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Abstract: The inflammasome complex is a key part of chronic diseases and acute infections, being
responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection
is characterized by a dysregulated cytokine release. In this context, the inflammasome complex
analysis within SARS-CoV-2 infection may prove beneficial to understand the disease’s mechanisms.
Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19
(n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus
H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using
hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal
antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1β, IL-18, ASC, CASP1, CASP9,
GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests.
IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4;
ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that
indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1
were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the
SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are
still warranted to elucidate the pathophysiology of the disease.

Keywords: COVID-19; inflammasome; pyroptosis; cytokine; immunohistochemistry; pulmonary
tissue; oxidative stress

1. Introduction

The COVID-19 pathogenesis is linked to a systemic inflammatory reaction with a
disproportionate cytokine release and an inability to shift the immune response from innate
to adaptive [1]. The disease’s clinical effects are related to an exaggerated immune response
characterized by a cytokine storm mediated by the NF-κB pathway [2–4] that, in severe
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cases, leads to pneumonitis, endotheliitis, immunothrombosis, multi-organ dysfunction
syndrome (MODS), and ultimately death [5].

Upon entering the body, the SARS-CoV-2 virus binds to the respiratory tract epithelial
cells. The angiotensin converting enzyme-2 (ACE2) as a viral receptor will then activate
transmembrane protease serine-2 (TMPRSS2) in order to allow the virus to effectively infect
the cell [6]. However, literature suggests that the Toll-like receptor 4 (TLR4) could also
be activated upon cell membrane interaction with the virus [7]. The NLRP-3 (or NALP)
inflammasome complex is a multiprotein complex mediated and activated by both ACE2
and TMPRSS2 [8], and it may have a central role in the disproportionate cytokine release and
immunothrombotic COVID-19 repercussions [9]. Studying its activation within COVID-
19 cases may provide us with valuable insight into the disproportionate inflammation
observed in the disease [10].

The inflammasome is a high molecular weight protein complex activated within the
innate immunity reactions cascade that acts as a cell response to infection, intracellular
changes, or tissue death [11]. Its activation starts with a first signal recognized by a Pattern
Recognition Receptor (PRR) among which we can highlight Toll-like Receptors (TLR) and
Nod-like Receptors (NLR) [12]. This complex is regulated by the NF-κB pathway that
will in its turn modulate and be modulated by oxidative stress and culminating in the
production of interleukin-1β (IL-1β) and interleukin 18 (IL-18) [13]. In addition to the
interleukins 1β and 18 activation, the inflammasome complex also leads to a cell death
called pyroptosis [14,15].

The inflammasome complex itself is composed of three main components: (1) an
NLRP-3 protein, (2) an ASC protein with a CARD domain that will form an (3) oligomer
ASC/ NLRP-3. This ASC/ NLRP-3 oligomer activate pro-caspase 1 to caspase-1 (or CASP1),
and its assembly is determined by the NF-κB pathway and its nuclear transcription modu-
lation [16].

There are several different inflammasome complexes, each one activated in response
to a type of cellular insult. Literature describes inflammasome complexes activated by
pathogens such as bacteria, fungi, inorganic molecules, cytokines, and even ionic imbal-
ances originating either intracellularly or extracellularly [16].

The pyroptosis process is characterized by activation of CASP1 (but not by caspase 9
or CASP9 activation) and Gasdermin-D (GSDMD) cleavage resulting in membrane pore
formation and cell death [17]. On a large scale, pyroptosis is an important factor of tissue
damage, producing cytokines that contribute to Multiple Organ Distress Syndrome (MODS)
and often leads to tissue fibrosis and loss of primary function [18].

The inflammatory cascades that lead to the inflammasome pathway activation have
a central role in chronic diseases such as atherosclerosis [19], cancer [20], and Crohn’s
disease [21]. Moreover, other viral infections such as Dengue fever and Ebola are also
linked to pathological inflammasome activation [22–24].

The 2009 Influenza A virus H1N1 subtype pandemics (H1N1pdm09) posed several
challenges to scientists and healthcare providers in the past decade. The pathogenesis of
this specific flu type is characterized by intense interleukin-17 (IL-17) secretion, alveolar
inflammatory infiltrate that would impair the lung’s ability to exchange oxygen [25],
whereas the SARS-CoV-2 infection and lung tissue damage generates fibrosis and has
mast-cell recruitment into pulmonary tissue [26,27]. Comparing both pandemic viruses
and their pathogenesis may offer significant insight into relevant differences between
their mechanisms.

In this paper, we test a possible mechanism for the SARS-CoV-2 pathology through
the observation of inflammasome complex activation markers (TLR4; ACE2; IL-1β; IL-18;
NF-κB; ASC; NLRP-3 (or NALP); CASP1; CASP9; GDSM-D; NOX4; TNF-α) in post-mortem
lung biopsies from patients that died from COVID-19 and compare them to samples
from patients that died from non-acute pulmonary death causes and patients that died of
the H1N1pdm09.
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2. Results
2.1. Study Sample

The population mean age for patients in the COVID-19 group was significantly higher
with a median of 72.5 years when compared to H1N1 (median of 45) and control patients
(median of 44) (p < 0.0001), COVID-19 patients had a significantly longer time from admis-
sion to death (COVID-19× CONTROL p = 0.0013/COVID-19 × H1N1 p < 0.0005). Other
population aspects are described in Table 1.

Table 1. Sample demographic data.

Characteristics COVID-19 H1N1 Control p-Value

Female 9 (37.5%) 2 (20%) 3 (27.27%)
NS

Male 15 (62.5%) 8 (80%) 8 (72.73%)

Age (median in years) 72.5 44 45

COVID-19 vs. H1N1
p < 0.0001

COVID-19 vs.
CONTROL p < 0.0001

Time from admission to
death (median in days) 13.0 1.5 4

COVID-19 vs. H1N1
p < 0.0005

COVID-19 vs.
CONTROL p = 0.0013

Duration of invasive
ventilation

(median in days)
9.5 1.5 N/A p = 0.0096

Death Cause

Diffuse Alveolar
Damage and
Disseminated
Coagulopathy

Diffuse Alveolar
Damage

Peritonitis, Infarction
(n = 3),

Neuroendocrine
Carcinoma,

Adenocarcinoma,
Hepatic Cancer,

Laryngeal Cancer,
Surgical Complications,

Lymphoma,
Thrombosis

N/A

Comorbidities

Hypertension
(n = 21), Chronic
Cardiac disease

(n = 11),
Data Not Obtained

Hypertension (n = 3),
Chronic Cardiac
disease (n = 5),

Malignancy (n = 3) Malignancy (n = 5)
Diabetes Mellitus

type 2 (n = 11)
Diabetes Mellitus type

2 (n = 2)
Dyslipidemia

(n = 17) Dyslipidemia (n = 4)

Obesity (n = 6) Obesity (n = 4)
Chronic Lung
disease (n = 5)

Chronic Lung disease
(n = 4)

2.2. Immunohistochemistry

ACE2 expression is upregulated by SARS-CoV-2 infection and used by the virus as a
way of entering the cytosolic environment [9,28], we have observed that the ACE2 expres-
sion was significantly higher (p = 0.0001). We have also observed the NOX-4 and NF-κB
expression, described by literature as inflammasome upregulators [15], to be significantly
increased (p < 0.05). IL-1β and IL-18 are direct results of inflammasome activation [28],
our analysis showed that they were increased in the COVID-19 group when compared to
the control (p < 0.0005) group and that IL-18 was increased in the COVID-19 group even
when compared to the H1N1 group (p < 0.0001). The ASC portion of the inflammasome
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is responsible for the complex’s role of pro-interleukin and procaspase activation [29,30]
our observations show that it was significantly more expressed regardless of group com-
parison (p < 0.0005). Pyroptosis is an inflammasome-dependent process, it is marked by
CASP1-mediated GSDM-D cleavage and subsequent membrane pore formation [17,31], we
observed that CASP1 was significantly more expressed in the COVID-19 group (p < 0.0001),
while GSDM-D was significantly less expressed in the COVID-19 group (p < 0.0005). CASP9
is an apoptosis mediator and was chosen as a negative control for inflammasome activa-
tion [30,32]; it was found to be less expressed in the COVID-19 group when compared to
the control group (p < 0.0001).

All marker results, as well as their significance and which group showed a higher
expression are described in Table 2.

IHC analysis of key inflammasome cytokines and proteins is represented in Figures 1 and 2.
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Figure 1. Graphs showing the comparison between COVID-19, H1N1, and CONTROL groups
concerning ACE2, NOX4, NF-κB, and ASC. Panel (A) shows that ACE2 is significantly increased in
COVID-19 when compared to H1N1 and the control group. In Panel (B), NOX4 is more expressed
in COVID-19 than in the H1N1 and CONTROL groups. Images (C) and (D) also show that NF-κB.
and ASC expression are remarkably high in COVID-19. These graphs show that the COVID-19
expressed characteristics needed for SARS-CoV-2 cell entry as well as oxidative stress and key
components for inflammasome activity. The symbol “ * ” stands for p ≤ 0.05, “ *** “ stands for
p ≤ 0.001, “****” stands for p ≤ 0.0001. Slide images were obtained on a 40× augmentation. Image
created using biorender.com.
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TLR4 ↑H1N1 0.0247 ↑CONTROL 0.0164 
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Figure 2. Graphs presenting the comparison between COVID-19, H1N1, and CONTROL groups
regarding IL-1β, CASP1, GSDMD, and CASP9. Panel (A) shows that IL-1β is more expressed in
COVID-19 than in H1N1 and the control group. In Panel (B) is possible to see that CASP1 expression is
remarkably high in COVID-19, unlike CASP9 (seen in Panel (D)) which is significantly less expressed,
a difference expected to be seen only within the Pyroptosis context. Panel (C) shows that GSDMD is
being less expressed in COVID-19 than in H1N1 and CONTROL groups. The symbol “*” stands for
p ≤ 0.05, “***“ stands for p ≤ 0.001, “****” stands for p ≤ 0.0001. Slide images were obtained on a 40×
augmentation. Image created using biorender.com.

Table 2. Results of statistical analysis and immunohistochemical analysis. Column 1 shows the
staining analyzed, Column 2 shows the COVID-19 group versus H1N1 comparison, and Column 3
shows the COVID-19 versus CONTROL comparison. Paired marker expression comparison. Arrows
pointing upwards indicate augmented expression.

Marker COVID-19 × H1N1 p-Value COVID-19 × Control p-Value

ACE2 ↑COVID-19 0.0001 ↑COVID-19 <0.0001
TLR4 ↑H1N1 0.0247 ↑CONTROL 0.0164

NLRP-3/NALP NS 0.4615 NS 0.1628
IL-1β NS 0.1439 ↑COVID-19 <0.0001
IL-18 ↑COVID-19 <0.0001 ↑COVID-19 0.0004

NF-κB ↑COVID-19 <0.0001 ↑COVID-19 <0.0001
ASC ↑COVID-19 <0.0001 ↑COVID-19 0.0004

CASP1 ↑COVID-19 <0.0001 ↑COVID-19 <0.0001
CASP9 NS 0.8332 ↑CONTROL <0.0001

GSDMD ↑H1N1 0.0003 ↑CONTROL <0.0001
NOX4 ↑COVID-19 0.0372 ↑COVID-19 <0.0001
TNF-α NS 0.0929 ↑COVID-19 0.0011
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3. Discussion

The inflammasome complex proteins and modulators were found to be activated in
COVID-19 and its activation was significantly higher when compared to the control patients.

Throughout the analysis of our data, we found that the cell receptors used by the virus
(ACE2 and TLR4) were significantly more expressed. We also found that the upregulation
of the NF-κB pathway was shifted towards acute inflammasome activation, and this shift
became evident upon analyzing the ASC protein expression. Not only we identified an
upregulation of ACE2 and NF-κB, which are essential for the inflammasome complex
activation, but also we observed the increased expression of IL-1β and IL-18, which are
some of the cellular products of acute inflammasome activation.

We observed that the patients suffering from COVID-19 underwent a process of cell
death called pyroptosis, which is dependent on inflammasome activation and shows a very
specific caspase expression, relying on CASP1 (but not CASP9). This finding is relevant
because even though chronic illnesses are known to activate the inflammasome complex,
the shift towards pyroptosis indicates a disproportionate acute activation determinant to
the type of tissue lesion and subsequent fibrosis [27,33], whereas CASP9 is seen mainly as a
late response to hypoxic insult and in physiological apoptosis [32,34].

3.1. Population

Regarding the population analyzed, we observed that the COVID-19 group was
significantly older when compared to any of the other groups.

Literature describes age as one of the key aspects of an oxidative stress imbalance
called inflammaging in which the immune system’s ability to shift from innate to adaptive
immunity is impaired [17]. However, analyzing the main causes of death within the control
group, several chronic inflammatory diseases were described as cancerous diseases that are
especially relevant when analyzing the inflammasome activation [31,32].

The demographic information ensemble shows us that both the control group, and
the COVID-19 group, suffered from chronic inflammatory diseases. These demographical
differences were not enough to compensate the inflammasome activation observed on the
COVID-19 group.

The control group samples serve as an approximation to normality but were not
disease free, their medical histories describe chronic illnesses such as hypertension, diabetes,
and malignancies that are hallmarks for chronic inflammasome activation [33] but did
not include any concomitant bacterial infections. The H1N1 group served as a positive
control group to show that other pandemics acute infectious diseases have a different
inflammatory profile.

3.2. H1N1 Death Process

The H1N1 pathogenesis is characterized by a secretion of interleukin-17 (IL17) that
recruits neutrophils causing extensive edema and lung infiltrate. Its infection engenders
extensive neutrophilic and macrophagic infiltrate into the alveolar sacs impairing the pa-
tient’s ability to properly exchange oxygen with the air. The production of IL-17 does,
however, upregulate the production of IL-1β, IL-18, and IL-8, and to some degree upreg-
ulates the NF-κB pathway [34], this upregulation does not translate, however, into the
pyroptosis process but rather on a Caspase-3 induced apoptosis [35,36]. In this paper, we
chose H1N1 to be a positive control for an inflammatory disease that does not involve
NLRP3-induced pyroptosis.

3.3. The Inflammasome Complex

Activation of inflammasomes is different in chronic diseases and acute diseases,
chronic diseases rely on different pathways in action such as the canonical, non-canonical,
and alternative activation pathways [32,37]. Viral infections tend to regulate the inflam-
masome activation through the canonical activation pathway. We observed that the SARS-
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CoV-2 infection causes a disproportionate activation of the canonical inflammasome path-
way [38], which is illustrated in Figure 3.
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Figure 3. Graphical abstract demonstrating the viral infection stimulating ACE2 receptors and TLR4
receptors, modulating oxidative stress, and stimulating the NF-κB pathway followed by protein
transcription culminating in pro-IL-1β, pro-IL-18, and TNF-α production. The process is then
followed by NLRP-3 activation of pro-IL-1β, pro-IL-18, CASP1 activation, and GSDM-D cleavage
leading to pore membrane formation.

Our results also show that the ACE2 expression was significantly higher in COVID-19
when compared to both H1N1 and Control groups, as seen on Figure 1. This difference
could be attributed to the fact that the SARS-CoV-2 is known to not only use ACE2 as a way
to infect a cell, but also to upregulate its expression as a result of its infection [39]. Another
possible mechanism increasing the ACE2 expression is that age is a constitutive factor to
overexpressing ACE2 on cell membrane [40].

TLRs are pathogen binding cell membrane receptors that are widely present in res-
piratory tract epithelial cells and are key immune response regulators acting as a bridge
between native and innate immune responses [12,25]. Once the TLR4 receptor binds to
an antigen, a shift in cell metabolism is triggered and the NF-κB pathway is activated.
Upon infection, mitochondrial stress is increased and an imbalance occurs leading to the
expression of mitochondrial NADPH oxidase 4 (NOX4) [41]. The presence of NOX4 in
the cytosolic environment, as well as oxidative stress species and ionic changes created by
mitochondrial dysfunction, modulates the production of pro-caspases and pro-interleukins,
as well as NLRP-3 oligomers that may go on to polymerize and form an inflammasome
complex polymer [11]. Our study shows that the expression of NOX4 was significantly
higher in COVID-19 patients, regardless of which group comparison was made, as seen on
Figure 1, demonstrating that the SARS-CoV-2 infection leads to important oxidative stress
and mitochondrial imbalance.
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The NF-κB pathway is a multi-reaction metabolic pathway that can either determine
cell survival or cell death [42]. Upon cell infection, there is a shift from maintaining cell
homeostasis and survival to an inflammatory response [43] that is mainly composed of
IL-1β [43,44]. In this context, observing the NF-κB expression gives us valuable insight on
the effects the SARS-CoV-2 has on the cellular machinery. We observed that the COVID-
19 group presented the highest NF-κB expression within pulmonary tissue, as seen on
Figure 1. This finding may be a clue to one of the many pathogenesis differences between
H1N1pdm09 and COVID-19, as well as an indicator of the tissue reactions observed.

This study shows that the NF-κB protein was significantly increased further corrobo-
rating that the inflammasome activation is plausible and likely. Not only was the NF-κB
expression increased but also the interleukin profile identified upon the biopsies shows
that the pathway modulated by the NF-κB was indeed shifted towards an inflammatory
response relying on the inflammasome activation [45].

The ASC protein is a part of the inflammasome complex; more specifically, it is the part
in which the activation of pro-interleukins and pro-caspases takes place. NLRP-3 oligomers
and polymers within the inflammasome complex rely on the CARD domain within the
ASC protein to activate IL-1β, IL-18, and CASP1 in the cytosolic environment [46]. The
increased expression of ASC is indicative that not only cell metabolism has shifted to
the NLRP-3 inflammasome but also that it is indeed capable of producing the cytokines
that will further modulate cell death and injury response [16,46]. Our study showed that,
although there was no difference in the NLRP-3 component expression the COVID-19
group had a significantly higher ASC expression, as seen on Figure 1, which indicates
inflammasome activity.

IL-1β and IL-18 are interleukins belonging to the IL-1 family [47] and are produced as
a response to cellular insults that range from infection, such as the classically described LPS-
induced inflammasome activation, to metabolic imbalances resulting in ionic fluxes through
cell membrane [8,48,49]. IL-1β is well described as especially important in chronic metabolic
diseases [11,21,33] and in acute infectious diseases, among which we can highlight Dengue
virus, Mayaro virus, and even Ebola virus [23,50]. It is important to note that H1N1pdm09
will also cause an increase on IL-1β expression but what is seen is that its expression is due
to other inflammatory pathways as well as, on a minor scale, the inflammasome. The IL-1β
plays an important role as a second signal in the inflammasome activation. In macrophages,
it acts as an upregulator to pathogen phagocytosis, in the endothelium, it will modulate
further inflammatory cytokine secretion and increase the expression of adhesion molecules
involved in macrophage recruitment [51]. Its role, however, is extended to the extracellular
level as it acts as an activator to immune cell-secreted cytokines and proteases [47]. Both IL-
1β and IL-18 act dually as a product of NLRP-3 activation and regulators of its effect [16,52],
IL-1β expression is represented on Figure 2.

Taken together, the increased expression of ACE2, NOX4, NF-κB, and ASC indicate
that severe cases of COVID-19 suffered from an increased inflammasome complex acti-
vation even when compared to H1N1 and to a control group with chronic inflammatory
illnesses. Adding to that evidence the increased expression of both IL-1β and IL-18, as in-
flammasome activation products and as inflammasome complex upregulators, corroborate
our hypothesis of its activation in COVID-19.

3.4. Pyroptosis

CASP1 is a pyroptotic caspase produced in the form of pro-caspase 1, it serves as an
effector to cell death in response to inflammatory injury. The modulation of its production
is NF-κB pathway-dependent, determines membrane pore formation, and increases the
maturation of IL-1 family interleukins such as IL-1β and IL-18. Inflammasome-activated py-
roptosis is dependent on CASP1, in our study we demonstrated that CASP1 was expressed
and that it was significantly higher when compared to both H1N1 and control groups, as
seen on Figure 2. Pyroptosis is an inflammatory cell death mechanism activated by the
NLRP-3 inflammasome complex, mediated by CASP1. It differentiates itself from apoptosis
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and other programmed cell death processes by forming a characteristic membrane pore
and by not being dependent on CASP9 [53,54].

CASP9 is an effector caspase determinant to a shift into apoptosis, this cytokine is
not only relevant within the embryological development in which it regulates certain
tissue regressions but is also important when regulating certain responses to injuries such
as hypoxia. Although this protein also serves as an initiator for cell death its activation
leads to apoptosis cell death which keeps the membrane intact [32,55,56]. Literature
describes CASP9 as an antagonist to the pyroptosis process observed in our COVID-19
group [30,32,57]. CASP9 expression is seen on Figure 2.

Morphologically pyroptotic cells present themselves with DNA fragmentation but
maintain the nucleus intact; its main characteristic is cell membrane integrity failure due to
its membrane pores and consequent osmotic lysis. Interestingly pyroptosis shares some
characteristics with Apoptosis but also with some programmed cell death processes [56].

Once the NLRP-3 inflammasome complex activates pro-caspase 1 into CASP1 the
caspase activates GSDM-D, which is in its turn cleaved into GSDM-NT and GSDM-CT in
order to dimerize itself and form the membrane pore that characterizes pyroptosis [56].
GSDM-D expression is represented on Figure 2.

The ensemble of all markers expressed leads us to believe that not only the inflam-
masome complex is activated, since there is a higher IL-1β expression but also a GSDM-D
cleavage that indicates that it is being polymerized into membrane pores and its reg-
ulating caspases, that indicate the pyroptosis as being the process for lung injury in
COVID-19 [30,54].

3.5. Study Limitations

This study analyzed post-mortem biopsies through immunohistochemistry, and had a
limited sample size. This kind of analysis is limited to the frame in time in which patients
died, and therefore interpretation from data in this paper should take into account the
population analyzed and the fact that the samples were obtained post-mortem and hence
do not represent the patient’s longitudinal clinical and pathological evolution but rather a
frozen frame in time.

Immunohistochemistry studies have limitations as to reproducibility and sensitivity,
but our lab has extensive experience in this type of study. Western-Blotting and PCR tests
cannot be performed in formalin fixed and paraffin embedded samples, due to the limited
access to COVID-19 samples at the beginning of the pandemics, we were not able to further
analyze our samples using these techniques [27].

This study findings must also be interpreted with caution since even though our
control group suffered from diseases that are hallmarks to chronic inflammasome activation,
the higher age of our COVID-19 group may be a bias to our findings.

The strengths of this study are fully showing the inflammasome pathway, from the
cellular receptors and the first signal to the NF-κB protein expression, after that we showed
inflammasome activity by measuring not only its resulting cytokines but also by showing
the cell’s metabolical shift towards pyroptosis.

4. Materials and Methods
4.1. Ethics Committee Approval
Samples

Clinical data and post-mortem lung biopsy samples were obtained from twenty-four
patients that died from COVID-19 at the Intensive care unit (ICU) in Hospital Marcelino Cham-
pagnat in Curitiba-Brazil. Samples were then formalin-fixed and paraffin-embedded (FFPE).

A control group of eleven FFPE post-mortem lung samples was collected at Hospital
de Clínicas, Curitiba-Brazil composed of ten patients, the major causes of death within this
group were cancer (gastric, hepatic, laryngeal, neuroendocrine carcinoma, and lymphoma),
acute myocardial infarction, peritonitis, and dementia/cachexia.
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Samples from FFPE post-mortem lung biopsies of patients that died from the Influenza
A virus H1N1 subtype pandemic virus in 2009 (H1N1pdm09) were obtained from patients
treated at Hospital de Clínicas.

Patients from both COVID-19 and H1N1 groups had their infection confirmed through
Real-Time Polymerase Chain Reaction (qRT-PCR) tests. Samples from patients in the
Control group were obtained from patients that died before the COVID-19 pandemics.

4.2. Immunohistochemical Analysis

FFPE samples were obtained and fixed, after that, they underwent staining with hema-
toxylin and eosin-H&E (Harris Hematoxylin: NewProv, Cod. PA203, Pinhais, Brazil; Eosin:
BIOTEC Reagentes Analíticos, Cod. 4371, Pinhais, Brazil). Subsequently, specific staining
for TLR4; ACE2; IL-1β; IL-18; NF-κB; ASC; NLRP-3 (or NALP); CASP1; CASP9; GDSM-
D; NOX4; TNF-α was performed, and the slides were then scanned using Axio Scan.Z1
Scanner (ZEISS, Jena, Germany), and then ZEN Blue Edition (ZEISS, Jena, Germany) was
utilized to randomly generate high-power fields (HPF = 40× objective). Images were
randomly generated by the software, with no investigator’s interference. The immunoposi-
tivity areas were measured by the Image-Pro Plus software version 4.5 (Media Cybernetics,
Rockville, MD, USA). Subsequently, these stained areas were converted into percentages
per total tissue area to enable statistical analysis. This study analyzed overall marker
expression. Staining information can be found on supplementary Table S1

4.3. Statistical Analysis

Statistical analysis was done using GraphPad Prism software version 9.4.0, San Diego,
CA, USA. The values obtained from the clinical data and sample digital analysis were
tested for normality and were then analyzed through the appropriate test. The tests used
were Student’s t-test and the Mann–Whitney test when appropriate. Categorical variables
such as gender underwent a Chi-square and Fisher’s exact tests when appropriate.

5. Conclusions

In conclusion, we demonstrated that the SARS-CoV-2 virus uses cell entry mecha-
nisms that cause NLRP-3 inflammasome activation, as well as Inflammasome activity and
pyroptosis as a consequence of its activation covering the beginning of the process with cell
infection, second signal with mitochondrial dysregulation NF-κB pathway modulation up
until its final products as IL-1β and IL-18 as well as CASP1, we also differentiated the pyrop-
totic cell death process from other processes by measuring GDSMD and CASP9. We found
that the inflammasome complex is highly activated in patients that died from COVID-19
and that it could be an important part of the pathogenesis of the disease. Longitudinal
studies are still warranted to establish that the inflammasome complex is responsible for
COVID-19 gravity and morbidity. Our findings are relevant for understanding how the
virus affects the cell upon severe infection, they may help build an understanding of the
core mechanisms targeted within SARS-CoV-2 therapeutics and new viral variations effects
and changes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113033/s1.

Author Contributions: Conceptualization, L.d.N., C.P.B., R.A.P. and C.M.-S.; methodology, L.B.C.,
K.F.d.M., E.M.d.C., F.C., G.S.B., G.V.C.d.S., S.P.d.L., J.C.H.D., E.C.H., A.P.C.M., M.D.C.D., C.K.K.,
A.P.K.B. and I.B.; software, L.B.C. and S.N.; validation, L.d.N. and S.N.; resources, L.d.N. and R.A.P.;
writing—original draft preparation, L.B.C.; writing—review and editing, L.d.N., C.P.B. and R.C.D.;
funding acquisition, L.d.N., C.P.B., R.A.P. and C.M.-S. All authors have read and agreed to the
published version of the manuscript.

Funding: L.N., R.A.P. and C.P.B. are researchers from CNPq (grant number 304356/2018-2); BRDE-
PUCPR (Banco regional de Desenvolvimento do Extremo Sul).

https://www.mdpi.com/article/10.3390/ijms232113033/s1
https://www.mdpi.com/article/10.3390/ijms232113033/s1


Int. J. Mol. Sci. 2022, 23, 13033 11 of 13

Institutional Review Board Statement: This study was approved by the National Research Ethics
Committee (Conselho Nacional de Ética em Pesquisa—CONEP), protocol number 3.944.734/2020,
and 2.550.445/2018. All authors state that the relevant guidelines, as well as consent forms, were
accordingly applied.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the collaborators of the Laboratory of Experimental Pathol-
ogy for performing the immunohistochemical reactions and the patients of Hospital Marcelino
Champagnat who were part of the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gedefaw, L.; Ullah, S.; Leung, P.H.M.; Cai, Y.; Yip, S.P.; Huang, C.L. Inflammasome Activation-Induced Hypercoagulopathy:

Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells 2021, 10, 916. [CrossRef] [PubMed]
2. Ratajczak, M.Z.; Kucia, M. SARS-CoV-2 Infection and Overactivation of Nlrp3 Inflammasome as a Trigger of Cytokine “Storm”

and Risk Factor for Damage of Hematopoietic Stem Cells. Leukemia 2020, 34, 1726–1729. [CrossRef]
3. Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, UK.

COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020, 395, 1033–1034. [CrossRef]
4. Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation

2020, 142, 68–78. [CrossRef] [PubMed]
5. Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka,

F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. The Lancet 2020, 395, 1417–1418. [CrossRef]
6. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Mü, M.A.; Drosten, C.; Pö, S.; Krü, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.;

et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Article
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181,
1–10. [CrossRef]

7. Aboudounya, M.M.; Heads, R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to
Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediat. Inflamm. 2021, 2021, 8874339. [CrossRef]
[PubMed]

8. Hughes, M.M.; O’Neill, L.A.J. Metabolic Regulation of NLRP3. Immunol. Rev. 2018, 281, 88–98. [CrossRef] [PubMed]
9. Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The Pivotal Link between ACE2 Deficiency and SARS-CoV-2 Infection. Eur.

J. Intern. Med. 2020, 76, 14. [CrossRef] [PubMed]
10. Vora, S.M.; Lieberman, J.; Wu, H. Inflammasome Activation at the Crux of Severe COVID-19. Nat. Rev. Immunol. 2021, 21, 694–703.

[CrossRef] [PubMed]
11. Henao-Mejia, J.; Elinav, E.; Strowig, T.; Flavell, R.A. Inflammasomes: Far beyond Inflammation. Nat. Immunol. 2012, 13, 321–324.

[CrossRef] [PubMed]
12. Li, D.; Wu, M. Pattern Recognition Receptors in Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [CrossRef]
13. Chen, M.; Wang, H.; Chen, W.; Meng, G. Regulation of Adaptive Immunity by the NLRP3 Inflammasome. Int. Immunopharmacol.

2011, 11, 549–554. [CrossRef]
14. Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P.-L. Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector?

Antioxid. Redox Signal. 2015, 22, 1111–1129. [CrossRef] [PubMed]
15. Sharma, D.; Kanneganti, T.D. The Cell Biology of Inflammasomes: Mechanisms of Inflammasome Activation and Regulation.

J. Cell Biol. 2016, 213, 617–629. [CrossRef]
16. Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome Activation and Regulation: Toward a Better Understanding of Complex

Mechanisms. Cell Discov. 2020, 6, 36. [CrossRef]
17. Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V.G.; Wu, H.; Lieberman, J. Inflammasome-Activated Gasdermin D Causes

Pyroptosis by Forming Membrane Pores. Nature 2016, 535, 153–158. [CrossRef]
18. Hartmann, C.; Miggiolaro, A.F.R.D.S.; Motta, J.D.S.; Baena Carstens, L.; Busatta Vaz De Paula, C.; Fagundes Grobe, S.; Hermann

de Souza Nunes, L.; Lenci Marques, G.; Libby, P.; Zytynski Moura, L.; et al. The Pathogenesis of COVID-19 Myocardial Injury: An
Immunohistochemical Study of Postmortem Biopsies. Front. Immunol. 2021, 12. [CrossRef] [PubMed]

19. Garg, N.J. Inflammasomes in Cardiovascular Diseases. Am. J. Cardiovasc. Dis. 2011, 1, 244–254.
20. Yin, X.F.; Zhang, Q.; Chen, Z.Y.; Wang, H.F.; Li, X.; Wang, H.X.; Li, H.X.; Kang, C.M.; Chu, S.; Li, K.F.; et al. NLRP3 in

Human Glioma Is Correlated with Increased WHO Grade, and Regulates Cellular Proliferation, Apoptosis and Metastasis via
Epithelial-Mesenchymal Transition and the PTEN/AKT Signaling Pathway. Int. J. Oncol. 2018, 53, 973–986. [CrossRef] [PubMed]

21. Zhen, Y.; Zhang, H. NLRP3 Inflammasome and Inflammatory Bowel Disease. Front. Immunol. 2019, 10, 276. [CrossRef]
22. Shrivastava, G.; Valenzuela Leon, P.C.; Calvo, E. Inflammasome Fuels Dengue Severity. Front. Cell. Infect. Microbiol. 2020, 10, 489.

[CrossRef]

http://doi.org/10.3390/cells10040916
http://www.ncbi.nlm.nih.gov/pubmed/33923537
http://doi.org/10.1038/s41375-020-0887-9
http://doi.org/10.1016/S0140-6736(20)30628-0
http://doi.org/10.1161/CIRCULATIONAHA.120.047549
http://www.ncbi.nlm.nih.gov/pubmed/32293910
http://doi.org/10.1016/S0140-6736(20)30937-5
http://doi.org/10.1016/j.cell.2020.02.052
http://doi.org/10.1155/2021/8874339
http://www.ncbi.nlm.nih.gov/pubmed/33505220
http://doi.org/10.1111/imr.12608
http://www.ncbi.nlm.nih.gov/pubmed/29247992
http://doi.org/10.1016/j.ejim.2020.04.037
http://www.ncbi.nlm.nih.gov/pubmed/32336612
http://doi.org/10.1038/s41577-021-00588-x
http://www.ncbi.nlm.nih.gov/pubmed/34373622
http://doi.org/10.1038/ni.2257
http://www.ncbi.nlm.nih.gov/pubmed/22430784
http://doi.org/10.1038/s41392-021-00687-0
http://doi.org/10.1016/j.intimp.2010.11.025
http://doi.org/10.1089/ars.2014.5994
http://www.ncbi.nlm.nih.gov/pubmed/25330206
http://doi.org/10.1083/jcb.201602089
http://doi.org/10.1038/s41421-020-0167-x
http://doi.org/10.1038/nature18629
http://doi.org/10.3389/fimmu.2021.748417
http://www.ncbi.nlm.nih.gov/pubmed/34804033
http://doi.org/10.3892/ijo.2018.4480
http://www.ncbi.nlm.nih.gov/pubmed/30015880
http://doi.org/10.3389/fimmu.2019.00276
http://doi.org/10.3389/fcimb.2020.00489


Int. J. Mol. Sci. 2022, 23, 13033 12 of 13

23. Halfmann, P.; Hill-Batorski, L.; Kawaoka, Y. The Induction of IL-1β Secretion Through the NLRP3 Inflammasome During Ebola
Virus Infection. J. Infect. Dis. 2018, 218, S504–S507. [CrossRef]

24. Chen, W.; Foo, S.S.; Zaid, A.; Teng, T.S.; Herrero, L.J.; Wolf, S.; Tharmarajah, K.; Vu, L.D.; van Vreden, C.; Taylor, A.; et al. Specific
Inhibition of NLRP3 in Chikungunya Disease Reveals a Role for Inflammasomes in Alphavirus-Induced Inflammation. Nat.
Microbiol. 2017, 2, 1435–1445. [CrossRef]

25. Azevedo, M.L.V.; Zanchettin, A.C.; Vaz de Paula, C.B.; Motta Júnior, J.D.S.; Malaquias, M.A.S.; Raboni, S.M.; Neto, P.C.; Zeni,
R.C.; Prokopenko, A.; Borges, N.H.; et al. Lung Neutrophilic Recruitment and IL-8/IL-17A Tissue Expression in COVID-19. Front.
Immunol. 2021, 12, 947. [CrossRef]

26. Motta Junior, J.D.S.; Miggiolaro, A.F.R.D.S.; Nagashima, S.; de Paula, C.B.V.; Baena, C.P.; Scharfstein, J.; de Noronha, L. Mast Cells
in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Front.
Immunol. 2020, 11, 574862. [CrossRef]

27. Vaz de Paula, C.B.; de Azevedo, M.L.V.; Nagashima, S.; Martins, A.P.C.; Malaquias, M.A.S.; Miggiolaro, A.F.R.D.S.; da Silva Motta
Júnior, J.; Avelino, G.; do Carmo, L.A.P.; Carstens, L.B.; et al. IL-4/IL-13 Remodeling Pathway of COVID-19 Lung Injury. Sci. Rep.
2020, 10, 18689. [CrossRef] [PubMed]

28. van de Veerdonk, F.L.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A.B. Inflammasome Activation and IL-1β and IL-18 Processing
during Infection. Trends Immunol. 2011, 32, 110–116. [CrossRef]

29. Nagar, A.; Rahman, T.; Harton, J.A. The ASC Speck and NLRP3 Inflammasome Function Are Spatially and Temporally Distinct.
Front. Immunol. 2021, 12, 4229. [CrossRef]

30. Fernandes-Alnemri, T.; Wu, J.; Yu, J.W.; Datta, P.; Miller, B.; Jankowski, W.; Rosenberg, S.; Zhang, J.; Alnemri, E.S. The Pyroptosome:
A Supramolecular Assembly of ASC Dimers Mediating Inflammatory Cell Death via Caspase-1 Activation. Cell Death Differ. 2007,
14, 1590–1604. [CrossRef]

31. Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory
Caspases Determines Pyroptotic Cell Death. Nature 2015, 526, 660–665. [CrossRef]

32. Kuida, K. Caspase-9. Int. J. Biochem. Cell Biol. 2000, 32, 121–124. [CrossRef]
33. Ribeiro dos Santos Miggiolaro, A.F.; da Silva Motta Junior, J.; Busatta Vaz de Paula, C.; Nagashima, S.; Alessandra Scaranello

Malaquias, M.; Baena Carstens, L.; N Moreno-Amaral, A.; Pellegrino Baena, C.; de Noronha, L. Covid-19 Cytokine Storm in
Pulmonary Tissue: Anatomopathological and Immunohistochemical Findings. Respir. Med. Case Rep. 2020, 31, 101292. [CrossRef]

34. Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host Cell Death and Inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109.
[CrossRef]

35. Cunha, L.L.; Perazzio, S.F.; Azzi, J.; Cravedi, P.; Riella, L.V. Remodeling of the Immune Response With Aging: Immunosenescence
and Its Potential Impact on COVID-19 Immune Response. Front. Immunol. 2020, 11, 1748. [CrossRef]

36. Fulop, T.; Larbi, A.; Dupuis, G.; Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and
Inflamm-Aging as Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2018, 8, 1960. [CrossRef]

37. Sharma, B.R.; Kanneganti, T.D. NLRP3 Inflammasome in Cancer and Metabolic Diseases. Nat. Immunol. 2021, 22, 550–559.
[CrossRef]

38. López-Reyes, A.; Martinez-Armenta, C.; Espinosa-Velázquez, R.; Vázquez-Cárdenas, P.; Cruz-Ramos, M.; Palacios-Gonzalez,
B.; Gomez-Quiroz, L.E.; Martínez-Nava, G.A. NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Front.
Immunol. 2020, 2875. [CrossRef]

39. Xing, Z.; Gao, W.; Qu, B.; Li, X.; Jin, Y.; Yang, K.; Cardona, C. Regulation of Proinflammatory Cytokine Interleukin-6 (IL-6)
Induction by NF-KappaB Signaling in Pandemic H1N1 Influenza A Virus-Infected Human Bronchial Epithelial Cells (45.29).
J. Immunol. 2010, 184.

40. Akbari, H.; Tabrizi, R.; Lankarani, K.B.; Aria, H.; Vakili, S.; Asadian, F.; Noroozi, S.; Keshavarz, P.; Faramarz, S. The Role of
Cytokine Profile and Lymphocyte Subsets in the Severity of Coronavirus Disease 2019 (COVID-19): A Systematic Review and
Meta-Analysis. Life Sci. 2020, 258, 118167. [CrossRef]

41. Pan, P.; Zhang, Q.; Liu, W.; Wang, W.; Lao, Z.; Zhang, W.; Shen, M.; Wan, P.; Xiao, F.; Liu, F.; et al. Dengue Virus M Protein
Promotes NLRP3 Inflammasome Activation To Induce Vascular Leakage in Mice. J. Virol. 2019, 93, e00996-19. [CrossRef]

42. Ratajczak, M.Z.; Bujko, K.; Ciechanowicz, A.; Sielatycka, K.; Cymer, M.; Marlicz, W.; Kucia, M. SARS-CoV-2 Entry Receptor ACE2
Is Expressed on Very Small CD45-Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein
Activates the Nlrp3 Inflammasome. Stem Cell Rev. Rep. 2021, 17, 266–277. [CrossRef]

43. Schimmel, L.; Chew, K.Y.; Stocks, C.J.; Yordanov, T.E.; Essebier, P.; Kulasinghe, A.; Monkman, J.; dos Santos Miggiolaro, A.F.R.;
Cooper, C.; de Noronha, L.; et al. Endothelial Cells Are Not Productively Infected by SARS-CoV-2. Clin. Transl. Immunol. 2021,
10, e1350. [CrossRef]

44. Nagashima, S.; Dutra, A.A.; Arantes, M.P.; Zeni, R.C.; Klein, C.K.; de Oliveira, F.C.; Piper, G.W.; Brenny, I.D.; Pereira, M.R.C.;
Stocco, R.B.; et al. COVID-19 and Lung Mast Cells: The Kallikrein-Kinin Activation Pathway. Int. J. Mol. Sci. 2022, 23, 1714.
[CrossRef]

45. Whitsett, J.A.; Alenghat, T. Respiratory Epithelial Cells Orchestrate Pulmonary Innate Immunity. Nat. Immunol. 2014, 16, 27–35.
[CrossRef]

46. Reddy, S.P.; Tran, K.; Malik, A.B.; Siddiqui, M.R.; Mittal, M. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid.
Redox Signal. 2013, 20, 1126–1167. [CrossRef]

http://doi.org/10.1093/infdis/jiy433
http://doi.org/10.1038/s41564-017-0015-4
http://doi.org/10.3389/fimmu.2021.656350
http://doi.org/10.3389/fimmu.2020.574862
http://doi.org/10.1038/s41598-020-75659-5
http://www.ncbi.nlm.nih.gov/pubmed/33122784
http://doi.org/10.1016/j.it.2011.01.003
http://doi.org/10.3389/fimmu.2021.752482
http://doi.org/10.1038/sj.cdd.4402194
http://doi.org/10.1038/nature15514
http://doi.org/10.1016/S1357-2725(99)00024-2
http://doi.org/10.1016/j.rmcr.2020.101292
http://doi.org/10.1038/nrmicro2070
http://doi.org/10.3389/fimmu.2020.01748
http://doi.org/10.3389/fimmu.2017.01960
http://doi.org/10.1038/s41590-021-00886-5
http://doi.org/10.3389/fimmu.2020.570251
http://doi.org/10.1016/j.lfs.2020.118167
http://doi.org/10.1128/JVI.00996-19
http://doi.org/10.1007/s12015-020-10010-z
http://doi.org/10.1002/cti2.1350
http://doi.org/10.3390/ijms23031714
http://doi.org/10.1038/ni.3045
http://doi.org/10.1089/ars.2012.5149


Int. J. Mol. Sci. 2022, 23, 13033 13 of 13

47. Mussbacher, M.; Salzmann, M.; Brostjan, C.; Hoesel, B.; Schoergenhofer, C.; Datler, H.; Hohensinner, P.; Basílio, J.; Petzelbauer,
P.; Assinger, A.; et al. Cell Type-Specific Roles of NF-KB Linking Inflammation and Thrombosis. Front. Immunol. 2019, 10, 85.
[CrossRef]

48. Xing, Y.; Cao, R.; Hu, H.M. TLR and NLRP3 Inflammasome-Dependent Innate Immune Responses to Tumor-Derived Autophago-
somes (DRibbles). Cell Death Dis. 2016, 7, e2322. [CrossRef]

49. Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling Serum Cytokines in
COVID-19 Patients Reveals IL-6 and IL-10 Are Disease Severity Predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [CrossRef]

50. Barbieri, S.S.; Zacchi, E.; Amadio, P.; Gianellini, S.; Mussoni, L.; Weksler, B.B.; Tremoli, E. Cytokines Present in Smokers Serum
Interact with Smoke Components to Enhance Endothelial Dysfunction. Cardiovasc. Res. 2011, 90, 475–483. [CrossRef]

51. Davis, B.K.; Wen, H.; Ting, J.P.Y. The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annu. Rev.
Immunol. 2011, 29, 707–735. [CrossRef]

52. Pan, P.; Zhang, Q.; Liu, W.; Wang, W.; Yu, Z.; Lao, Z.; Zhang, W.; Shen, M.; Wan, P.; Xiao, F.; et al. Dengue Virus Infection Activates
Interleukin-1β to Induce Tissue Injury and Vascular Leakage. Front. Microbiol. 2019, 10, 2637. [CrossRef]

53. de Castro-Jorge, L.A.; de Carvalho, R.V.H.; Klein, T.M.; Hiroki, C.H.; Lopes, A.H.; Guimarães, R.M.; Fumagalli, M.J.; Floriano,
V.G.; Agostinho, M.R.; Slhessarenko, R.D.; et al. The NLRP3 Inflammasome Is Involved with the Pathogenesis of Mayaro Virus.
PLoS Pathog. 2019, 15, e1007934. [CrossRef]

54. López-Bojórquez, L.N.; Arechavaleta-Velasco, F.; Vadillo-Ortega, F.; Móntes-Sánchez, D.; Ventura-Gallegos, J.L.; Zentella-Dehesa,
A. NF-KB Translocation and Endothelial Cell Activation Is Potentiated by Macrophage-Released Signals Co-Secreted with TNF-α
and IL-1β. Inflamm. Res. 2004, 53, 567–575. [CrossRef]

55. Mao, L.; Kitani, A.; Strober, W.; Fuss, I.J. The Role of NLRP3 and IL-1β in the Pathogenesis of Inflammatory Bowel Disease. Front.
Immunol. 2018, 9, 2566. [CrossRef]

56. Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; et al. Pyroptosis: A New Frontier in Cancer.
Biomed. Pharmacother. 2020, 121, 109595. [CrossRef]

57. Johnson, C.R.; Jarvis, W.D. Caspase-9 Regulation: An Update. Apoptosis 2004, 9, 423–427. [CrossRef]

http://doi.org/10.3389/fimmu.2019.00085
http://doi.org/10.1038/cddis.2016.206
http://doi.org/10.1080/22221751.2020.1770129
http://doi.org/10.1093/cvr/cvr032
http://doi.org/10.1146/annurev-immunol-031210-101405
http://doi.org/10.3389/fmicb.2019.02637
http://doi.org/10.1371/journal.ppat.1007934
http://doi.org/10.1007/s00011-004-1297-6
http://doi.org/10.3389/fimmu.2018.02566
http://doi.org/10.1016/j.biopha.2019.109595
http://doi.org/10.1023/B:APPT.0000031457.90890.13

	Introduction 
	Results 
	Study Sample 
	Immunohistochemistry 

	Discussion 
	Population 
	H1N1 Death Process 
	The Inflammasome Complex 
	Pyroptosis 
	Study Limitations 

	Materials and Methods 
	Ethics Committee Approval 
	Immunohistochemical Analysis 
	Statistical Analysis 

	Conclusions 
	References

