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Abstract: When the bond lengths of 11 molecules containing van der Waals bonds are optimized
by 572 methods and 20 basis sets, it is found that the best mean absolute deviations (MADs)
of density-functional theory (DFT) methods are 0.005 Å (shown by APFD/6-311++G**), 0.007 Å
(B2PLYPD3(Full)/aug-cc-pVQZ), and 0.010 Å (revDSDPBEP86/aug-cc-pVQZ), while the best MADs
of ab initio methods are 0.008 Å (BD(T)/aug-cc-pVTZ) and 0.016 Å (MP4/aug-cc-pVQZ). Moreover,
the best MADs calculated by 54 selected methods in combination with 60 other basis sets (such as
6-311++G, 6-31++G(3d′f,3p′d), and UGBS1V++) are not better. Therefore, these bond lengths can be
calculated with extremely high accuracy by some special methods and basis sets, and CCSD(T) is
also not as good as expected because its best MAD is only 0.023 Å (CCSD(T)/aug-cc-pVQZ).

Keywords: density-functional theory (DFT) methods; ab initio computations; van der Waals molecules;
bond length; CCSD(T) method; computational chemistry

1. Introduction

It is well known that experiment, theory, and computation are the three pillars of
modern chemistry [1]. Like natural science, where experiment is the driving force for
the establishment, testing, and development of a science, the core of chemistry is also
experiment, such as synthetic chemistry, which has reached the stage of synthesizing any
complexity (e.g., palytoxin) and any number (e.g., 200 million) of molecules. From experi-
mental chemistry has developed theoretical chemistry making chemistry from empirical
to rational, and theoretical chemistry becomes more and more important. As the center
and the basics of theoretical chemistry, quantum chemistry was born when Heitler and
London used quantum mechanics to explain why two neutral hydrogen atoms could form
a chemical bond in 1927. It can be said that it is a science of describing chemical bonds at
the molecular level. Therefore, chemical bonds are the core, the essence, and the golden
key of chemistry. The developed result of theoretical chemistry is computational chemistry,
which is also the executor and extension of theoretical chemistry, since computation is
the bridge to connect theoretical models and experimental results. The development of
chemical theories is inseparable from chemical experiments, although they can also be used
to guide experiments. Computational chemistry combines theory and experiment, unites
computer and chemistry, and uses computers as experimental tools. Theoretical chemistry
and computational chemistry make chemistry more rigorous, quantitative, and mature, so
that chemistry is no longer a purely experimental science.

The essence of chemistry is chemical reaction or chemical change, which is the breaking
and forming of chemical bonds. It is also generally believed that structure determines
everything, that is, molecular structure determines molecular properties, and molecular
properties determine the chemical properties of a substance, so the properties of the
substance are mainly determined by its molecular structure (e.g., sometimes external
factors such as solvents are also important). However, a molecule is held together by
chemical bond(s), or its structure depends on its chemical bond(s). That is to say, properties
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are the representation mode of structures, and structures are determinative. On the other
hand, chemical bonds are the essence, and structures are their manifestation. Therefore,
chemical bonds determine structures and properties by reasoning.

Chemical bonds are the attractions that join atoms in a compound, resulting in lower
energy and greater stability. Although Pauling believed that Xenon might take place chemi-
cal reactions in 1933, it was not until Bartlett synthesized the first rare gas compound XePtF6
in 1962 [2] that the previous statement that rare gases could not participate in reactions was
overturned. In 1873, van der Waals first discovered noncovalent interactions that helped
him to reformulate the equation of state for real gases [3,4]. London used quantum mechan-
ics to calculate dispersion forces in 1930 [5]. Bonding is inherently quantum mechanical in
nature, so only quantum mechanics can provide valid theoretical tools to understand the
nature of chemical bonds. For instance, the binding force of chemical bonds is formed by
the wave action of electrons, or due to the special wave-particle duality, it is no wonder
that it goes beyond the boundary of “same charges repel, different charges attract”. It is
now recognized that it is convenient to classify chemical bonds into six types: covalent
bond, ionic bond, coordination bond, metallic bond, hydrogen bond, and van der Waals
bond. Similarly, the interactions between atoms can also be classified into six categories:
1© Two closed-shell neutral atoms, e.g., He-He, or a van der Waals bond;
2© Two open-shell neutral atoms, e.g., H-H, or a covalent bond in which two atoms share

electron pair(s);
3© One closed-shell positive ion and one closed-shell negative ion, e.g., Na+−Cl−, or an

ionic bond of an electrostatic interaction;
4© One closed-shell atom or molecule with lone pair(s) of electrons and one or more

open-shell atoms (including partially positively charged hydrogen(s) when bonded
to an electronegative element) or molecules, e.g., a N−H·O hydrogen bond between
oxygen and hydrogen, and a dative B−N bond or a special kind of covalent bonds in
which one atom donates two electrons;

5© One open-shell ion (usually a positive ion) and one or several closed-shell ions or
molecules, e.g., Mn+(X−)m, or a coordination bond;

6© Many metal atoms aggregate together in which outer shell electrons break away from
the core and move around all metal solids, e.g., a metallic bond.

The properties of chemical bonds are characterized by bond parameters such as bond
length, bond angle, bond energy, bond order, and dipole moment, which can be measured
by experiments directly or indirectly, or obtained from theoretical computations. Although
direct experimental assessment of van der Waals interactions is intrinsically difficult [6],
the notion that van der Waals bonds do exist can be seen from their very precisely mea-
sured bond lengths and bond energies. For example, the measured equilibrium bond
length (re) and bond dissociation energy of NeKr are, respectively, 3.645444(13) Å [7] and
4.31 kJ/mol [8]. It is then doubtful whether computational chemistry can obtain these
values theoretically and accurately, since theories are now usually considered to have
achieved experimental accuracy. However, some popular density-functional theory (DFT)
methods such as B3LYP and PBE1PBE have been found to be very poor in obtaining van der
Waals bond lengths, and the “gold standard” [9] CCSD(T) is also not as good as expected
when calculating molecular structures [10]. Additionally, van der Waals diatomics have
not been very systematically studied in the references [11–14], so a more in-depth study is
necessary, which is the main focus of this work.

2. Results and Discussion
2.1. Computational Results of 572 Methods and 20 Basis Sets

First, 11 rare gas molecules (diatomics) containing van der Waals bonds, represented
below by 11-RG-Mols, are optimized by 572 methods and 20 basis sets. These methods
include almost all DFT and ab initio methods known to us. Among these 20 basis sets, there
are four of Ahlrichs’ [15], eight of Pople’s [16–18], and eight of Dunning’s [19,20] as they
perform relatively better, are more commonly used, and can be used to calculate all these
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11-RG-Mols. These 20 basis sets are numbered from BS01 to BS20 and are listed in Table S1
of the Supporting Information. The relative reliability of a method/basis set is based on its
mean absolute deviation (MAD) value when computing the 11-RG-Mols. All their MADs
are listed in Table S2 (their mean deviations (MDs) are also listed in Table S3). It is then
found that the best MADs (0.005 Å, 0.006 Å, 0.007 Å, 0.008 Å, and 0.008 Å) are shown by the
same DFT methods as in ref. [10] (i.e., APFD [14], B2PLYPD3 [21–23], and B2PLYPD3(Full))
in combination with several basis sets, i.e., shown respectively by APFD/6-311++G**,
APFD/6-311++G(df,pd), B2PLYPD3(Full)/aug-cc-pVQZ, B2PLYPD3/aug-cc-pVQZ, and
B2PLYPD3/aug-cc-pV5Z. The same best result of 0.008 Å is also shown by BD(T) [24], i.e.,
BD(T)/aug-cc-pVTZ, while the other best MADs of ab initio methods are 0.012 Å, 0.013 Å,
0.016 Å, and 0.016 Å, shown respectively by BD(T)(Full)/aug-cc-pVQZ, BD(T)/aug-cc-
pVQZ, BD(T)/aug-cc-pV5Z, and MP4/aug-cc-pVQZ (i.e., other Møller-Plesset perturbation
methods such as MP2, MP3, MP3(Full), MP4(Full), and MP5, whose MADs in combination
with aug-cc-pVQZ are, respectively, 0.061 Å, 0.034 Å, 0.022 Å, 0.025 Å, and 0.027 Å are
poorer). These data, and some other better or special methods, are listed in Table 1. The
worst MAD (as large as 4.074 Å) is shown by G96B95/aug-cc-pVDZ. Unless otherwise
stated, results of PM7, PM6, and UFF are not counted.

The methods which may be considered to be “accurate” (i.e., with MAD(s) between
0.010 Å and 0.020 Å) [25] or better (i.e., with MAD(s) even smaller than 0.010 Å) are shown
by APFD [14], B2PLYPD3 [21–23], B2PLYPD3(Full), DSDPBEP86 [26,27], DSDPBEP86(Full),
revDSDPBEP86 [28], revDSDPBEP86(Full), BD [24], BD(Full), MP4 [29,30], BD(T) [24], and
BD(T)(Full). All these 12 methods are listed in Table 1. Their total number of method/basis
sets is 33, its percentage relative to these 12 × 20 or 240 method/basis sets is 13.75%, and its
percentage relative to all calculated 11436 method/basis sets is as low as 0.29%. Moreover,
if the number (i.e., 792) of method/basis sets with MADs less than 0.100 Å (the MAD of
UFF is 0.094 Å, also less than 0.100 Å) is counted, its percentage of 6.93% is also small. That
is, most method/basis sets are very unreliable in computing these 11-RG-Mols. Methods
with at least 10 times (i.e., at least 10 basis sets combined with a method with MADs less
than 0.100 Å) include: 10 (BD(T)(Full), B2PLYPD, and M06-D3), 11 (PBEB95, LC-XaB95,
and PBE1PBE-D3), 12 (LC-BRxB95, B2PLYP-D3, B2PLYP-D3(Full), and PBE1PBE-D3BJ), 13
(LGKCIS), 14 (wB97X, M06, LGB95, LC-G96B95, LC-RevTPSSB95, LC-TPSSB95, B2PLYPD3,
B2PLYPD3(Full), and B3LYP-D3), 15 (LC-BB95, LC-LGB95, LC-mPWB95, LC-OB95, LC-
PBEB95, LC-PBEhB95, LC-PKZBB95, LC-PW91B95, and LC-SB95), 16 (APFD and MN15L),
17 (MN15, DSDPBEP86, DSDPBEP86(Full), revDSDPBEP86, and revDSDPBEP86(Full)),
and 18 times (PW6B95D3), which are all DFT methods except BD(T)(Full), e.g., the times of
MP4(Full), CCSD(T)(Full), and QCISD(T)(Full) are all only 8.

In Table 2, the best and next best methods for these 20 basis sets are listed. It can be seen
that their best MADs vary widely between 0.005 Å and 0.064 Å. The number of methods
whose best MADs do not exceed 0.020 Å is 11. For these best MADs, the largest time is 8,
shown by APFD, while the next largest time is 3, shown by DSDPBEP86. The other methods
with 2 times include DSDPBEP86(Full), B2PLYPD3(Full), M06, and BD(T). For the next
best methods, the largest times is 6, shown by DSDPBEP86(Full). For the basis sets whose
best and next best MADs are both accurate or even better which are shown by methods of
APFD, B2PLYPD3, B2PLYPD3(Full), DSDPBEP86, DSDPBEP86(Full), revDSDPBEP86(Full),
and/or BD(T), only five Dunning’s basis sets can satisfy this requirement, i.e., aug-cc-pVTZ,
cc-pVQZ, aug-cc-pVQZ, cc-pV5Z, and aug-cc-pV5Z. To obtain accurate or better bond
lengths of the 11-RG-Mols, some special methods and basis sets must be used. As found
before, diffuse functions are often important for calculating these 11-RG-Mols, e.g., the best
MADs for 6-311G**, cc-pVDZ, and cc-pVTZ are, respectively, 0.064 Å, 0.056 Å, and 0.051
Å, while those for 6-311++G**, aug-cc-pVDZ, and aug-cc-pVTZ are, respectively, 0.005 Å,
0.025 Å, and 0.008 Å, which are much better. However, the situation is somewhat different
for cc-pVQZ (with the best MAD of 0.016 Å), cc-pV5Z (0.012 Å), and Def2QZVP (0.012 Å).
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Table 1. MADs (Å) of some methods calculating the 11-RG-Mols.

D2TP D2QPP ++dp ++3d ++df ++3df aug-T aug-Q cc-5 aug-5 Ave

HF 0.791 1.309 0.914 0.726 0.913 0.726 1.105 1.259 1.308 1.308 1.036
MP2 0.219 0.198 0.273 0.091 0.241 0.076 0.057 0.061 0.153 0.063 0.143
B2PLYPD3 0.038 0.053 0.183 0.099 0.155 0.095 0.014 0.008 0.024 0.008 0.068
B2PLYPD3(Full) 0.037 0.038 0.179 0.085 0.154 0.083 0.020 0.007 0.012 0.010 0.063
DSDPBEP86 0.018 0.035 0.052 0.058 0.048 0.060 0.028 0.026 0.013 0.029 0.037
DSDPBEP86(Full) 0.018 0.025 0.050 0.061 0.040 0.066 0.072 0.041 0.014 0.056 0.044
revDSDPBEP86 0.032 0.078 0.067 0.055 0.058 0.055 0.015 0.010 0.034 0.017 0.042
revDSDPBEP86(Full) 0.023 0.059 0.064 0.060 0.054 0.060 0.049 0.019 0.022 0.033 0.044
CCSD(Full) 0.245 0.225 0.274 0.092 0.254 0.078 0.038 0.025 0.142 0.033 0.140
BD 0.249 0.215 0.280 0.090 0.241 0.071 0.030 0.019 0.097 0.022 0.131
BD(Full) 0.249 0.212 0.280 0.090 0.241 0.071 0.030 0.019 0.097 0.022 0.131
MP4 0.244 0.203 0.262 0.098 0.225 0.071 0.031 0.016 0.115 0.027 0.129
CCSD(T) 0.250 0.167 0.260 0.098 0.226 0.072 0.030 0.023 0.107 0.026 0.126
CCSD(T)(Full) 0.201 0.166 0.244 0.056 0.204 0.049 0.060 0.025 0.083 0.060 0.115
BD(T) 0.207 0.150 0.224 0.048 0.187 0.038 0.008 0.013 0.098 0.016 0.099
BD(T)(Full) 0.180 0.178 0.235 0.066 0.271 0.043 0.038 0.012 0.074 0.027 0.112
APFD 0.094 0.012 0.005 0.054 0.006 0.056 0.023 0.012 0.012 0.013 0.029
wB97X 0.102 0.065 0.082 0.076 0.083 0.077 0.070 0.051 0.067 0.078 0.075
B3LYP 0.982 1.910 1.416 1.069 1.380 1.074 1.772 1.910 1.828 1.990 1.533
PBE1PBE 0.148 0.155 0.148 0.122 0.142 0.121 0.147 0.154 0.153 0.153 0.144
M06 0.065 0.141 0.072 0.070 0.072 0.070 0.068 0.170 0.140 0.152 0.102
M06L 0.121 0.140 0.127 0.074 0.127 0.073 0.066 0.099 0.110 0.076 0.101
MN15 0.094 0.081 0.075 0.066 0.075 0.066 0.066 0.072 0.082 0.088 0.076
MN15L 0.072 0.086 0.076 0.070 0.076 0.062 0.061 0.081 0.086 0.089 0.076
PW6B95D3 0.081 0.089 0.082 0.069 0.082 0.069 0.084 0.088 0.089 0.090 0.082
PBEB95 0.119 0.109 0.057 0.065 0.057 0.065 0.084 0.092 0.109 0.097 0.086
LC-PBEB95 0.060 0.099 0.086 0.084 0.086 0.084 0.086 0.096 0.099 0.100 0.088
B3LYP-D2 0.170 0.097 0.093 0.110 0.094 0.111 0.091 0.100 0.100 0.097 0.106
B3LYP-D3 0.106 0.064 0.068 0.087 0.069 0.087 0.043 0.065 0.071 0.066 0.073
M06-D3 0.068 0.172 0.136 0.073 0.136 0.073 0.123 0.172 0.171 0.118 0.124
M06L-D3 0.122 0.141 0.128 0.098 0.128 0.074 0.067 0.101 0.111 0.128 0.110
LC-wPBE-D3 0.049 0.157 0.162 0.115 0.161 0.112 0.140 0.173 0.155 0.166 0.139
PBE1PBE-D3 0.121 0.089 0.096 0.111 0.097 0.112 0.084 0.090 0.092 0.088 0.098
PBE1PBE-D3BJ 0.112 0.087 0.084 0.102 0.084 0.102 0.082 0.090 0.086 0.087 0.091
PBEPBE-D3BJ 0.150 0.097 0.098 0.118 0.098 0.119 0.090 0.095 0.104 0.097 0.107
B3LYP-D3BJ 0.052 0.083 0.165 0.150 0.165 0.154 0.151 0.077 0.073 0.164 0.123
Ave 0.164 0.200 0.197 0.129 0.187 0.124 0.140 0.149 0.170 0.158 0.162

The D2TP, D2QPP, ++dp, ++3d, ++df, ++3df, aug-T, aug-Q, cc-5, and aug-5 denote, respectively, Def2TZVP,
Def2QZVPP, 6-311++G**, 6-311++G(3d,3p), 6-311++G(df,pd), 6-311++G(3df,3pd), aug-cc-pVTZ, aug-cc-pVQZ,
cc-pV5Z, and aug-cc-pV5Z. Ave is abbreviation of average for these considered 36 methods or 10 basis sets. A
green or blue value means, respectively, that this MAD is smaller than 0.020 Å or between 0.020~0.100 Å, while a
black one means that this value is larger than 0.100 Å.
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Table 2. The best and next best MADs (Å) and methods for the 20 basis sets.

Basis Set
The Best The Next Best

MAD Method MAD Method

Def2TZVP 0.018 DSDPBEP86,
or DSDPBEP86(Full)

0.023 revDSDPBEP86(Full)

Def2TZVPP 0.027 DSDPBEP86(Full) 0.029 DSDPBEP86
Def2QZVP 0.012 APFD 0.029 DSDPBEP86(Full)
Def2QZVPP 0.012 APFD 0.025 DSDPBEP86(Full)
6-311G** 0.064 M06 0.069 M06-D3
6-311++G** 0.005 APFD 0.049 wPBEhB95
6-311++G(2d,2p) 0.036 DSDPBEP86 0.040 DSDPBEP86(Full)
6-311++G(3d,3p) 0.054 APFD 0.055 revDSDPBEP86
6-311++G(df,pd) 0.006 APFD 0.040 DSDPBEP86(Full)
6-311++G(2df,2pd) 0.036 revDSDPBEP86(Full) 0.038 DSDPBEP86
6-311++G(3df,3pd) 0.038 BD(T) 0.043 BD(T)(Full)
6-311++G(3d2f,3p2d) 0.012 APFD 0.061 PBEB95
cc-pVDZ 0.055 M06HF 0.056 M06HF-D3
aug-cc-pVDZ 0.025 APFD 0.036 DSDPBEP86(Full)
cc-pVTZ 0.051 M06 0.053 M06-D3
aug-cc-pVTZ 0.008 BD(T) 0.014 B2PLYPD3

cc-pVQZ 0.016 DSDPBEP86 0.018 DSDPBEP86(Full),
or revDSDPBEP86(Full)

aug-cc-pVQZ 0.007 B2PLYPD3(Full) 0.008 B2PLYPD3
cc-pV5Z 0.012 APFD,

or B2PLYPD3(Full)
0.013 DSDPBEP86

aug-cc-pV5Z 0.008 B2PLYPD3 0.010 B2PLYPD3(Full)

As in Table 1, a green or blue value means, respectively, that this MAD is smaller than 0.020 Å or between
0.020~0.100 Å. , while a black one means that this value is larger than 0.100 Å.

The frequencies of these 36 methods listed in Table 1 in combination with all the
20 basis sets are also computed with their corresponding optimized bond lengths to see
whether there are imaginary frequencies. An imaginary or a negative frequency means that
this molecule is unstable (e.g., a transition state) judged from this method/basis set. As can
be seen from their detailed data listed in Table S4, imaginary frequencies appear for all these
11-RG-Mols, but the number for one molecule ranges from 1 for 20Ne84Kr to 62 for 4He2.
The total number of method/basis sets with imaginary frequency is 166, and its percentage
relative to 7920 is only 2.10%, which is negligible, so nearly all geometries optimized by the
corresponding method/basis sets are judged to be energy minima or stable conformations,
meaning that these calculations can be considered successful. However, as listed in the
Supporting Information of ref. [10], the number with imaginary frequency of 289 problem-
atic molecules (almost all non-aromatic) is 69 when calculated by 26 method/basis sets
(excluding PM6 and UFF results), and that of the total calculated 7514 method/basis sets
is 741. The percentages of 69 versus 289 and 741 versus 7514 are, respectively, as high as
23.88% and 9.86%. It has been found that the number of imaginary frequencies which will
exclude the stability of these two molecules is 1125, or its percentage relative to the total
number of computed method/basis sets is 18.18% when planar benzene and nonplanar
toluene are computed by more than one hundred methods and more than one hundred
basis sets [31]. Therefore, the reason may be similar to calculating vibrational frequencies
of aromatic molecules, i.e., it is also impossible to judge the stability of some non-aromatic
molecules, including these van der Waals ones when using many method/basis sets of
computational chemistry.

2.2. Computational Results of 54 Methods and 60 Other Basis Sets

Next, 54 relatively better methods are selected to optimize these 11-RG-Mols in combi-
nation with 60 other basis sets, including nearly all types for which they can be computed
(e.g., STO-6G, TZVP, LanL2DZ, 6-31+G, CBSB7, 6-31++G(2df,2pd), 6-31++G(3d’,3p’), and
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UGBS), and their MADs are listed in Table S5 (their MDs are listed in Table S6). These
60 basis sets are numbered from BS21 to BS80, also listed in Table S1. If these DFT methods
combined with UGBS and UGBS1V++ which can calculate only three molecules (i.e., like
Dreiding, they can only calculate 4He2, Ne2, and HeNe) are not considered, it is seen that
methods with “accurate” MADs only include BD(T), BD(T)(Full), and APFD, i.e., shown
by BD(T)/6-31++G(3d,3p) (with MAD of 0.018 Å), BD(T)/6-31++G(3d’,3p’) (0.020 Å),
BD(T)(Full)/6-31++G(3d’f,3p’d) (0.017 Å), APFD/6-311++G (0.017 Å), APFD/6-311++G*
(0.011 Å), and APFD/6-311++G(df) (0.011 Å). Then, when they are used to optimize the
11-RG-Mols with APFD, the results of 6-311++G, 6-311++G*, and 6-311++G(df) are slightly
worse than those of 6-311++G** and 6-311++G(df,pd) in Section 2.1, and other similar
basis sets such as 6-31G* (with MAD of 0.354 Å), 6-31+G* (0.149 Å), 6-31++G** (0.108 Å),
6-31++G(3df,3pd) (0.173 Å), 6-311+G (0.034 Å), 6-311+G* (0.030 Å), 6-311+G** (0.049 Å), and
CBSB7++ (0.028 Å) can be much worse. The worst MAD is 1.196 Å shown by MP3/CEP-31G
or MP3(Full)/CEP-31G. The number of MADs smaller than 0.100 Å is 588, or its percentage
relative to 3084 is 19.07%, much better than the overall 6.93% in Section 2.1. However, if
only these 54 methods whose number with MAD smaller than 0.100 Å is 514 in Section 2.1
are counted, their percentage of 47.87% is much larger than this 19.07%, so the basis sets in
Section 2.1 are generally better. It is noted that the number with MAD smaller than 0.100 Å
of PW6B95D3 (with a maximum number of 18 for the former 20 basis sets) or APFD in
combination with these 60 basis sets is 26, which is smaller than the maximum of 39 shown
by M06, but as listed above, none of their MADs does not exceed 0.020 Å, except for six
basis sets combined with APFD, BD(T), and BD(T)(Full).

The results of CCSD(T) [32] should be pointed out because it is generally considered
as the only widely accepted gold-standard method. In Section 2.1, its best MAD is 0.023 Å,
shown by CCSD(T)/aug-cc-pVQZ, as shown in ref. [10], while in this Section its best
MAD is 0.026 Å, shown by CCSD(T)(Full)/6-31++G(3d’,3p’) (similar results for QCISD(T)).
Therefore, the two best MADs are not accurate, nor better than revDSDPBEP86, BD(T),
MP4, not to mention such DFT methods as APFD and B2PLYPD3(Full). In ref. [10], it is
also found that not only are the best MADs of bond lengths (i.e., 0.021 Å shown by DSDP-
BEP86(Full)/Def2QZVP and MP2(Full)/cc-pVQZ) and bond angles (i.e., 2.3◦ shown by
QCISD(T)/cc-pVTZ) not shown by CCSD(T), but also the best SUM1 (5.0 unit) and SUM2
(2.5 unit) of CCSD(T) shown by CCSD(T)/cc-pVTZ and CCSD(T)/6-311++G(3df,3pd)
(shown also by QCISD(T)/cc-pVTZ and CCSD(Full)/cc-pVQZ for these same SUM1
and SUM2, with SUM1 and SUM2 measuring its overall reliability of a method/basis
set calculating both bond length and bond angle) are larger than those (4.9 unit and
2.4 unit) of DSDPBEP86/cc-pVQZ, DSDPBEP86(Full)/cc-pVQZ, DSDPBEP86/aug-cc-
pVQZ, DSDPBEP86/6-311++G(3df,3pd), DSDPBEP86(Full)/6-311++G(3df,3pd), and MP2/
aug-cc-pVQZ. Therefore, it is no longer appropriate to call CCSD(T) the “gold standard”
for the purpose of calculating molecular structures (at least for the lengths and angles of
covalent and ionic bonds, and the lengths of van der Waals bonds).

Then, from this study and ref. [10], it is best to use DFT methods such as APFD,
B2PLYPD3(Full), DSDPBEP86(Full), and revDSDPBEP86 to obtain better structures. For
example, in ref. [10], it was found that DSDPBEP86, DSDPBEP86(Full), and APFD all
performed very well (meaning that their SUM1s do not exceed 5.4 units and their SUM2s do
not exceed 2.6 units) when used to optimize 179 molecules in combination with 6 basis sets
(i.e., cc-pVTZ, cc-pVQZ, aug-cc-pVQZ, 6-311++G(3df,3pd), Def2TZVPP, and Def2QZVP)
(this criterion is also met by 6 other DFT methods, i.e., OHSE1PBE, SOGGA11X, PBE1PBE,
PBE1PBE-D3, PBE1PBE-D3BJ, and B3PW91-D3BJ). Although the number of these 6 basis
sets which behave very well is only 4 for B2PLYPD3(Full), it is 2 for MP2 and CCSD(T).
Not only are their computations (such as consumed memories and CPU times) much easier
than CCSD(T), but also they are not inferior to CCSD(T), and can even be better.
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3. Materials and Methods

These 11-RG-Mols include 4He2, Ne2, 40Ar2, 84Kr2, HeNe, HeAr, HeKr, 20Ne40Ar,
22Ne36Ar, 20Ne84Kr, and 40Ar84Kr, whose spectroscopic states are all X1∑ +

g or X1∑+, and
whose adopted experimental equilibrium bond lengths (re) [7,11–13,33] are, respectively,
2.970 Å, 3.091 Å, 3.758 Å, 4.017(12) Å, 3.05 Å, 3.50 Å, 3.69 Å, 3.46360(12) Å, 3.46539(55) Å,
3.645444(13) Å, and 3.894358(50) Å, also listed in ref. [10]. As in ref. [10], their experimental
bond lengths are usually used as their initial parameters to be optimized. These theoretically
computed bond lengths are then compared with their corresponding experimental ones
and the MAD (MAD = (1/11)∑11

i=1
∣∣ri,calc − ri,exp

∣∣ [34]) of a method/basis set is obtained.
These calculations are carried out by using Gaussian 16 program [35].

4. Conclusions

After the computations of the 11-RG-Mols containing van der Waals bonds with
572 methods and 80 basis sets, it is found that the best or next best MADs are usually shown
by such methods as APFD, B2PLYPD3(Full), DSDPBEP86, and DSDPBEP86(Full), which
are also very good for calculating the 179 problematic molecules with covalent and/or
ionic bonds [10]. That is to say, to obtain very good structures for these three bond types,
it is best to choose the above DFT methods in combination with some large or very large
basis sets. CCSD(T) results do not meet the criterion of accurate bond lengths, so it is not
suitable to be used as a comparing standard, as other ab initio methods like BD(T) and MP4
can be better than CCSD(T) in calculating these van der Waals bond lengths.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms232213944/s1. Reference [36] are cited in the supplementary materials.
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