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Abstract: Over 10 million people worldwide live with Parkinson’s disease (PD) and 4% of affected
people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of
considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated
enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes
in protein function, including in pathological processes. Recent studies have highlighted roles for
PADs in a range of neurological disorders including PD, but overall, investigations on PADs in
Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at
performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages
4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in
PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and
histone H3 deimination—which is an indicator of epigenetic changes and extracellular trap formation
(ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The
findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and
hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly
upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6
increase was less marked in PD brains. Total protein deimination and histone H3 deimination were
furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared
with controls. Our findings point to a significant contribution of PADs, which may further aid early
disease biomarker discovery, in PD and other LBDs.

Keywords: peptidylarginine deiminase; deimination/citrullination; post-translational modification;
histone H3; neurodegeneration; Parkinson’s disease; Lewy body disease; brain

1. Introduction

More than 10 million people worldwide live with Parkinson’s disease (PD), the second
most common age-related neurodegenerative disorder, and 4% of affected people are
diagnosed before the age of 50. With no current cure for PD the identification of early PD-
related pathways, that can serve as novel drug targets and aid early diagnosis, is of pivotal
importance. A combination of clinical and post-mortem human patient samples, together
with the use of PD animal models, may offer promising avenues for assessment of novel
molecular pathways, and facilitate the identification of candidate pharmacological lead
compounds for therapeutic intervention. The use of post-mortem human brain samples
from patients with PD, at various disease stages as determined by Braak et al. [1], can
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aid initial identification of changes in molecular pathways and histopathological changes,
including early onset ones.

Peptidylarginine deiminases (PADs) are a family of five calcium-activated enzymes (PAD1,
PAD2, PAD3, PAD4 and PADS) that, through post-translational deimination/citrullination of
arginine to citrulline, contribute to changes in protein function, including that of cytoskeletal,
structural and mitochondrial proteins, intermediate filaments and histones, therefore also
affecting epigenetic regulation [2-6]. PAD-mediated protein deimination is detected in a range
of neurodegenerative, inflammatory and other chronic systemic diseases, with evidence for
differences in PAD isozyme specific roles these diseases [7—13]. Importantly, a recent study
by our group identified elevated PAD levels and deimination in brains of an early stage PD
rat model [14]. In addition, we identified that circulatory deimination signatures in plasma
and plasma-derived extracellular vesicles (EVs) were elevated and modified [14]. As PADs
are a modulator of EV signatures [15-18], changes in PAD expression may influence EV
mediated roles in cell communication and pathological processes, including in neurological
disorders, where increasing research evidence highlights the role of EVs [19,20], including
for misfolded protein transcellular transmission [21].

Importantly, the role for PADs as drug targets in early PD may be of considerable interest
as in several CNS injury animal models, an effective neuroprotective role for pharmacological
PAD-inhibition has been described [22,23]. This has included reduced neuroinflammation,
cell death and histone H3 deimination, which is indicative of gene regulatory changes and
formation of extracellular traps (ETosis), which contain DNA, histones and cellular proteins
and form part of pathogenic responses, while they can also contribute to autoinflammatory
injury [22,23]. Studies from other groups on PD post-mortem human brains have highlighted
altered deimination in PD [24,25], including increased histone H3 deimination in X-linked
Dystonia Parkinsonism post-mortem prefrontal cortex [26]. In vitro PD models have also
indicated that pharmacological PAD inhibition reduces inflammatory responses [26]. These
previous findings formed the basis of the current pilot study as overall; the literature on
PAD-mediated processes in Lewy body disease (LBD) is still scarce.

The current study aimed at carrying out a pilot screen using post-mortem human PD
brain samples of Braak stages 4-6 and incidental Lewy body disease (ILBD), which may
represent pre-clinical PD [27], to further the understanding of PAD isozymes and protein
deimination at various stages of LBD progression.

2. Results
2.1. Immunohistochemical Detection of PAD Isozymes, in Anterior Cingulate Cortex and
Hippocampus of Post-Mortem Human PD Brains

PAD isozymes’ levels were assessed and detected in anterior cingulate cortex and
hippocampus of post-mortem brains. Control age matched brains were used for comparison
with PD brains at Braak stages 4, 5 and 6. Staining for anterior cingulate cortex is shown in
Figure 1. Hippocampus was assessed at the same Braak stages and in addition in brain with
incidental Lewy body disease (ILBD), represenatative of pre-clinical stages of PD (Figure 2).
Representative images for staining of PAD isozymes is shown for anterior cingulate cortex
in Figure 1 and for hippocampus in Figure 2; highlighting the strong PAD detection at Braak
stage 4, as indicated by the red rectangles. In Figure 1, some faint positive is seen for PAD1
in anterior cingulate cortex of control brains (Ctrl), with a sharp increase of positive staining
at Braak Stage 4 (St4), with still strong detection at Braak stage 5 (S5t5), but lower detection,
similar to control brain tissue, for Braak stage 6 (5t6). For PAD2, negligible detection was
observed in control brains (Ctrl), very high PAD2 detection at Braak stage 4 (St4), with high
detection also at Braak stage 5 (St5), and lower positive detection at Braak stage 6 (St6).
PAD3 detection was strong in control brains (Ctrl) compared with the other PAD isozymes,
but was markedly increased in Braak stage 4 brains (St4), with high PAD3 detection also
in Braak stage 5 brains (St5), but lower in Braak stage 6 brains (S5t6). PAD4 detection was
negligible in control brains (Ctrl), somewhat elevated in Braak stage 4 brains (St4), but very
low positive PAD4 detection was observed in brains at Braak stages 5 (S5t5) and 6 (St6).
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PAD6 was detected a low levels in control brains (Ctrl), with some increase at Braak stage 4
(St4), and positive vascular staining at Braak stage 5 (St5; black arrows), while detection
was low at Braak stage 6 (5t6).
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Figure 1. PAD isoform detection in anterior cingulate cortex tissue sections showing immunohis-
tochemical staining of PAD isozymes (PADs 1, 2, 3, 4 and 6), in human post-mortem PD brains:
(A) Brains at Braak stages 4, 5, 6, compared with control brains; Highest staining for PADs is observed
at earlier Braak stages, notable at stage 4 (as highlighted by the red rectangle), Scale bar represents
100 um; black rectangles (i-viii) highlight areas that are further magnified in B; Black arrows point to
positively stained brain vasculature. (B) Magnified images are shown from the regions outlined by
black rectangles in A (i-viii), and highlight the observed increase of positive staining at St4 for PADs
1-4; while some strong positive staining was also observed at stage 5 for PAD1, PAD2 and PAD3.
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Figure 2. PAD isozyme (PADs 1-6) detection by immunohistochemistry in hippocampal tissue sections
of post-mortem human PD brains. (A) Braak stages 4, 5, 6 and ILBD, Highest PAD levels are observed
at earlier PD stages, notable at stage 4 (as highlighted by the red rectangle). Detection of PADs 1-3 is
also notable in brain with ILBD. Scale bar represents 100 pm. Black arrows point to positively stained
brain vasculature. The black boxes (i—x) indicate areas that are further magnified in B. (B) (i-x): strong
detection of PAD1, PAD2 and PAD3, as well as notable detection of PAD6 at Braak stage 4 (St4) is
observed. PAD2 and PAD3 positive detection is clear at Braak stage 5 (5t5). In brains with ILBD, PAD1
was clearly detectable, and both PAD2 and PAD3 showed strong positive staining.

As shown in Figure 2, some positive PAD1 staining was observed in hippocampus
of control brains (Ctrl), with a very strong detection at Braak stage 4 (St4), but lower
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detection at Braak stage 5 (S5t5) and 6 (St6), while some clear positive neuronal detection
was also observed in hippocampus with incidental Lewy body disease (ILBD), which was
somewhat higher than in control brains. PAD2 detection showed low positive in control
hippocampus (Ctrl), was clearly elevated at Braak stage 4 (St4), and also in Braak stage
5 (5t5), where strong positive staining was also observed in the brain vasculature (black
arrows). PAD2 detection was also clear at Braak stage 6 (St6), including strong positive
labelling in astrocytes. PAD2 detection was also strong in hippocampus of brain with ILBD.
PAD3 staining was detectable in hippocampus of control brain (Ctrl), was very strongly
elevated at Braak stage 4 (St4), and observed at lower levels, but still clearly positive at Braak
stage 5 (5t5). PAD3 detection was more diffuse positive at Braak stage 6 (St6), and strong in
hippocampus with ILBD. PAD4 detection was negligible in control brain (Ctrl), showed
some low level of elevation at Braak stage 4 (S5t4), was negligible at Braak stage 5 (St5)
and some occasional positive staining was observed at Braak stage 6 (St6). Hippocampus
with ILBD showed negligible for PAD4 staining. PADG6 staining was negligible in control
brain, except in some vasculature, but was strongly elevated in Braak stage 4 brain (St4),
with strong labelling in the vasculature in Braak stage 5 brain (St5; black arrow), as well as
some occasional positive reactivity in the vasculature in Braak stage 6 brain (5t6), but PAD6
staining was low to moderate in hippocampus with ILBD.

2.2. Immunohistochemical Detection of Histone H3 Deimination and Pan-Deimination in Anterior
Cingulate Cortex and Hippocampus of Post-Mortem Human PD Brain Sections

Immunohistochemical staining for deiminated histone H3 (CitH3) and for pan-deimination,
as detected by the pan-citrulline F95 antibody [28], is shown for anterior cingulate cortex
(Figure 3) and for hippocampus (Figure 4). Control tissue is shown in comparison with PD
brains at Braak stages 4, 5 and 6, in addition to hippocampus with ILBD (representative
of pre-clinical PD). In anterior cingulate cortex, CitH3 staining was low in control brain
tissue (Figure 3A), very strongly positive neuronal cytoplasmic staining was observed at
Braak stage 4 (Figure 3B), and a lower, albeit strong positive staining at Braak stages 5,
particularly in the brain vasculature (Figure 3C, arrows) and strong neuronal staining at
Braak stage 6 (Figure 3D). A clear positive staining was observed for pan-deimination
(F95) in anterior cingulate cortex of control brain (Figure 3E), albeit lower than in the PD
brains (Figs 3F-H). F95 staining was highest in anterior cingulate cortex at Braak stage 4
(Figure 3F), and still strong, albeit lower at Braak stages 5 and 6 (Figure 3G,H).

A similar pattern was observed in hippocampus (Figure 4), where CitH3 detection
was strongest in PD brains at Braak stage 4 showing strong neuronal cytoplasmic staining
(St4, Figure 4B), while clear positive staining was also observed in control brain (Figure 4A).
Positive neuronal staining, as well as strong positive labelling in the brain vasculature was
observed for CitH3 at Braak stages 5 and 6 (Figure 4C,D; arrows). Furthermore, a strong
neuronal detection for CitH3 was observed in hippocampus with ILBD (Figure 4E). For
pan-deimination detection, some positive F95 staining (possibly synaptic labelling in the
neuropil) was observed in control hippocampus (Figure 4F), which was stronger at Braak
stage 4 (Figure 4G) and clear positive staining was also seen in hippocampus of Braak stages 5
and 6 (Figure 4H,I), as well as strong positive staining in hippocampus with ILBD (Figure 4]).

A summary of immunohistochemical detection for PAD isozymes, pan-deimination
and histone H3 deimination of post-mortem PD brains at the different Braak stages, and
hippocampus with ILBD, is presented in Table 1, according to the staining intensity key
shown in Supplementary Figure S1. Negative control brain sections, omitting the primary
antibody, are furthermore shown in Supplementary Figure S2.
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Figure 3. (A-H) Post-mortem human brain tissue sections of anterior cingulate cortex, showing
immunohistochemical detection of histone H3 deimination (CitH3) and pan-deimination (F95). Braak
stages 4, 5 and 6 are shown, in comparison with control brain (Ctrl). Scale bar represents 100 um. The
black rectangles in (B,D). are magnified in B.1 and D.1, respectively.

Figure 4. (A-J) Post-mortem human brain tissue sections of hippocampus, showing neuronal cyto-
plasmic immunohistochemical detection of histone H3 deimination (CitH3) and pan-deimination
(F95). PD brains at Braak stages 4, 5 and 6, as well as hippocampus with incidental Lewy body disease
(ILBD) are shown, alongside control hippocampus (Ctrl). Scale bar represents 100 um. The black
rectangles in (B,E) are magnified in B.1 and E.1, respectively; black arrows point at positively stained

brain vasculature.
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Table 1. Summary of immunohistochemical detection of PAD isozymes, histone H3 deimination
(CitH3) and pan-deimination (F95) in anterior cingulate cortex (ACC) and hippocampus (HIP) of
post-mortem human PD brains at Braak stages 4-6 and incidental Lewy body disease (ILBD). Scoring
is shown as 0,+,++ and +++, respectively, based on the scoring index in Supplementary Figure S1. 0
indicates negligible staining; + low positive, ++ medium positive, and +++ strong positive staining;
na is indicated for ACC as ILBD was assessed in hippocampus only.

PAD1 PAD2 PAD3 PAD4 PAD6 F95 CitH3
Sample ACC HIP ACC HIP ACC HIP ACC HIP ACC HIP ACC HIP ACC HIP
Control + + 0 + + + +) 0 (+) 0 + (+) + +
Braak Stage 4 +++ A A A ++ + + e T e
Braak Stage 5 ++ + ++ +++ ++ ++ + 0 + ++ ++ ++ ++ +++
Braak Stage 6 + + ++ ++ ++ + + + + + + + ++ +
ILBD na ++ na ++ na ++ na 0 na + na ++ na ++

3. Discussion

The current pilot immunohistochemistry screen assessed human post-mortem brain
tissue from Parkinson’s disease (PD) at Braak stages 4-6 and incidental Lewy body disease
(ILBD; representative of pre-clinical PD [27]), highlighting elevated protein levels of specific
PAD isozymes and increased deimination and histone H3 deimination in early stages of
PD. This links in with recent findings of the authors, describing a novel PAD-related brain
pathology, including elevated PADs and increased deimination and histone H3 deimina-
tion, in a rat model of pre-motor PD [14]. This included the identification of increased
pan-deimination in the brain vasculature [14], which interestingly was also observed in
the current study in some of the human post-mortem PD brain sections, in particular in
hippocampus at Braak stage 5. Interestingly, a previous study on Alzheimer’s disease (AD)
post-mortem human brain samples identified pan-deimination in proximity with small
intraparenchymal blood vessels and in walls of extraparenchymal blood vessels [29]. It
may therefore be postulated whether deimination-linked changes are also present in extra-
parenchymal blood vessels in other neurodegenerative disorders, including PD, although
this will require further assessment. Studies by other groups have reported increased
protein deimination in post-mortem PD brains, including in surviving dopamine neurones
in the substantia nigra, although not specifically restricted to Lewy bodies, indicating
alteration of PADs in PD [24]. Furthermore, mutated misfolded a-synuclein protein has
been related to increased protein deimination [25]. Also, increased PAD2 and PAD4 levels,
as well as H3 citrullination/deimination were identified in post-mortem prefrontal cortex
of patients with X-linked Dystonia Parkinsonism [26]; albeit other PAD isoforms were not
assessed in that study, contrary to our current study where all five PADs were assessed
in post-mortem PD brains. Increased deimination has furthermore been reported in sev-
eral acute brain injury models, including acute CNS injury, hypoxic ischaemic insult and
traumatic brain injury [22,23,30,31].

Importantly, our current pilot screen of human post-mortem PD brain samples fur-
ther indicates significant increase of selected PADs and protein deimination in anterior
cingulate cortex and hippocampus, particularly in earlier stages of the disease. These two
brain regions were chosen for this current study due to their involvement in Lewy body
diseases [32,33]. Hippocampus was assessed for ILBD, which can represent pre-clinical
PD, while both regions were assessed for PD, which is generally verified at Braak stages
3 to 4, hence PD brain sections were selected from Braak stage 4 to 6 to assess PAD and
deimination staining in PD progression. Interestingly, in anterior cingulate cortex all PAD
isozymes were elevated, compared with control brains, at Braak stage 4, with particularly
elevated protein levels of PAD1, PAD2 and PAD3, while elevation of PAD4 was low, and
some elevation was seen for PAD6. Similarly, in hippocampus PAD1, PAD2, PAD3 were
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most elevated in the PD brains, particularly at Braak stage 4, while increase in PAD4 was
comparably small, and increase in PAD6 was mainly linked to the brain vasculature. These
findings do indicate possible hitherto overlooked roles for PAD1 in neurodegeneration, and
also emphasise the role for PAD3 in CNS pathology. PAD3 has indeed been linked to acute
CNS inflammation and repair [22] and neuronal stem-ness [34], as well as to aggressive CNS
tumours [17,18]. Generally, PAD2 is regarded as the dominant isozyme in brain [35], and
for example linked to Alzheimer’s disease (AD) [7,8], prion disease [36] and amyotrophic
lateral sclerosis (ALS) [13]. Both PAD2 and PAD4 have previously been assessed in relation
to X-lined dystonia PD [26]. Our current findings from this pilot study indicate that PAD4
is not as increased as the other PADs in the PD brains, while this isozyme has for example
been linked to multiple sclerosis (MS) [37] and also showed some elevated response in rat
pre-motor PD model brains [14]. PAD6 was also less elevated than PAD1-3 in the PD brains
in this study, but did though show some higher levels compared with control brains. A
putative role for PAD6 in PD may be of some interest, as this isozyme has recently been
linked to hypoxia responses in naked mole-rat brain [38], but otherwise not previously
linked to neuronal injury and mainly been linked to developmental processes [39-41],
while recently also suggested to have roles in some animal cancers [42]. Overall, there may
be a need for more in depth investigations into the individual PAD isozymes in PD, as the
identification of PAD isozyme specific roles in different neurodegenerative disorders may
be of considerable importance.

In this study, histone H3 deimination was observed to be strongly increased in neu-
rones of PD brains at Braak stage 4 and observed in the brain vasculature at later Braak
stages, while CitH3 positive neurones were also observed in ILBD. Histone H3 deimination
can be indicative of epigenetic regulation and also of extracellular trap formation (ETosis),
which due to pathogenic responses and associated inflammatory function is linked to brain
injury [43]. Interestingly in vitro pharmacological PAD inhibition in PD-derived fibroblasts
showed that the pan-PAD-inhibitor Cl-amidine reduces histone H3 deimination and pro-
inflammatory chemokine expression [26], while such PAD inhibition has been shown to
disrupt neutrophil extracellular trap (NET) formation also in other disease models [44].

The observed increase in PAD isozymes and protein deimination in the current study
in human PD post-mortem brains correlates with our recently published animal study
identifying increased PAD levels and protein deimination in brains and plasma of pre-motor
PD animal models, where furthermore we also found raised levels of plasma-extracellular
vesicles (EVs) with a modified content of deiminated proteins [14]. Indeed, PD patients
have been shown to have greater amounts of circulating EVs [45,46], while the role for EVs
in early pre-motor PD stages still remains a relatively unexplored area. The link between
elevated PAD expression and changes in EV regulation in neurodegenerative disorders,
including PD may be of some interest. The plasma-EV citrullinome “fingerprint” in the pre-
motor PD animal model was indeed related to neuro-degenerative and neuro-inflammatory
KEGG pathways including “Parkinson’s Disease” “Alzheimer’s disease”, “Huntington’s
disease”, “prion diseases”, “oxidative phosphorylation” and “metabolic pathways” [14].
This points to significant roles for deimination in neurodegenerative processes and may also
indicate a link between brain-related changes linked to PADs, including isozyme specific
ones, and systemic deimination signatures. As epigenetic mechanisms of PD are receiving
increased attention, including post-translational modifications [14,47-49], deimination may
be of considerable interest and requires further investigation. This is supported both by
the current findings reported here, and previous findings from both animal models and
human studies, pointing increasingly to a significant contribution of post-translational
deimination in PD, which importantly may aid biomarker discovery at early disease
stages. Previous in vitro studies by the authors furthermore identified increased protein
deimination in human PD iPSC models of a-synyclein triplication [50]. Collectively these
findings emphasise the putative role for selected PAD isozymes as important players in
Lewy body disease.
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Targeting PADs may be a promising avenue in PD therapeutics. In addition to in vitro
results showing that pan-PAD-inhibitor Cl-amidine reduces histone H3 deimination and
pro-inflammatory chemokine expression in PD-derived fibroblasts [26], animal studies
of acute CNS injury have demonstrated major roles for PADs (highlighting PAD3) and
significant neuroprotective effects using pharmacological pan-PAD inhibition [22,23]. PAD
isozyme specific regulation and application of PAD isozyme specific inhibitors (PAD2,
PAD3 and PAD4 specific ones) have also been applied in CNS injury models in vitro (brain
cancer) [17,18]. Furthermore, significant roles for PADs have been described in modulating
EV disease-specific signatures, including via pharmacological PAD-inhibitors in a number
of chronic pathologies, including in the CNS [17,18]. Critically, EVs are currently gain-
ing increasing attention in relation to neurodegenerative disease, including PD, due to
their potential use as non-invasive markers via identification of specific EV-cargo (“EV-
fingerprint”), while current knowledge on EVs in pre-motor PD and early stages of PD is
still limited [14,51-53]. Hence, PAD-mediated effects (including isozyme specific ones) may
be of interest on such signatures, particularly as in neurodegenerative diseases, both neuro-
toxic and neuroprotective roles via distribution of EV-mediated cargo, including misfolded
proteins, have been implicated [54,55]. Accumulative evidence therefore supports patho-
logical roles of PADs in PD brains and indicates a possible link to PAD-mediated effects on
circulatory EV-signatures. This, in combination with effective roles of PAD-inhibitors in
CNS repair, highlights selected PAD-mediated pathways as promising targets for novel
therapeutic intervention in early PD and for disease monitoring.

It must be pointed out that an obvious limitation of our present pilot study is the use of
only one patient per Braak stage. In addition, the current study focussed on two brain regions
only, namely anterior cingulate cortex and hippocampus. Nonetheless, our pilot findings
indicate that some PAD isozymes are notably elevated in PD at earlier Braak stages and in ILBD.
Further assessment of PAD isozyme specific detection and the associated deiminated target
proteins in the different brain regions involved in PD (the brain-region specific “citrullinome”),
may furthermore be of interest, and has been for example been noted to differ in traumatic
brain injury [30]. Importantly, it must also be considered that the various PAD isozymes have
different preferences for target proteins [56], which may also contribute to changes in the
PD-related citrullinome with disease progression, including in the various brain regions. Such
isozyme-specific differences must also be considered in relation to variations in PAD mediated
responses in different neurodegenerative diseases, which may allow for isozyme-targeted
treatments for different diseases. While limited to immunohistochemistry analysis, the current
pilot report lays foundation for further studies into PAD-mediated responses, including at
earlier stages of Lewy body disease. Analysis of PADs and protein deimination in larger
number of patients will furthermore be required to confirm the changes observed in this study,
alongside investigations into other brain regions. Our findings support that deimination is
a possible indicator for monitoring of disease progression, and highlights selected PADs as
molecular targets in early stages of disease.

4. Materials and Methods
4.1. Human Post-Mortem Brain Sections

Paraffin embedded post-mortem human brain tissue sections from anterior cingulate
cortex and hippocampus were obtained from the UCL Queen Square Brain Bank with
written informed consent for tissue usage in research for all cases and ethical approval of
the study in place. The histological diagnosis and Braak stage of the Parkinson’s disease
were confirmed by a neuropathologist (Z]). For the purpose of the current pilot study, only
one patient per PD Braak stage and incidental Lewy body disease (ILBD), respectively, were
assessed. Control brain sections were from an age matched individual. Table 2 provides a
summary of the brain samples used.
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Table 2. Summary of post-mortem PD and ILBD brain tissue, alongside age matched control, used in
the current pilot study; na is indicated for ILBD as only hippocampus was assessed.

Brain Samples N Anterior C(Xlggate Cortex Hipg({)ic;;npus Sex N ADge::lth
Control 1 v \Y F 86
PD Stage 4 1 v \% M 76
PD Stage 5 1 v v M 81
PD Stage 6 1 v v M 87
ILBD 1 na \Y F 82

4.2. Immunohistochemistry

Deparaffinised tissue sections (7 um serial sections), from the anterior cingulate cortex at
the level of the nucleus accumbens and the posterior hippocampus at the level of the lateral
geniculate nucleus, were stained for the detection of the five PAD isozymes PAD1,2,3,4 and 6,
for deiminated histone H3 (CitH3) and for pan-deimination (F95 pan-citrulline/deimination
antibody; [28]), using methods described in previous studies [42,57]. In brief, the sections
were first deparaffinised three times in xylene for 10 min, then immersed for 5 min in 100%
isopropanol and rehydrated with incubation in ethanol (100, 90% and 70%) for 5 min each.
Sections were incubated in water (dH,O) and then heated in citric acid buffer (pH 6.0) in the
microwave for 12.5 min, at power 8 for antigen retrieval. Sections were left to cool to room
temperature (RT), incubated in distilled water and then blocked in 5% goat serum (Sigma,
St. Louis, MO, USA) in phosphate buffer (PB) for 1 h. Primary antibody incubation was
carried out overnight at 4 °C in a humidified chamber, diluting the antibodies 1/100. The
primary antibodies used in this study are listed in Table 3.

Table 3. Primary antibodies used for immunohistochemical detection in post-mortem human brain
tissue samples.

Antibody Cat No Supplier

Anti-human PAD1 ab181762 Abcam, Cambridge, UK

Anti-human PAD2 ab50257 Abcam

Anti-human PAD3 ab50246 Abcam

Anti-human PAD4 ab50247 Abcam

Anti-human PAD6 PA5-72059 Thermo Fisher Scientific, Oxford, UK
Anti-histone H3 deimination (citrulline R2R8R17) antibody (CitH3) ab5103 Abcam

Pan-citrulline/deimination F95 antibody MABN328 Merck, Feltham, UK

Following primary antibody incubation, sections were washed in 100 mM PB and
then incubated in the secondary antibody solution for one hour at RT (anti-rabbit IgG or
anti-mouse IgM biotinylated antibodies (Vector laboratories, Peterborough, UK; diluted
1/200). Sections were then first incubated with Avidin-Biotinylated peroxidase Complex
(ABC, Vector Laboratories) for 1 h, at RT, then with diaminobenzidine /hydrogen peroxide
(DAB) stain for 5 min at RT, and finally with Mayer’s haematoxylin (Sigma, Gillingham,
UK) for background staining. Following the peroxidase staining, sections were dehydrated
in alcohol (70%, 90%, 100%—5 min each), incubated in xylene, mounted onto slides us-
ing DEPEX (Sigma) and cover slipped. 20x digital images were captured using a Leica
microscope and a Sony AVT-Horn 3CCD colour video camera (24 bit RGB, 760 x 570 pixel
resolution). For an estimation of staining intensity, the following score was determined: 0
as no labelling; + as weak labelling; ++ for moderate labelling; and +++ for strong labelling;
a representative staining scoring key is shown in Supplementary Figure S1.
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5. Conclusions

This pilot immunohistochemistry study assessed peptidylarginine deiminase isozymes
(PAD1, PAD2, PAD3, PAD4 and PAD6) and protein deimination in post-mortem human
brains with incidental Lewy body disease and Parkinson’s disease (PD) at Braak stages 4—6.
Our findings indicate an increase in PAD isozyme protein levels and protein deimination at
earlier Braak stages, with PAD2 and PAD3 being the most strongly upregulated isozymes.
PAD1 and PAD6 were also found to be increased compared with controls, while less
increase was observed for PAD4. A strong increase in histone H3 deimination (CitH3) was
observed, alongside increase in total protein deimination. This is the first study to assess
all five PAD isozymes and deimination in post-mortem human PD brains at different Braak
stages. Our findings highlight PAD isozymes as candidate early disease biomarkers in LBD,
while further in depth studies are needed.
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