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Abstract: Frontotemporal lobar degeneration (FTLD) is a complex disease, characterized by pro-
gressive degeneration of frontal and temporal lobes. Mutations in progranulin (GRN) gene have
been found in up to 50% of patients with familial FTLD. Abnormal deposits of post-translationally-
modified TAR DNA-binding protein of 43 kDa (TDP-43) represent one of the main hallmarks of
the brain pathology. To investigate in peripheral cells the presence of the different TDP-43 forms,
especially the toxic 25 kDa fragments, we analyzed lymphoblastoid cell lines (LCLs) and the derived
extracellular vesicles (EVs) from patients carrying a GRN mutation, together with wild-type (WT)
healthy controls. After characterizing EV sizes and concentrations by nanoparticle tracking analysis,
we investigated the levels of different forms of the TDP-43 protein in LCLs and respective EVs by
Western blot. Our results showed a trend of concentration decreasing in EVs derived from GRN-
mutated LCLs, although not reaching statistical significance. A general increase in p-TDP-43 levels in
GRN-mutated LCLs and EVs was observed. In particular, the toxic 25 kDa fragments of p-TDP-43
were only present in GRN-mutated LCLs and were absent in the WT controls. Furthermore, these
fragments appeared to be more concentrated in EVs than in LCLs, suggesting a relevant role of EVs
in spreading pathological molecules between cells.

Keywords: TDP-43; GRN; mutation; FTLD; NCL; EVs; LCLs

1. Introduction

Frontotemporal lobar degeneration (FTLD) is a complex disease, characterized by
progressive degeneration of frontal and temporal lobes and extensive neuroinflammation,
which manifests with a range of clinical disorders and inevitably leads to death. FTLD is the
second most common cause of dementia after Alzheimer’s disease (AD) under the age of
65 [1,2]. About 40% of cases of FTLD have a positive family history, and the main causative
genes linked to the disease are microtubule-associated protein tau (MAPT), chromosome
9 open reading frame 72 (C9ORF72), and progranulin (GRN), with many other genes being
less frequent [2].

GRN mutations have been found in about 10% of patients with sporadic FTLD and in
up to 50% of patients with familial FTLD [3,4]. Progranulin (PGRN) is a widely expressed
secreted growth factor which plays a role in multiple processes, including development,
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wound repair, and inflammation [5,6]. In the central nervous system, PGRN modulates
inflammation and acts as a neurotrophic and neuroprotective factor [7–10]. Most GRN
mutations areloss of function, leading to mutated mRNA degradation and to a following
condition of haploinsufficiency [11,12]. While heterozygous GRN mutations cause FTLD,
homozygous GRN mutations cause neuronal ceroid lipofuscinosis (NCL), a lysosomal
storage disorder [13], although a few homozygous cases have shown FTLD phenotype [14].

The main neuropathological hallmarks of GRN-associated FTLD include neuronal
loss, glia hyperproliferation and inflammation, lysosomal dysfunction, and, in partic-
ular, abnormal deposits of TAR DNA-binding protein of 43 kDa (TDP-43) in neuronal
cells [15–17]. Nuclear factor TDP-43 is a multifunctional RNA binding protein that plays a
role in many cellular processes, such as transcription, RNA splicing, stability, transport,
and translation [18]. TDP-43 presents a predominantly nuclear localization, although it can
shuttle between the nucleus and cytosol. In the pathological aggregates found in brains of
patients with FTLD, TDP-43 undergoes different kinds of post-translational modifications
such as ubiquitination, phosphorylation at Ser403/Ser404 or Ser409/Ser410, and abnormal
cleavage to generate C-terminal fragments (CTFs) of ~25 kDa and ~35 kDa, which are more
prone to forming aggregates than the full-length (FL) molecule [17,19–24].

In cellular models of TDP-43 proteinopathies and in human brain samples from
FTLD, FL TDP-43 and its CTFs are released via exosomes [25,26]. An enrichment of
exosomal TDP-43 CTFs has also been shown in cerebrospinal fluid derived from FTLD
patients [27]. Exosomes are the smallest extracellular vesicles (EVs) (30–100 nm diameter)
and are delimited by a lipid bilayer and secreted by most cell types into the extracellular
environment. EVs carry different kinds of biological molecules, such as nucleic acids,
lipids, and proteins [28]. These molecules can accomplish physiological communication
between cells but can also transmit toxicity if they are pathologically altered as originated
in a disease environment. EVs are key players in physiological processes such as synaptic
plasticity and myelination maintenance, whereas in neurodegenerative diseases, such as
Alzheimer’s disease, Parkinson’s disease, and FTLD, EVs may play roles in the formation,
spreading, and clearance of toxic protein aggregates [29].

In this work, we investigated the presence of TDP-43 and its phosphorylated/pathological
forms in peripheral cells from FTLD and NCL patients carrying a GRN mutation and wild-type
(WT) healthy control subjects. We analyzed both lymphoblastoid cell lines (LCLs) and the
derived EVs, searching for pathological hallmarks. We observed the presence of phosphorylated
25 kDa CTFs of TDP-43 in cells originated from subjects carrying a GRN mutation, while these
fragments were absent in WT control cell lines. Furthermore, we confirmed the same findings
in the EVs, suggesting that EVs actually reflect the pathological status of their originating cells.

2. Results
2.1. PGRN Expression in GRN-Mutated Lymphoblastoid Cell Lines

Nearly all pathogenic GRN mutations result in null alleles, leading to a reduction of
PGRN (haploinsufficiency). PGRN expression was evaluated in LCLs from three healthy
WT subjects and nine patients carrying GRN null mutations (heterozygous mutations:
Thr272SerfsX10, Cys149LeufsX10, Gln341X, IVS1-2A>G splicing; homozygous mutation
Thr272SerfsX10). As expected, PGRN levels were significantly reduced in heterozygous
GRN mutation carriers (p = 0.0011), while the protein was absent in homozygous carriers
(p = 0.0002) (Figure 1).
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Actin was used as the loading control. The graph represents medians with interquartile ranges 
(25%–75%). Data are from six independent experiments in three WT and nine GRN-mutated LCLs. 
Statistical analysis by Mann–Whitney test, ** p < 0.01; *** p < 0.001. Het = heterozygous; Hom = 
homozygous. 
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We observed an overall increase in p-TDP-43 levels in GRN-mutated LCLs (Figure 
2): while FL p-TDP-43 was significantly higher, with respect to the controls, only in  GRN 
homozygous LCLs (p = 0.0136, Figure 2B), showing a variable expression in  GRN 
heterozygous LCLs, the 25 kDa phosphorylated CTFs (CTFs p-TDP-43) were exclusively 
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WT controls. The 25 kDa p-CTFs contents were significantly higher in GRN heterozygous 
LCLs compared to GRN homozygous LCLs (p = 0.0272). 

Figure 1. PGRN content in LCLs from WT controls and heterozygous and homozygous GRN mutation
carriers. (A) A representative Western blot is shown. (B) Densitometric analysis of PGRN. Actin was
used as the loading control. The graph represents medians with interquartile ranges (25–75%). Data
are from six independent experiments in three WT and nine GRN-mutated LCLs. Statistical analysis
by Mann–Whitney test, ** p < 0.01; *** p < 0.001. Het = heterozygous; Hom = homozygous.

2.2. TDP-43 Expression in GRN-Mutated Lymphoblastoid Cell Lines

As it is known that pathological TDP-43 is abnormally phosphorylated at Ser409/Ser410
residues and cleaved to generate CTFs migrating at ~25 kDa, which are more prone to
phosphorylation than FL protein, we examined all these forms of TDP-43 in LCLs from
heterozygous and homozygous GRN mutation carriers. Western blots were performed
with antibodies recognizing TDP-43 or TDP-43 phosphorylated at residues Ser409/Ser410
(p-TDP-43).

We observed an overall increase in p-TDP-43 levels in GRN-mutated LCLs (Figure 2):
while FL p-TDP-43 was significantly higher, with respect to the controls, only in GRN
homozygous LCLs (p = 0.0136, Figure 2B), showing a variable expression in GRN heterozy-
gous LCLs, the 25 kDa phosphorylated CTFs (CTFs p-TDP-43) were exclusively detected
in GRN-mutated LCLs (Figure 2C), although not in all of them, being absent in WT con-
trols. The 25 kDa p-CTFs contents were significantly higher in GRN heterozygous LCLs
compared to GRN homozygous LCLs (p = 0.0272).

2.3. TDP-43 Expression in Extracellular Vesicles from GRN-Mutated Lymphoblastoid Cell Lines

As it has been demonstrated that the EVs carry different kinds of biological molecules,
including proteins, which can either accomplish physiological communication between
cells or transmit toxicity if they are pathologically altered, we examined the contents of EVs
from GRN-mutated LCLs in order to assess the presence of pathological forms of TDP-43.
We isolated the EVs from conditioned media of control and GRN-mutated LCLs and firstly
analyzed them by nanoparticle tracking analysis (NTA) to evaluate EV concentrations
(EVs/mL) and average sizes (nm). Only a trend toward a decrease in EV concentration
in GRN-mutated LCLs compared to controls was observed, even if not reaching statis-
tical significance (Figure 3A,B) (mean ± SD: CTRL 5.43 × 108 ± 2.25 × 108, GRN Het
4.87 × 108 ± 1.23 × 108, GRN Hom 3.59 × 108 ± 1.08 × 108; p = 0.433, one-way ANOVA
test). No statistically significant differences in EV size were observed among the inves-
tigated groups (Figure 3A,C) (mean ± SD: CTRL 184.23 ± 4.13, GRN Het 179.94 ± 15.55,
GRN Hom 191.50 ± 17.65; p = 0.602, one-way ANOVA test).
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Figure 2. TDP-43 content in LCLs from WT controls and heterozygous and homozygous GRN muta-
tion carriers. (A) A representative Western blot showing TDP-43 phosphorylated at Ser409/Ser410
residues (upper panel) or total TDP-43 (middle panel). (B) Densitometric analysis of FL p-TDP-43 nor-
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Het = heterozygous; Hom = homozygous.
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Figure 3. EV concentrations and sizes in LCLs from WT controls and heterozygous and homozygous
GRN mutation carriers. (A) Representative spectra from NTA of CTRL (green), GRN Het (red), and GRN
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Hom (blue) EVs isolated from LCL-conditioned media. (B) EV concentration (EVs/mL) and
(C) EV size (nm) in LCL-conditioned media from WT controls and GRN mutation carriers. Graphs
represent mean ± SD. Statistical analysis by one-way ANOVA with Bonferroni post-hoc tests.
Het = heterozygous; Hom = homozygous.

Then, we performed Western blot analysis to investigate the forms of TDP-43 carried
by the EVs (Figure 4). The FL p-TDP-43 showed a variable expression both in WT and in
GRN-mutated LCLs, with no significant difference (Figure 4B). On the contrary, the 25 kDa
CTFs p-TDP-43 were only present in GRN-mutated LCLs (Figure 4C), although not in all of
them, being absent in WT controls, reflecting the findings from the respective LCLs.
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Figure 4. TDP-43 content in EVs isolated from LCLs from WT controls and heterozygous and homozy-
gous GRN mutation carriers. (A) A representative Western blot showing TDP-43 phosphorylated at
Ser409/Ser410 residues (upper panel) or total TDP-43 (middle panel). TSG101 and Alix are also shown.
(B) Densitometric analysis of FL p-TDP-43 normalized to the respective TDP-43. (C) Densitometric
analysis of the 25 kDa CTFs p-TDP-43 normalized to the respective TDP-43. The graph represents
median with interquartile ranges (25–75%). Data are from six independent experiments in three
WT and nine GRN-mutated LCLs. Statistical analysis by Mann–Whitney test, Het = heterozygous;
Hom = homozygous.

TSG101 and Alix proteins were revealed as EVs markers by their respective antibodies.

3. Discussion

FTLD linked to GRN mutations is pathologically characterized by the presence of
abnormal deposits of TDP-43 in brain neurons [16,17]. This RNA-binding protein is mostly
mislocalized from the nucleus to cytoplasm, where it becomes insoluble and aggregates.
Further, some rare intranuclear lentiform aggregates are also found. In addition, TDP-43 is
subjected to multiple post-transductional modifications, such as ubiquitination, phospho-
rylation, and cleavage [30]. CTFs of TDP-43 have been demonstrated to be more prone to
aggregate and more toxic than the FL protein. Cells transfected with the 25 kDa TDP-43 CTF
showed clear toxicity with high lactate dehydrogenase levels, fragmented nuclei, and ac-
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tivated caspase 3, indicative of apoptosis [24]. TDP-43 CTFs fragments around 25 kDa
expressed in cultured cells caused the formation of abnormal aggregates similar to those
found in the brains of patients [22]. Animal models expressing the 25 kDa TDP-43 CTF
show evidence that high levels of this fragment are sufficient to cause behavioral deficits
and reduce the function of autophagy and proteasomes [31].

We have a collection of LCLs derived from patients carrying a GRN mutation, both
heterozygous, affected by FTLD, and homozygous, affected by NCL. We hypothesized
that peripheral cells may reflect the pathological changes present in brain tissue of these
patients and decided to investigate the main protein involved, TDP-43, in its different
forms, especially the 25 kDa fragments, both in LCLs and their EVs. To date, no such
data on peripheral cells from GRN-linked FTLD/NCL patients have been reported, while
there are some data on the plasma, concerning the FL p-TDP-43. Plasma FL p-TDP-43 was
generally higher in FTLD with pathological TDP-43 changes (included 6 GRN-mutated
patients), although this did not reach statistical significance [32]. In another study, plasma
FL p-TDP-43 levels were significantly increased in subjects carrying a C9orf72 repeat
expansion (n = 10) or GRN mutations (n = 5) compared with sporadic FTLD subjects
(n = 51) and controls (n = 22) [33]. An additional study showed an enrichment of the 35 kDa
fragment in plasma EVs from sporadic FTLD patients. [34].

In our LCLs, TDP-43 levels were similar among all genotypes, including WT, heterozy-
gous and homozygous, both in LCLs and EVs. This suggests that protein transcription
levels and stability do not differ significantly, even in presence of the mutation. Similar
levels of TDP-43 were also reported in LCLs from ALS and AD cases compared to healthy
controls [35,36]. On the contrary, p-TDP-43 showed some differences between WT and
mutated LCLs. FL p-TDP-43 levels were significantly higher in GRN homozygous LCLs
than in WT LCLs, while the situation was more variable in GRN heterozygous LCLs, as
some of them did not display FL p-TDP-43. However, concerning the CTFs p-TDP-43 of
about 25 kDa, the differences between WT and mutated LCLs were striking. In fact, CTFs
p-TDP-43 were not detected in WT LCLs, whereas in all but one GRN heterozygous LCLs
and one GRN homozygous LCL they were present at high expression level. Interestingly,
in the cases where CTFs p-TDP-43 were absent, FL p-TDP-43 was present, indicating that at
least one abnormal form of TDP-43 is present anyway, perhaps not (yet) truncated to CTFs.

As for EVs, while in plasma and in human primary fibroblasts from GRN patients,
a significant concentration decrease of EVs was described [37,38], in our EVs from GRN-
mutated LCLs only a trend towards concentration decrease was observed, not reaching
statistical significance. In EVs, the level of FL p-TDP-43 did not show significant difference
among genotypes, but the level of 25 kDa CTFs p-TDP-43 confirmed the situation of
the respective LCLs: CTFs p-TDP-43 were absent in WT EVs, very abundant in GRN
heterozygous EVs and also present, at lower levels, in GRN homozygous EVs. Comparing
the ratio CTFs p-TDP-43/TDP-43 in LCLs to the ratio in EVs, the amounts of CTFs p-
TDP-43 resulted increased in heterozygous EVs, that is the EVs appeared to concentrate
these toxic fragments. This finding makes the EVs particularly relevant and critical in their
role of communication between cells, as previous studies have demonstrated that TDP-43
aggregates can be transferred from cell to cell via exosomes [25].

The finding that in GRN homozygous LCLs and EVs the CTFs p-TDP-43 were at lower
levels than in GRN heterozygous is intriguing. Homozygous GRN mutations are associated
with NCL, a disease that shares some pathological features with FTLD but that is also
very different. In a recent post-mortem analysis of a human brain carrying a homozygous
GRN mutation, only a very mild TDP-43 pathology was described, without any positive
detection of aggregated forms, while lysosomal storage disorder was overwhelming [14].
Our data are in agreement with these findings, indicating that TDP-43 pathology is mostly
exacerbated in GRN heterozygous FTLD context.

As EVs are released into the extracellular space and can be isolated from a number
of body fluids, including blood, CSF and urine, detecting molecules associated with these
vesicles may have diagnostic, prognostic, and disease monitoring potential. We think that
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the toxic 25 kDa CTFs p-TDP-43 detected in LCLs and their EVs may have this potential, as
they are derived from peripheral cells. As a future direction, detection of these fragments
in plasma or plasma EVs may be planned.

4. Materials and Methods
4.1. Subjects

Following genetic analysis for diagnostic purposes in the dementia field, we disclosed
some patients carrying a GRN mutation. After acquiring informed consent for research
purposes from these patients and control subjects, we obtained peripheral blood lympho-
cytes, from which LCLs were produced using the Epstein–Barr virus infection, according
to standard procedures.

LCLs from three WT healthy age-matched control subjects and nine patients carrying
a GRN (RefSeq NM_002087.4) mutation (seven patients carrying the heterozygous muta-
tions Thr272SerfsX10, Cys149LeufsX10, Gln341X, IVS1-2A>G; two patients carrying the
homozygous mutation Thr272SerfsX10) were analyzed in this study.

4.2. Cell Cultures

LCLs were cultured in suspension in T25 flasks in Optimem medium (Gibco, Life
Technologies Limited, Paisley, UK) containing 10% fetal bovine serum (GE Healthcare Life
Sciences Hyclone Laboratories, South Logan, UT, USA) and 2% penicillin/streptomycin
(Life Technologies Corporation, Grand Island, NE, USA).

4.3. Cellular Lysates

LCLs (106 cells/mL) were seeded in an Optimem medium without FBS for 24 h. The
conditioned medium was then collected by centrifugation and used to isolate EVs (see
below), while the cells were washed in PBS and lysed in an ice-cold RIPA lysis buffer
(50 mM Tris-HCl pH 8, 150 mM NaCl, 5 mM EDTA pH 8, 1% NP-40, 0.5% sodium de-
oxycholate, 0.1% SDS) containing Protease Inhibitor Cocktail (Roche Diagnostics GmbH,
Mannheim, Germany) and Phosphatase Inhibitor Cocktail (Sigma Aldrich, Merk KGaA,
Darmstadt, Germany). The cell lysates were kept in ice for 15 min, sonicated in ice, kept
for an additional 15 min in ice, centrifuged at 13,000× g for 15 min at 4 ◦C, and then the
supernatant was recovered. Protein concentration of extracts was determined by a BCA
assay kit (Thermo Fisher Scientific, Waltham, MA, USA).

4.4. Extracellular Vesicles Extraction

EVs were isolated from conditioned media of LCLs after 24 h of starvation. EVs were
prepared with a Total Exosome Isolation reagent (Invitrogen, Thermo Fisher Scientific,
Vilnius, Lithuania) following the manufacturer’s instructions. Briefly, the conditioned
cell culture media were centrifuged at 2000× g for 30 min to remove cells and debris.
Supernatants were mixed with 0.5 volumes of the Total Exosome Isolation reagent and
incubated at 4 ◦C overnight. After incubation, the samples were centrifuged at 10,000× g
for 1 h at 4 ◦C. EV-containing pellets were resuspended with 100 µL of 0.2 µM filtered
phosphate-buffered saline (PBS) for nanoparticle tracking analysis (NTA) or lysed in an
ice-cold RIPA lysis buffer containing Protease Inhibitor Cocktail and Phosphatase Inhibitor
Cocktail for Western blot analyses. Protein concentration of extracts was determined by
BCA assay kit.

4.5. Nanoparticle Tracking Analysis

EVs resuspended in PBS were analyzed with the NanoSight NS300 Instrument (Malvern,
Worcestershire, UK). Samples were diluted with filtered PBS to obtain an optimal range of
20–150 particles/frame. For each sample, 5 videos of 60 s were recorded and data were
processed using NanoSight NTA Software 3.2. Optimized post-acquisition settings were kept
constant during the analysis of all samples. The data obtained included particle concentration
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(particles/mL) and average size (nm). Raw concentration data (particles/mL) from NTA were
normalized to obtain EV concentrations in the LCL-conditioned media.

4.6. Western Blot Analyses

Western blot analysis was performed using 25 µg cell lysates and 15 µg EVs lysates.
Samples were subjected to polyacrylamide gel electrophoresis using Bolt 4–12% Bis-Tris
gels (Thermo Fisher Scientific, Waltham, MA, USA) and transferred onto PVDF membranes
(Thermo Fisher Scientific, Waltham, MA, USA). The membranes were incubated overnight
at 4 ◦C with the following primary antibodies: anti-hPGRN (AF2420, 1:500, R&D systems,
Minneapolis, MN, USA); anti-TSG101 (ab83, 1:500, Abcam, Cambridge, UK); anti-Alix
(SAB4200476, 1:600, Sigma-Aldrich, St. Louis, MO, USA); anti-TDP43 (10782-2-AP, 1:2000,
Proteintech, Deansgate Manchester, UK); anti-p-TDP43 (recognising phosphorylation at
Ser409/Ser410 residues, MABN14, 1:500, Millipore, Burlington, MA, USA) and anti-Actin
(MAB1501R, 1:3000, Millipore, Burlington, MA, USA). TSG101 and Actin were used as load-
ing controls for EVs and cellular extracts, respectively. Horseradish peroxidase-conjugated
secondary antibodies (InvitrogenTM, Waltham, MA, USA) were incubated for 1 h at room
temperature. Immuno-positive bands were detected by chemiluminescence (GE Healthcare,
Milan, Italy) according to the manufacturer’s instructions. Densitometric analysis was
performed with QuantityOne software (BIO-RAD).

4.7. Statistical Analyses

All statistical analyses were performed using GraphPad Prism Software (San Diego,
CA, USA). Data distribution was assessed by D’Agostino and Pearson omnibus normality
test. Student’s t-test or Mann–Whitney test was used for comparison between two groups
of normally or non-normally distributed variables, respectively. One-way ANOVAs, with
Bonferroni post-hoc tests, were used for comparisons within the groups of normally dis-
tributed variables. Means with standard deviations or medians with interquartile ranges
(25–75%) were graphically represented for normally or non-normally distributed variables,
respectively. Significance was set at p < 0.05.
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