the carrier protein (KLH) immobilized to the assay plate. Unbound
antibodies were removed by washing with PBS. Subsequently, the bounded antibodies
were detected by horse radish peroxidase (HRP)-conjugated anti-mouse IgG antibody and



Int. J. Mol. Sci. 2022, 23, 12872 12 of 14

a 3,3′,5,5′-tetramethylbenzidine (TMB) substrate. The optical density was measured at 450
nm by microplate reader (Synergy HT, BioTek).

4.6. Flow Cytometry and Sample Preparation

The binding of the α-hTERT antibodies to a panel of cancer cells from patients was
assessed by flow cytometry analysis. Blood, tumor and ascites samples were first stained
with primary α-hTERT peptide mAb or isotype control, then incubated with FITC or AF647-
conjugated α-mouse secondary Ab (Jackson, ME, USA) for the detection of hTERT positive
cells.

Chronic lymphocytic leukemia (CLL) cells were marked as CD19+/CD5+ (PE-CD19
and PerCP-CD5, BioLegend, CA, USA); ovarian cancer cells were detected by following
the marker CCCR5. Antibodies were purchased from ENCO, Jackson, Sigma and Abcam,
CA, GB).

All cells were prepared for the flow cytometry analysis according to a routinely used
procedure. Cell lines: floating cells collected from the growth media by centrifugation,
adherent cells were trypsinized. Peripheral blood mononuclear cells (PBMCs) obtained
from whole blood were isolated by Lymphoprep (Stem Cell Technologies, Cambridge, MA,
USA).

The flow cytometry data was acquired using a BD FACS Calibur flow cytometer (BD
BioSciences, San Jose, CA, USA), acquisition and analysis were performed using Cell Quest
Pro software (BD Biosciences, USA).

PBMCs were centrifuged, the pellet was resuspended in PBS +2% FBS and equally split
into tubes. Cells were subsequently stained with α-hTERT or isotype mAb, washed with
Phosphate Buffer Saline (PBS) and incubated with fluorescently labeled secondary anti-
mouse Ab (Sigma, MI, USA). Following washing cells were stained with tumor markers
antibodies and re-suspended in PBS for acquisition on a flow cytometer. The same setup
and compensation were used for all CLL samples. Cell debris and aggregates were excluded
on forward scatter vs. side scatter. Data is presented by dot plots, histograms and graphs.

4.7. Protein Sequencing: (Edman Degradation)

The sequencing of the light chain of the antibody was performed using Edman degra-
dation, in gel protein digestion and liquid chromatography-mass spectrophotometry (LC-
MS) conducted by the Mass Spectrometry (MS) biological services unit of the Weizmann
Institute of Science, Rehovot.

The heavy chain of the purified antibody was cleaved by trypsinization prior to
LC-MS analysis.

4.8. Nucleic Acid Sequencing

The nucleotide sequence was obtained by using degenerated primers based on pre-
dicted sequences designed at the Tel Aviv University. The Kapa HiFi HotStart PCR (Thermo
Fisher MA, USA) was used for the PCR reaction and the procedure was performed ac-
cording to routinely used protocol. The nucleic acid sequencing was performed by the
Instrumentation and Service Center at Tel Aviv University.

4.9. Immunofluorescence

Immunofluorescence analysis was conducted as described previously [26]. Basically,
cells were fixed with 2% paraformaldehyde in PBS, permeabilized by 0.1% Triton X-100
in PBS and blocked with 2% bovine serum albumin in PBS overnight at 4 ◦C. Thereafter
cells were washed with blocking buffer and incubated with our α-hTERT mAb or α-CD45
ab (Abcam, Cambridge, UK) for 16 h followed by incubation with labeled secondary
antibodies (AF594 α mouse or AF488 α -rabbit respectively). To visualize the cells, we
dropped them on glass slides mounted with Vectashield mounting medium with DAPI
(Vector Laboratories, Newark, CA, USA) to counterstain nuclei. Images were inspected by
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using a Zeiss LSM510 Meta laser scanning confocal microscope (Carl Zeiss, Oberkochen,
Germany) equipped with a Zeiss Axiovert 200 M.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232112872/s1.
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