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Abstract: The pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin
(IL)-1β upregulate TNF-α-stimulated gene 6 (TSG-6); however, current knowledge about the optimal
conditions for TSG-6 expression in mesenchymal stem cells (MSCs) is limited. Here, we investigated
whether TSG-6 expression varies depending on the polarization state of macrophages co-cultured with
adipose tissue-derived stem cells (ASCs) and analyzed the optimal conditions for TSG-6 expression in
ASCs. TSG-6 expression increased in ASCs co-cultured with M0, M1, and M2 macrophages indirectly;
among them, M1 macrophages resulted in the highest increase in TSG-6 expression in ASCs. TSG-6
expression in ASCs dramatically increased by combination (but not single) treatment of TNF-α, IL-1β,
interferon-gamma (IFN-γ), and lipopolysaccharide (LPS). In addition, phosphorylation of signal
transducer and activator of transcription (STAT) 1/3 was observed in response to IFN-γ and LPS
treatment but not TNF-α and/or IL-1β. STAT1/3 activation synergistically increased TNF-α/IL-1β-
dependent TSG-6 expression, and JAK inhibitors suppressed TSG-6 expression both in ASCs and
macrophages. In LX-2 hepatic stellate cells, TSG-6 inhibited TGF-β-induced Smad3 phosphorylation,
resulting in decreased α-smooth muscle actin (SMA) expression. Moreover, fibrotic activities of LX-2
cells induced by TGF-β were dramatically decreased after indirect co-culture with ASCs and M1
macrophages. These results suggest that a comprehensive inflammatory microenvironment may play
an important role in determining the therapeutic properties of ASCs by increasing TSG-6 expression
through STAT1/3 activation.

Keywords: mesenchymal stem cells; TSG-6; hepatic stellate cells; macrophages; anti-fibrosis

1. Introduction

Mesenchymal stem cells (MSCs) have been applied to treat various incurable diseases,
and a substantial body of research has explored the paracrine and ant-inflammatory effects
associated with their therapeutic properties. MSCs are known to migrate to damaged tissues
or sites of inflammation [1,2], where they are stimulated by inflammatory cytokines such
as interferon (IFN)-γ, TNF-α, or interleukin (IL)-1β to express various immunosuppressive
factors, including indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2), tumor
necrosis factor (TNF)-α stimulated gene-6 (TSG-6), nitric oxide (NO), IL-6, IL-10, IL-1 recep-
tor antagonist (IL-1ra), and human leukocyte antigen G [3–6]. Macrophages secrete various
inflammatory cytokines including TNF-α and IL-1β at the site of inflammation, and they
can induce the expression of TSG-6 by MSCs. When MSCs are injected intravenously, they
typically form embolisms in the lungs, but they improve myocardial infarction by increas-
ing the expression of anti-inflammatory TSG-6 [7]. In addition, intravenous administration
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of MSCs and recombinant TSG-6 (rTSG-6) decrease neutrophil infiltration, production of
pro-inflammatory cytokines, and development of corneal opacity [8,9].

TSG-6 is a multifunctional protein associated with inflammation and exhibits anti-
inflammatory and tissue-protective properties [10]. TSG-6 can be expressed in a variety
of cells, including fibroblasts and MSCs, by stimulation with prostaglandin E2 (PGE2),
growth factors [e.g., transforming growth factor-β (TGF-β), epidermal growth factor
(EGF), and fibroblast growth factor (FGF)], and inflammatory cytokines [e.g., TNF-α,
interleukin (IL)-1β] [11–17]. TSG-6 interacts with various extracellular matrix proteins
(ECMs), such as fibronectin, heparin, heparan sulfate, hyaluronan, pentraxin-3, and
thrombospondins-1 and -2, to stabilize or remodel the ECM [18,19]. In addition, TSG-6
plays an important role in inflammatory cell migration, cell proliferation, and develop-
mental processes [20]. The anti-inflammatory properties of TSG-6 have been confirmed in
experimental models of arthritis, corneal wound, myocardial infarction, colitis, and acute
lung or liver injury [7,8,21–24]. TSG-6 can inhibit inflammatory responses by regulating
the migration and proliferation of endothelial cells, neutrophils, mast cells, macrophage
foam cells, vascular smooth muscle cells, and macrophages [25,26]. In macrophages,
TSG-6 reduces inflammation by decreasing nuclear factor kappa beta translocation into
the nuclei of resident macrophages in mice with zymosan-induced peritoneal inflamma-
tion [27] and acts as a negative regulator of inflammation in RAW 264.7 murine macrophage
cells by producing cyclooxygenase-2 (COX-2)/prostaglandins, particularly prostaglandin
D2 [28]. In addition, TSG-6 decreases the expression of p38, p-p38, c-Jun N-terminal kinase
(JNK), and p-JNK and suppresses proliferation and inflammatory cytokine expression of
macrophages [25]. TSG-6 reduces M1 macrophages and induces M1 to M2 transition of
macrophages [29,30].

As a multifunctional protein, TSG-6 can regulate the growth of fibroblasts by sup-
pressing the TGF-β signaling pathway, leading to antifibrotic outcomes [31–33]. rTSG-6
significantly decreases the viability and proliferation of capsule fibroblasts by suppressing
the TGF-β/Smad2 signaling pathway in frozen shoulder and enhances cellular apoptosis
concurrent with a reduction in Bcl-2 expression [31]. TSG-6 inhibits the proliferation of
keloid fibroblasts by blocking the formation of the Smad2/3/4 complex and its nuclear
translocation [33]. In addition, TSG-6 contributes to liver regeneration by suppressing the
activation of hepatic stellate cells in CCl4-treated mice, suggesting that TSG-8 may have
therapeutic potential in acute liver failure [23].

Taken together, MSCs exposed to an inflammatory milieu can regenerate damaged
tissues by expressing TSG-6 to regulate the activity of inflammatory cells. Although
inflammatory cytokines, including TNF-α and IL-1β, can increase TSG-6 expression, little
is known about the relationship of TSG-6 expression between MSCs and macrophages. We
hypothesized that there may be a difference in the expression of TSG-6 in MSCs associated
with macrophages at different transition states. If this is the case, it is expected that the
optimal timing of MSC transplantation in regenerative medicine can be determined based
on exposure to inflammatory factors or macrophage transition status. Therefore, in this
study, we want to identify which transition status of macrophages may be involved in
TSG-6 expression in ASCs, which types of cytokines are important for TSG-6 expression,
and which signaling pathways can regulate TSG-6 expression. To explore these issues, we
investigated the expression of TSG-6 in both ASCs and M0, M1, and M2 macrophages after
indirectly co-culturing them and the optimal condition of TSG-6 expression in ASCs. In
addition, focusing on the anti-fibrotic effects of TSG-6, we investigated whether ASCs and
macrophages expressing TSG-6 were able to alleviate TGF-β-induced fibrosis of hepatic
stellate cells.

2. Results
2.1. Increased Expression of TSG-6 mRNA in ASCs after Coculture with Macrophages

Since MSCs induce TSG-6 expression in an inflammatory milieu, we investigated
whether TSG-6 expression in MSCs differs according to macrophage transition status. ASCs
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were mono- or cocultured with macrophages and treated with IFN-γ and LPS, or IL-4
and IL-13, which promote macrophage transition to M1 or M2 phenotypes, respectively.
TSG-6 expression was analyzed by real-time quantitative polymerase chain reaction (qPCR).
Macrophages, regardless of their transition status, increased TSG-6 expression in ASCs. M0
and M2 macrophages increased TSG-6 expression by 5- and 15-fold, respectively, whereas
M1 macrophages significantly increased TSG-6 expression in ASCs by approximately
62-fold (Figure 1). These results suggest that coculture with macrophages increases the
expression of TSG-6 in ASCs and that M1 macrophages or pro-inflammatory conditions
may play a particularly important role in TSG-6 expression in ASCs.
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mRNA was observed in phorbol ester-induced differentiation of THP-1 monocytes to 
macrophages [34], we analyzed whether macrophages specifically were necessary for 
TSG-6 expression in ASCs using murine macrophage cells Raw 264.7 to eliminate the use 
of phorbol esters for transdifferentiation. Similar to M1 macrophages differentiated from 
THP-1, Raw264.7 cells treated with LPS significantly induced TSG-6 expression in ASCs 
(Figure 2C). These results suggest that both macrophages and MSCs can overexpress TSG-
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Figure 1. TSG-6 mRNA expression in ASCs indirectly cocultured with macrophages. ASCs were
indirectly cocultured with macrophages for 2 days and TSG-6 mRNA expression assessed by qPCR.
All qPCR reactions were performed in triplicate. GAPDH expression was used for normalization.
The 2−(∆∆Ct) method was used to calculate relative fold changes in mRNA expression. Data are
presented as the mean ± standard deviation (SD) of three independent experiments. ** p ≤ 0.01 and
*** p < 0.001. M0, macrophages differentiated from THP-1 monocytes; M1, M0 macrophages treated
with IFN-γ and LPS; M2, M0 macrophages treated with IL-4 and IL-13.

Next, we analyzed whether macrophages were essential for TSG-6 expression in ASCs
and whether TSG-6 was expressed in macrophages. ASCs and macrophages were mono-
or cocultured and treated with IFN-γ and LPS (macrophage transition factors promoting
the M1 phenotype). In ASCs treated with IFN-γ and LPS, TSG-6 expression was increased
by approximately 21-fold, while ASCs cocultured with M0 macrophages exhibited an
approximately 10-fold increase in TSG-6 expression. Interestingly, when ASCs were cocul-
tured with M1 macrophages (differentiated with IFN-γ and LPS), TSG-6 mRNA increased
approximately 63- and 46-fold in ASCs and M1 macrophages, respectively (Figure 2A
black bars). Similar to the pattern of TSG-6 mRNA expression shown in Figure 2A, TSG-6
expression significantly increased in both cell types when M1 macrophage and ASCs were
cocultured (Figure 2B). Since a marked upregulation of TSG-6 mRNA was observed in
phorbol ester-induced differentiation of THP-1 monocytes to macrophages [34], we an-
alyzed whether macrophages specifically were necessary for TSG-6 expression in ASCs
using murine macrophage cells Raw 264.7 to eliminate the use of phorbol esters for transdif-
ferentiation. Similar to M1 macrophages differentiated from THP-1, Raw264.7 cells treated
with LPS significantly induced TSG-6 expression in ASCs (Figure 2C). These results suggest
that both macrophages and MSCs can overexpress TSG-6 if they coexist in an inflammatory
or injured site.

2.2. TSG-6 Expression in ASCs and Macrophages Treated with Cytokine Combinations

Since TNF-α and IL-1β secreted by macrophages can induce TSG-6 expression, we
investigated whether IFN-γ and LPS, TNF-α, or IL-1β play a role in the increase of TSG-6
expression in ASCs. In ASCs treated individually with IFN-γ and LPS, TNF-α, or IL-1β,
elevated TSG-6 levels were only detected in immunoblots exposed for a long period (300 s).
However, in ASCs treated with a combination of IFN-γ, LPS, and TNF-α, a significant
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increase in TSG-6 expression was observed even in immunoblots exposed for short periods
(22 s), with this increase dependent on the doses of TNF-α (Figure 3A, lanes 5 and 6) but
not IL-1β (Figure 3A, lanes 7 and 8). However, maximum TSG-6 expression was observed
when cells were treated with all four factors (Figure 3A, lanes 9 and 10). These results
suggest that the synergistic action of several inflammatory cytokines is required for optimal
expression of TSG-6 in ASCs. In contrast, increased TSG-6 expression in macrophages was
observed in response to combinatorial treatment with IFN-γ, LPS, and TNF-α, compared
to cells treated with IFN-γ and LPS (Figure 3B, lane 5). The expression pattern of TSG-6
secreted into the culture supernatant was quite similar to that observed in the cell lysate
(Figure 3). These results suggest that the conditions for inducing TSG-6 expression differ
according to cell types, and that ASCs can express TSG-6 by responding more sensitively to
inflammatory conditions than do macrophages.
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Figure 2. TSG-6 expression in ASCs and macrophages after indirect coculture. For indirect coculture
using Transwell plates, ASCs and macrophages were seeded in upper and lower chamber (and vice
versa) and then total RNA and protein samples were prepared from cells in the lower chamber.
(A) Relative TSG-6 mRNA expression in ASCs and macrophages after indirect coculture. (B) Relative
TSG-6 expression in ASCs and macrophages after indirect coculture. (C) TSG-6 expression in ASCs
cocultured with RAW 264.7 murine macrophages. ASCs and RAW 264.7 cells were seeded in
lower and upper chamber, respectively, and the TSG-6 expression in ASCs was analyzed using
immunoblotting. Relative expression was normalized with respect to GAPDH expression. Data
are presented as the mean ± SD of three independent experiments. * p ≤ 0.05, ** p ≤ 0.01, and
*** p < 0.001. TW, Transwell; A, ASCs; M, macrophages; R, RAW 264.7 murine macrophages.

2.3. Activation of the Signal Transducer and Activator of Transcription (STAT) Signaling Pathway
for TSG-6 Expression

Next, we investigated whether the STAT pathway, which is activated by IFN-γ and
LPS, is involved in TSG-6 expression.
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hibitor that inhibits STAT activity reduced TSG-6 expression induced by the cytokine 
combination treatment (Figure 5A). In addition, this decrease in TSG-6 expression was 
also observed in both ASCs and macrophages cocultured indirectly (Figure 5B,C). These 
results suggest that the STAT signaling pathway induced TSG-6 expression in ASCs and 
macrophages. Furthermore, STAT activity induced a synergistic expression of TSG-6 dur-
ing TNF-α + IL-1β treatment. Taken together, IFN-γ + LPS, TNF-α, or IL-1β can induce 
TSG-6 expression in ASCs and macrophages, and when ASCs and macrophages are ex-
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occur. 

Figure 3. TSG-6 expression in ASCs and macrophages treated with TNF-α, IL-1β, and/or
IFN-γ + LPS. ASCs or macrophages were treated with different concentration of TNF-α, IL-1β,
and/or IFN-γ (20 ng/mL) + LPS (10pg/mL) for 48 h, and TSG-6 expression was detected in the cell
lysate and culture supernatant using immunoblotting. (A) TSG-6 expression in ASCs. (B) TSG-6 ex-
pression in macrophages. The data shown represent one of three independent experiments. * p ≤ 0.05
and ** p ≤ 0.01. S.E., short exposure (22 s); L.E. long exposure (300 s); Sup., supernatant.

In both ASCs and macrophages, IFN-γ + LPS treatment, but not TNF-α or IL-1β
treatment, induced STAT1/3 phosphorylation at 15 min (Figure 4). The Janus kinase (JAK)
inhibitor that inhibits STAT activity reduced TSG-6 expression induced by the cytokine
combination treatment (Figure 5A). In addition, this decrease in TSG-6 expression was
also observed in both ASCs and macrophages cocultured indirectly (Figure 5B,C). These
results suggest that the STAT signaling pathway induced TSG-6 expression in ASCs and
macrophages. Furthermore, STAT activity induced a synergistic expression of TSG-6 during
TNF-α + IL-1β treatment. Taken together, IFN-γ + LPS, TNF-α, or IL-1β can induce TSG-6
expression in ASCs and macrophages, and when ASCs and macrophages are exposed to
TNF-α or IL-1β under STAT-activated conditions, TSG-6 overexpression may occur.



Int. J. Mol. Sci. 2022, 23, 13122 6 of 13Int. J. Mol. Sci. 2022, 23, 13122 6 of 13 
 

 

 
Figure 4. STAT1/3 phosphorylation in ASCs and macrophages. To detect STAT1/3 phosphorylation, 
protein samples were prepared after 15 min of treatment with TNF-α, IL-1β, and/or IFN-γ + LPS 
and analyzed using immunoblotting in ASCs (A) and macrophages (B). The data shown represent 
one of three independent experiments. 

 
Figure 5. Inhibition of TSG-6 expression by JAK inhibitors. Cells were treated with JAK inhibitors 
(10 µM each of JAK1 and JAK2 inhibitor) 20 min prior to cytokine treatment or coculture. Cell lysates 
were recovered 48 h after stimulation, and TSG-6 expression was analyzed using immunoblotting. 

Figure 4. STAT1/3 phosphorylation in ASCs and macrophages. To detect STAT1/3 phosphorylation,
protein samples were prepared after 15 min of treatment with TNF-α, IL-1β, and/or IFN-γ + LPS
and analyzed using immunoblotting in ASCs (A) and macrophages (B). The data shown represent
one of three independent experiments.
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(A) TSG-6 expression in ASCs after treatment with TNF-α, IL-1β, and/or IFN-γ + LPS. TSG-6
expression in ASCs (B) or macrophages (C) after coculture. The data shown represent one of three
independent experiments. ** p ≤ 0.01 and *** p < 0.001. Inh., inhibitor.

2.4. Antifibrotic Effects of TSG-6 Expressed in ASCs and Macrophages

In addition to its representative anti-inflammatory properties, TSG-6 may modulate fi-
brosis by regulating the TGF-β/Smad pathway [31,33]. Therefore, we investigated whether
TSG-6 expressed by ASCs and macrophages could regulate the fibrotic process in LX-2
cells induced by TGF-β. In LX-2 cells, TGF-β induced Smad3 phosphorylation and α-SMA
expression, which were significantly decreased by TSG-6 (Figure 6A,B). In addition, α-SMA
expression induced by TGF-β was significantly reduced in LX-2 cells cocultured with ASCs
and macrophages indirectly. We used phorbol ester 12-O-tetradecanoylphorbol-13-acetate
(TPA) to differentiate THP-1 monocytes into macrophages; however, TPA is an activator
of protein kinase C (PKC) that can regulate the TGF/Smad pathway [35,36]. Therefore, to
confirm the antifibrotic effects of TSG-6 alone, excluding the effect of TPA in the coculture
of ASCs and macrophages, Raw 264.7 macrophages were used. As shown in Figure 6D,
ASCs and Raw 264.7 cells induced a decrease in α-SMA expression in LX-2 cells compared
to TGF-β-treated cells.
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Figure 6. Antifibrotic effects of TSG-6 in TGF-β-treated LX-2 cells. (A) Inhibition of α-SMA expression
by TSG-6 in TGF-β-treated LX-2 cells. (B) Inhibition of Smad3 phosphorylation by TSG-6. Expression
of α-SMA (A) and pSmad3 (B) was quantified by densitometry using Image J, and relative expression
was normalized with respect to GAPDH expression. Data are presented as the mean ± SD of three
independent experiments. * p ≤ 0.05 and ** p ≤ 0.01. LX-2 cells in the lower chamber were cocultured
with ASCs and macrophages seeded in the upper chamber. Inhibition of α-SMA expression in
LX-2 cells cocultured with ASCs and macrophages (C) or ASCs and RAW 264.7 macrophages (D).
TW, Transwell.

Next, to determine whether the reduction of α-SMA expression in LX-2 was dependent
on TSG-6 expressed by ASCs and macrophages, we investigated the expression of α-SMA
after TSG-6 silencing using siRNA. ASCs and Raw 264.7 macrophages in the upper chamber
were treated with scrambled or TSG-6-specific siRNA and then cocultured with LX-2 cells.
TSG-6 expression was significantly reduced in TSG-6 siRNA-treated ASCs and Raw 264.7
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macrophages (Figure 7A), which resulted in the recovery of α-SMA expression in TGF-β-
exposed LX-2 cells (Figure 7B).
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Figure 7. Effects of TSG-6 siRNA treatment in ASCs and macrophages. To inhibit TSG-6 expression in
ASCs and macrophages, ASCs/macrophages or LX-2 cells were seeded in the upper or lower chamber
of Transwell wells, respectively. (A) TSG-6 expression in ASCs and macrophages 48 h after transfection
of TSG-6 siRNA. (B) α-SMA expression in TGF-β-treated LX-2 cells 48 h after transfection of TSG-6
siRNA. Data were obtained from one of three independent experiments. * p ≤ 0.05, ** p ≤ 0.01, and
*** p < 0.001. ns, no statistical significance.

These results suggest that TSG-6 can decrease α-SMA expression by inhibiting Smad3
phosphorylation in LX-2 cells, and TSG-6 expressed by ASCs and macrophages regulates
the fibrotic activity of LX-2 cells.

3. Discussion

Although MSCs can express TSG-6, we found that M1 macrophages induced the
highest increase in TSG-6 expression in ASCs. In addition, combination treatments of
IFN-γ + LPS, TNF-α, and IL-1β were responsible for a significant increase in TSG-6 expres-
sion in ASCs via phosphorylation of STAT1/3. STAT1/3 phosphorylation was observed
in response to treatment with IFN-γ and LPS, but not TNF-α and/or IL-1β. STAT1/3
activation synergistically increased TNF-α/IL-1β-dependent TSG-6 expression, and JAK
inhibitors suppressed TSG-6 expression in both ASCs and macrophages. TSG-6 inhibited
TGF-β-induced Smad3 phosphorylation and resulted in decreased α-SMA expression.
Moreover, fibrotic activities of LX-2 cells induced by TGF-β were dramatically decreased
after indirect coculture with ASCs and M1 macrophages.

Although inflammatory mediators (e.g., IL-1β, TNF-α, LPS, TGF-β, and PGE2) have
been shown to induce TSG-6 expression in leukocytes, stromal cells, and several tissues,
optimal conditions of TSG-6 expression in each cell type have not been accurately identi-
fied [10,18,37,38]. In this study, a significant increase in TSG-6 expression was observed
in both cocultured ASCs and macrophages. Macrophages secrete various inflammatory
cytokines including TNF-α and IL-1β at the site of inflammation, and they can induce the
expression of TSG-6 by ASCs. In addition, a significant increase in TSG-6 expression was
observed in cocultured ASCs treated with the combination of IFN-γ, LPS, and TNF-α/IL-
1β, but not in macrophages cultured alone. These results indicate that, although the stimuli
that induce TSG-6 expression in ASCs and macrophages are different, the co-localization of
ASCs and macrophages is important to express TSG-6 in an inflammatory or injured site. In
macrophages, stimulation other than the combination of IFN-γ, LPS, and TNF-α is required
for optimal TSG-6 expression. PGE2 induces M1-to-M2 transition of macrophages [39,40]
and increases TSG-6 expression [11]. PGE2 production is increased in both cells during
coculture of MSCs and macrophages [40,41]. In addition to PGE2, kynurenic acid (KYNA)
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can increase TSG-6 expression in monocytes [42]. KYNA is an indoleamine 2,3-dioxygenase
(IDO) metabolite, which is produced during tryptophan catabolism. MSCs exposed to
IFN-γ and TNF-α express IDO, which can have anti-inflammatory and immunosuppres-
sive functions [43]. Taken together, these data indicate that different cells express TSG-6
at different intensities depending on the treatment combination of inflammatory media-
tors (e.g., IL-1β, TNF-α, IFN-γ, LPS, TGF-β, PGE2, and KYNA). Therefore, when MSCs
are applied to regenerative medicine, the optimal therapeutic effects can be expected
by transplanting MSCs in consideration of the patient’s inflammatory cytokine profile
or the transition state of macrophages. More than 50 cytokines, growth factors, and
hormones play important roles in development, metabolism, and healing by activating
STAT-mediated signaling [44–47]. In this study, unlike TNF-α or IL-1β, IFN-γ and LPS
induced M1 macrophage differentiation of TPA-treated monocytes, and phosphorylation
of STAT1/3 in ASCs and macrophages. Inhibitors of JAKs (signaling molecules upstream
of STAT) significantly reduced TSG-6 expression in ASCs and macrophages treated with
cytokine combinations or cocultured. These results suggest that the STAT-mediated signal-
ing pathway may play a critical role in directly increasing TSG-6 expression or regulating
STAT-mediated IDO or COX-2 expression. To verify this, it will be necessary to assess the
changes in TSG-6 expression in the presence of IDO and COX-2 inhibitors. Therefore, we
plan further studies to understand the precise mechanisms by which the STAT-mediated
signaling pathways increase TSG-6 expression.

In conclusion, considering the inflammatory environment during MSC transplanta-
tions will be very important to enhance the anti-inflammatory and antifibrotic properties of
TSG-6 expressed by MSCs and macrophages.

4. Materials and Methods
4.1. Materials

The reagents used in this study were obtained from the indicated suppliers: IFN-γ,
IL-1β, TNF-α, IL-4, IL-13, and TGF-β from R&D Systems (Minneapolis, MN, USA); anti-
bodies against α-SMA (ab7817) from Abcam (Cambridge, UK); antibodies against GAPDH
(sc47724) and TSG-6 (sc377277) from Santa Cruz Biotechnology (Santa Cruz, CA, USA);
antibodies against STAT1 (9172S), pSTAT1 (9167S), STAT3 (9139S), pSTAT3 (9145S), and
Smad2/3 (8685S) from Cell Signaling Technology (Danvers, MA, USA); antibodies against
pSmad2/3 (PA5-110155) from ThermoFisher Scientific (Waltham, MA, USA); chemical
inhibitors for JAK1 (Abrocitinib, HY-107429; MedChemExpress, Princeton, NJ, USA) and
JAK2 (AG-490, S1143; Selleck Chemicals, Houston, TX, USA); scramble and TSG-6 siRNA
(Santa Cruz). All other materials were purchased from Sigma-Aldrich (St. Louis, MO, USA)
unless otherwise indicated.

4.2. Cell Culture

The hepatic stellate cell line LX-2 was purchased from Millipore (Burlington, MA,
USA), and THP-1 monocytes and Raw 264.7 murine macrophage cells were purchased
from the Korea Cell Line Bank (Seoul, Korea). LX-2 or Raw 264.7 cells were maintained
in Dulbecco’s Modified Eagle Medium (DMEM, Gibco BRL, Rockville, MD, USA) supple-
mented with 3% or 10% fetal bovine serum (FBS, Gibco BRL), respectively. ASCs were
isolated from three healthy donors (24–38 years of age) with their written informed consent
through elective liposuction procedures under anesthesia at the Wonju Severance Christian
Hospital (Wonju, Korea). ASCs were maintained in DMEM supplemented with 10% FBS,
and cells from passages 3–5 were used in all experiments. THP-1 cells were sub-cultured
with Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco BRL) supplemented
with 10% FBS. Penicillin/streptomycin (Gibco BRL) was also supplemented in culture
media for maintaining cells at 37 ◦C and 5% CO2. For experiments, cells were seeded for
24 h, and treated with stimuli for the indicated time. Cells were exposed to JAK inhibitors
20 min prior to stimulus treatment.
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For indirect coculture, Transwell plates (SPL, Pocheon, Korea) were used. To evaluate
the anti-fibrotic effects of TSG-6, LX-2 cells were seeded in the lower chamber, and ASCs and
macrophages were directly seeded into the upper chamber. Briefly, THP-1 monocytes were
differentiated into macrophages for two days in the upper chamber, and LX-2 cells were
plated in the lower chamber a day before coculture. To proceed with the coculture of ASCs
(1 × 104 cells/cm2), macrophages (2.5 × 104 cells/cm2), and LX-2 cells (1 × 104 cells/cm2),
the upper chamber seeded with macrophages was assembled over the lower chamber, and
ASCs were immediately added to the upper chamber.

4.3. Macrophage Differentiation of THP-1 Monocytes

THP-1 monocytes were differentiated into macrophages (M0 phase) using 100 nM TPA
(Sigma-Aldrich) for two days. M0 macrophages were washed with phosphate-buffered
saline (PBS, Welgene, Gyeongsan, Korea), and M1 or M2 transition was induced by treat-
ment with 20 ng/mL of IFN-γ and 10 pg/mL of LPS (Sigma-Aldrich) or 20 ng/mL each of
IL-4 and IL-13 for two more days, respectively (Supplementary Figure S1).

4.4. qPCR

Total RNA was extracted using TRIzol reagent (Gibco BRL) according to the manu-
facturer’s instructions. cDNA was synthesized from 1 µg of total RNA using Verso cDNA
synthesis kit (ThermoFisher Scientific). TSG-6 mRNA was amplified using the sense and anti-
sense primers 5′-TGGCTTTGTGGGAAGATACTGT-3′ and 5′-TGGAAACCTCCAGCTGTC
AC-3′, respectively. For GAPDH, sense and antisense primers of 5′-CAAGGCTGAGAACGG
GAAGC-3′ and 5′-AGGGGGCAGAGATGATGACC-3′, respectively were used. The reagents
in a 10-µL reaction mixture included cDNA, primer pairs, and SYBR Green PCR Master Mix
(Applied Biosystems, Dublin, Ireland), and PCR was conducted using a QuantStudio 6 Flex
Real-time PCR System (ThermoFisher Scientific). All qPCR reactions were performed in
triplicate. GAPDH expression was used for normalization. The 2−(∆∆Ct) method was used
to calculate relative fold changes in mRNA expression.

4.5. Immunoblotting

Cells were lysed in sample buffer [62.5 mM Tris-HCl, pH 6.8, 34.7 mM sodium dode-
cyl sulfate (SDS), 10% (v/v) glycerol, and 5% (v/v) β-mercaptoethanol], boiled for 5 min,
subjected to SDS-polyacrylamide gel electrophoresis, and transferred to an Immobilon
membrane (Millipore). After blocking with 5% skim milk in Tris-HCl-buffered saline con-
taining 0.05% (v/v) Tween 20 (TBST) for 30 min, the membrane was incubated with primary
antibodies against TSG-6, α-SMA, pSmad2/3, and GAPDH at a dilution of 1:1000 or STAT1,
pSTAT1, STAT3, pSTAT3, and Smad2/3 at a dilution of 1:2000 at 4 ◦C overnight. The
membrane was washed thrice for 5 min with TBST and then incubated with horseradish
peroxidase-conjugated secondary antibodies (1:5000; 7074S and 7076S, Cell Signaling Tech-
nology) for 1 h. After washing thrice with TBST, protein bands were visualized using an
EZ-Western Lumi Pico or Femto kit (Dogen, Seoul, Korea) and detected using a ChemiDoc
XRS+ system (Bio-Rad, Hercules, CA, USA). To detect TSG-6 expression, the membrane
made from ASCs treated with TNF-α or IL-1β was long exposed (approximately 300 s),
whereas the membrane obtained from the ASCs after IFN-γ, LPS, and TNF-α treatment
was sufficient with a short exposure (approximately 22 s). The intensity of immunoreactive
bands was quantified by densitometry using ImageJ, and relative expression of proteins
was normalized with respect to GAPDH expression.

4.6. Small Interfering RNA (siRNA) Treatment

To inhibit TSG-6 expression in ASCs and macrophages, ASCs/macrophages or LX-2
cells were seeded in the upper or lower chamber of Transwell wells, respectively. TSG-6
siRNA (Santa Cruz) or scrambled siRNA (Bioneer, Daejeon, Korea) was mixed with Lipo-
fectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
recommendations and applied to the cells, which were incubated for two days.
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4.7. Statistical Analyses

All experiments were performed thrice. Data are expressed as the mean± standard de-
viation. p values were determined using a paired 2-tailed Student’s t-test (Mann–Whitney U
test). All statistical analyses were performed using GraphPad Prism 7.0 software (GraphPad
Inc., La Jolla, CA, USA). Significance was set at p ≤ 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113122/s1.
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